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Abstract—The advent of generative AI has revolutionized
3D content design, significantly enhancing modelers’ efficiency.
However, the quality of generated 3D content, particularly
Generated Meshes (GMs), remains a critical concern. GMs pose
unique challenges for quality assessment due to their complex
geometry, detailed texture mapping, and distortions that differ
from traditional meshes. Existing methods fail to address these
GM-specific issues. To tackle this gap, we introduce a novel
no-reference quality assessment method, CAP, which integrates
CT-Slice, prompt Alignment, and Projections. CAP employs a
six-face projection to capture external features and a CT-like
slicing approach to extract internal quality features. Additionally,
it leverages Contrastive Language-Image Pre-Training (CLIP)
to measure the alignment between projection embeddings and
prompts as a key quality indicator. Experimental results demon-
strate that CAP effectively evaluates GM quality by combining
internal, external, and alignment features. The code for this work
has been open-sourced in https://github.com/zyj-2000/CAP.

Index Terms—AIGC, projection-based, 3D quality assessment,
no-reference, CLIP

I. INTRODUCTION

3D content has garnered significant attention due to its

immersive depth and three-dimensional (3D) visual effects,

making it a cornerstone of virtual reality (VR) applications

[1]–[4]. However, traditional 3D modeling processes are time-

intensive and laborious for designers. Even with advanced

sensing technologies capable of capturing geometric and color

information from real-world objects, substantial manual re-

finement is often required, and the equipment itself is costly.

These challenges have hindered the widespread adoption of 3D

content and slowed the advancement of related technologies.

The advent of generative AI has transformed 3D content cre-

ation, introducing methods tailored to Colored Point Clouds,

Textured Meshes, Neural Radiation Fields (NeRF) [5], and 3D

Gaussian Splatting (3DGS) [6], thereby expanding designers’

creative options. Despite these innovations, quality assurance

of 3D AI-generated content (3DGC) remains a pressing con-

cern due to limited human oversight and insufficient feedback

mechanisms. Among various 3DGC types, Generated Meshes

(GMs) stand out for their accurate representation of object

shapes and surface details through intricate data structures,

making quality issues particularly pronounced. Thus, devel-

oping a robust and reliable quality assessment framework
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Fig. 1. Visualization of different types of distortion suffered by the conven-
tional meshes and the generated meshes.

for GMs is crucial to advancing 3D Artificial Intelligence

Generated Content (AIGC) and improving the end-user visual

experience.

Numerous representative 3D Quality Assessment (3DQA)

methods [7]–[13] have been developed, offering valuable

insights for evaluating GMs. However, most existing 3DQA

methods are tailored for captured 3D content or computer-

simulated distortions, overlooking the unique distortion types

specific to GMs. As illustrated in Fig. 1, traditional meshes

typically experience distortions due to pre-processing dur-

ing transmission, as well as simplifications and compres-

sion for storage optimization. These distortions are visually

intuitive and easily identifiable. In contrast, GMs primarily

suffer distortions arising from the 3D generation algorithms

and the prompts used, which are often more complex and

less apparent. These distortions necessitate consideration of

alignment with the prompts, making traditional mesh quality

assessment (MQA) methods unsuitable for direct application

to GMs. To address this gap, we propose a novel quality

assessment method for GMs, CAP. Unlike existing projection-

based 3DQA methods [10], [11], [11], [14], [15], which focus

solely on external mesh features, CAP integrates internal

structural analysis and prompt alignment as critical quality

indicators. Specifically, CAP employs six-face projections to

comprehensively capture the external appearance of GMs. It

further examines internal structural features through CT-like

slicing along multiple X-Y planes. Additionally, it utilizes

Contrastive Language-Image Pre-Training (CLIP) [16] to mea-

sure the alignment between six projection embeddings and

prompt embeddings. Experimental results on the 3DGCQA

dataset [17] demonstrate that CAP significantly outperforms
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Fig. 2. Framework of proposed CAP method.

existing objective quality assessment methods, offering an

effective solution for evaluating GMs’ quality.

II. RELATED WORK

A. AI Generated Content Quality Assessment

The advent of generative AI has profoundly influenced vari-

ous aspects of production and daily life, particularly within the

art and design industries [18]–[23]. While generative models

have significantly enhanced practitioners’ efficiency, the qual-

ity of AIGC has become a critical area of focus. In this regard,

Li et al. pioneered the assessment of AI-generated images by

introducing the AGIQA dataset [24], [25], which was later

extended by studies addressing AI-generated video quality.

