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Abstract—Current Visual Language Models (VLMs) show
impressive image understanding but struggle with visual illusions,
especially in real-world scenarios. Existing benchmarks focus on
classical cognitive illusions, which have been learned by state-
of-the-art (SOTA) VLMs, revealing issues such as hallucinations
and limited perceptual abilities. To address this gap, we introduce
IllusionBench, a comprehensive visual illusion dataset that en-
compasses not only classic cognitive illusions but also real-world
scene illusions. This dataset features 1,051 images, 5,548 question-
answer pairs, and 1,051 golden text descriptions that address the
presence, causes, and content of the illusions. We evaluate ten
SOTA VLMs on this dataset using true-or-false, multiple-choice,
and open-ended tasks. In addition to real-world illusions, we
design trap illusions that resemble classical patterns but differ
in reality, highlighting hallucination issues in SOTA models. The
top-performing model, GPT-40, achieves 80.59% accuracy on
true-or-false tasks and 76.75% on multiple-choice questions, but
still lags behind human performance. In the semantic description
task, GPT-40’s hallucinations on classical illusions result in low
scores for trap illusions, even falling behind some open-source
models. IllusionBench is, to the best of our knowledge, the largest
and most comprehensive benchmark for visual illusions in VLMs
to date.

Index Terms—Benchmark, VLM, Visual Illusion

I. INTRODUCTION

Visual illusions are perceptual anomalies caused by the
visual system, characterized by a discrepancy between
visual perception and reality [1]. However, Richard Gre-
gory’s classification [2], [3] provides a framework by dividing
visual illusions into three main categories: physical illusions,
physiological illusions, and cognitive illusions. Among these,
cognitive visual illusions are the result of unconscious infer-
ences and are perhaps the most widely recognized.

These classic cognitive illusion images share a common
feature: they are all artificially synthesized and inherently
ambiguous.

In addition to artificially synthesized images, a small propor-
tion of images captured in real-world scenes also exhibit visual
illusions. The fundamental cause of this phenomenon is the
inverse projection problem, where information is irreversibly
lost during the projection from the three-dimensional world
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to two-dimensional images [4]. This results in difficulties
such as information loss, ambiguity, and multiple possible
interpretations when attempting to infer three-dimensional
objects and scenes from two-dimensional images (light and
shadow projections) [5].

While the human brain compensates for the missing depth
information in two-dimensional images (retinal projections)
through binocular disparity and motion parallax [6], [7], this
issue remains unresolved in two