Despite advancements in quality assessment for AI-generated

images (AGI) and videos (AGV) [26], the quality evaluation of

generated 3D content has received comparatively less attention

due to the inherent complexity of 3D generation. Recognizing

this gap, Zhou et al. [17] created the first dedicated dataset

for 3D content quality assessment, 3DGCQA, which includes

313 Generated Meshes (GMs). Although the dataset provides

valuable resources for advancing the field, Zhou et al. did not

propose an effective quality assessment method. To address

this limitation, this paper introduces a novel and reliable

quality assessment method specifically designed for GMs,

building upon the foundation laid by existing datasets and

research.

B. 3D Quality Assessment

Advancements in media technology have brought increasing

attention to 3D content, which offers depth of information

and immersive, interactive experiences surpassing those of 2D

media such as images and videos. However, the complex data

structure of 3D content introduces a broader range of quality

issues. To address these challenges, several foundational 3D

quality assessment (3DQA) datasets [27]–[31] have been de-

veloped, providing essential data for evaluating 3D content

quality. Classical 3DQA methods are typically categorized

based on the type of 3D data: point cloud quality assessment

(PCQA) [10], [11], [15] and mesh quality assessment (MQA)

[12], [14], [27]. In point clouds, common distortions include

video-based point cloud compression (VPCC) and geometry-

based point cloud compression (GPCC), geometric and color

noise, and downsampling. In meshes, distortions generally

involve geometric and texture compression, quantization, and

noise. To address these issues, various 3DQA methods have

been proposed, broadly classified into model-based [7]–[9] and

projection-based [10], [11], [15] approaches. Among these,

projection-based methods have gained prominence due to their

simplicity, computational efficiency, and strong performance.

However, the emergence of generative 3D models has intro-

duced new challenges for 3DQA. Traditional distortions are

no longer dominant in GMs, which instead exhibit unique

distortions. Zhou et al. [17] have identified several such

distortions, including multi-faceted duplicates, depth errors,

surface roughness, geometric redundancy, and geometric dele-

tions, which are not adequately addressed by existing 3DQA

methods. These new challenges necessitate novel approaches

to effectively evaluate the quality of GMs.

III. PROPOSED METHOD

Given the substantial differences in quality assessment re-

quirements between Generated Meshes (GMs) and traditional

meshes, we propose a novel quality assessment method, CAP,

as illustrated in Fig. 2. The CAP framework comprises four

distinct modules. The Projection Module, CT-Slice Module,

and Alignment Module are designed to assess distinct aspects
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Fig. 3. Slices of Generated Mesh with different distortion types.

of GM quality, focusing on external quality information, inter-

nal structural features, and prompt alignment, respectively. The

Assessment Module integrates these insights by performing

feature extraction, regression, and fusion to produce the final

predicted quality score of the GM.

A. Projection Module

Projection is a common preprocessing technique in 3DQA,

enabling the transformation of complex 3D models into 2D

images using virtual cameras [32]. This approach effectively

reduces dimensionality and computational overhead. Among

projection schemes, frontal projection and six-sided projection

are the two prevailing methods. Given the visually complex

distortions often present in GMs, the six-face projection em-

ployed in CAP provides a more comprehensive visualization

of a GM’s external features. To formalize the process, a GM

is defined as:

GM = (V,N,E), (1)

where V = {v1, v2, . . . , vi}, N = {n1, n2, . . . , nj}, E =
{e1, e2, . . . , ek} are the set of i vertices, j normal vectors and

k edges in GM respectively. The geometric center of the GM

is calculated as:

Vc =
1

∣V ∣
∑
v∈V

v, (2)

where ∣V ∣ denotes the total number of vertices and Vc denotes

the center coordinates of GM. Since there is insufficient

prior information to determine the frontal surface of each

GM, we adopt the initial viewpoint of the virtual camera

as the frontal surface and a Cartesian coordinate system is

established with Vc as the origin. To ensure comprehensive

external visualization, the virtual camera is positioned along

the positive and negative directions of the X , Y and Z axes at

a fixed distance r. This configuration enables the generation

of six distinct projections Pi(i = 1,2, . . . ,6), which effectively

capture the GM’s external visual information.

B. CT-Slice Module

Although the six-face projections provide sufficient infor-

mation to describe the external appearance of GMs, they in-

evitably lose depth and structural details. Many GM distortions

exploit this limitation, creating high-quality renderings from

specific viewpoints while masking overall quality deficiencies.

To address this potential for deceptive visualizations, it is

crucial to perform CT slicing on the GM to capture its

internal structural information. In the established Cartesian

coordinate system, we first identify the highest and lowest

vertices, denoted as v̂h and v̂l, respectively. From these, we

compute the height H and the slicing interval I of the GM:

I =
H

N − 1
=
v̂h − v̂l
N − 1

, (3)

where N is the number of slices. The slices are then defined

along the Z-axis from high to low, labeled from H0 to HN−1.

Notably, the first and last CT slices pass through only a few

vertices at the highest and lowest points (including vertices of

equal height), which do not provide sufficient structural infor-

mation. Besides, they are already represented by the six-face

projections. Therefore, the number of valid slices is N −2. To

illustrate the relationship between CT slices and GM quality,

we perform slicing on typical GMs with various distortion

types, as shown in Fig. 3. The results reveal that CT slices

effectively capture the GM’s geometric structure, with distinct

distortions manifesting differently in the slices. Specifically,

GMs with depth errors exhibit concave surfaces in the slices,

while rough geometric structures create closed regions with

smaller, irregular areas. Furthermore, multifaceted repetitive

distortions are fully captured in the CT slices, while geometric

discontinuities may result in blank slices.



C. Alignment Module

A key distinction between traditional MQA and the evalu-

ation of GMs is that the latter requires an objective quality

assessment that not only considers the external visual and

internal structural quality but also evaluates the consistency of

the generated content with the provided prompts. To address

this, we propose the Alignment Module, which computes

the similarity between the six-face projection embedding and

the prompt embedding using CLIP [16]. Specifically, the

process begins by encoding the projection embedding Ei
P for

each projection Pi(i = 1,2, . . . ,6) using a pre-trained Vision

Transformer [33]. Simultaneously, the prompt is encoded using

Transformer [34] to obtain its corresponding embedding ET .

The similarity between the six projection embeddings and

the prompt embedding is then calculated via a dot-product

operation. The average of these similarity values is taken as the

measure of consistency between the GM and prompt, serving

as a key feature for quality assessment.

D. Assessment Module

Using the Projection Module and the CT-Slice Module, we

obtain six projections that capture the external visual informa-

tion of the GM and N − 2 slices that represent the internal

geometric structure. Given the superior performance of the

Swin Transformer (Swin-T) [35] in various computer vision

tasks, we employ Swin-T tiny for further feature extraction

from both the six projections and the N − 2 slices. Subse-

quently, two fully connected (FC) layers are used as quality

regressors to predict the quality of the GM. To compute the

final quality score, we adaptively weigh the average similarity

from the Alignment Module and the predicted quality from

the FC layers using an additional FC layer with two neurons.

For model training and parameter updates, we utilize the Mean

Squared Error (MSE) as the loss function.

IV. EXPERIMENTS

A. Experiment Setups

To comprehensively evaluate and analyze the performance

of the proposed CAP method, we conduct both performance

tests and ablation experiments. For the dataset, we utilize the

3DGCQA dataset, the only dataset specifically designed for

quality assessment of 3D-generated content. To demonstrate

the effectiveness of CAP, we select 11 representative objective

quality assessment methods for comparison under consis-

tent experimental conditions. Notably, four methods including

DBCNN [36], StairIQA [37], ViT-MQA [14] and Dual-PCQA

[15] require additional training, while Q-Align [38], based

on a multimodal large language model (MLLM), is tested

only in a zero-shot setting. The remaining methods rely on

manually extracted features. All methods employ the same six-

face projection strategy, and the average quality score is used

as the predicted GM quality. For CAP training, the number

of slices is set to N = 10. We use the Adam optimizer

[39] with default settings of 30 epochs and a learning rate

of 5e-5. The two FC layers of the regressor have 768 and

64 neurons, respectively. We follow the experimental setup of

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON 3DGCQA

DATABASE. BEST IN RED, SECOND IN BLUE.

Type Method SRCC↑ PLCC↑ KRCC↑ RMSE↓

Hand-
crafted
Based

BRISQUE [40] 0.2091 0.3347 0.1444 0.7414
CPBD [41] 0.2099 0.4797 0.1335 0.7217

IL-NIQE [42] 0.1481 0.1573 0.1131 0.6600
NFERM [43] 0.2797 0.4062 0.1999 0.7222
NFSDM [44] 0.3189 0.4468 0.2235 0.6935

NIQE [45] 0.2079 0.2594 0.1413 0.8050

Deep-
learning
Based

DBCNN [36] 0.5381 0.5147 0.3946 0.4700
StairIQA [37] 0.3813 0.4566 0.2653 0.5802
ViT-MQA [14] 0.3517 0.3724 0.2609 0.8780

Dual-PCQA [15] 0.6583 0.6578 0.4718 0.4549
Q-Align [38] 0.0746 0.0764 0.0498 0.8311
CAP (Ours) 0.7098 0.7566 0.5386 0.4245

[17], employing five-fold cross-validation to evaluate CAP’s

performance on the 3DGCQA dataset. Care is taken to ensure

no content overlap between folds, and the average performance

across all five folds is recorded for each method.

B. Experiment Criteria

To quantify the performance of each method on 3DGCQA

dataset, we utilize four widely adopted metrics in qual-

ity assessment: Spearman Rank Order Correlation Coeffi-

cient (SRCC), Pearson Linear Correlation Coefficient (PLCC),

Kendall Rank Order Correlation Coefficient (KRCC), and Root

Mean Square Error (RMSE). The first three metrics range from

0 to 1, with values closer to 1 indicating better performance

of the assessment method. Conversely, RMSE evaluates the

accuracy of the predicted quality, with lower values closer to

0 reflecting higher predictive accuracy.

C. Performance Analysis

The performance of various objective quality assessment

methods on the 3DGCQA dataset is summarized in Table I,

from which several conclusions can be drawn: 1) The proposed

CAP method achieves state-of-the-art (SOTA) performance,

outperforming all other methods with a substantial margin

(+5% SRCC). This demonstrates the effectiveness of the

proposed approach; 2) Methods relying on manually extracted

features generally perform poorly, indicating that quality as-

sessment algorithms designed for natural scene images (NSIs)

are unsuitable for generative content. This disparity arises

from the significant differences in prior distributions between

generative content and NSIs. Additionally, traditional quality

assessment algorithms, optimized for classical distortions such

as blur and noise, fail to address the more complex and

nuanced distortions characteristic of generative content; 3)

While existing deep learning based methods exhibit better

performance, their primary limitation is the exclusive focus

on external visual information of GMs. These methods neglect

both the distortion characteristics unique to GMs and the align-

ment of generated content with the provided prompts, which

are critical factors in the quality assessment of generative

meshes.



TABLE II
ABLATION STUDY RESULTS ON 3DGCQA DATABASE, WHERE C , A, P

DENOTE CT-SLICE, ALIGNMENT AND PROJECTION MODULES,
RESPECTIVELY. BEST IN RED, SECOND IN BLUE.

Model SRCC↑ PLCC↑ KRCC↑ RMSE↓
C 0.4917 0.4923 0.3615 0.5972
A 0.3371 0.4093 0.2402 0.5781
P 0.5048 0.5689 0.3590 0.5580

A + P 0.5558 0.5896 0.3939 0.5241
C + P 0.6695 0.6611 0.4907 0.4470
C +A 0.5477 0.5683 0.4017 0.5399

C +A + P 0.7098 0.7566 0.5386 0.4245

D. Ablation Experiments

To evaluate the effectiveness of each module within the

proposed CAP method, ablation experiments are conducted,

and the results are presented in Table II. Analysis of these

results yields several key insights: 1) Each module positively

contributes to the overall performance of CAP, affirming the

importance and utility of these components; 2) The CT-Slice

and Projection modules demonstrate comparable performance

in the ablation experiments, highlighting that the internal

structural information of GMs is as critical as their external

visual features for objective quality assessment; 3) When

combined with the data from Table I, the alignment between

GM and prompt surpasses traditional manual feature extraction

methods. This finding underscores the significant influence of

prompt alignment on the overall quality assessment of GMs.

V. CONCLUSION

While 3D Generated Content (3DGC) offers significant

benefits by simplifying 3D modeling and enhancing design

efficiency, its quality remains a critical concern due to limited

human supervision and a lack of effective control mecha-

nisms. Among various types of 3DGC, Generative Meshes

(GMs) are particularly vulnerable to distortions due to their

complex and large-scale data structures. These distortions

severely impact user experience and visual quality. Unlike

traditional 3D distortions, which primarily result from trade-

offs in communication transmission and storage constraints,

distortions in GMs are more visually deceptive and challenging

to detect. Consequently, many existing objective 3D quality

assessment methods fail to effectively evaluate GM quality.

To address these challenges, this paper introduces a novel

objective quality assessment method for GMs, termed CAP.

CAP integrates three key modules: CT-Slice, Alignment, and

Projection Modules. This approach captures both the internal

structural features and external visual characteristics of GMs

while incorporating the degree of alignment between the GM

and its associated prompts as a critical quality metric. Experi-

mental results demonstrate that CAP significantly outperforms

existing methods in assessing GM quality, providing a robust

and reliable quality indicator.
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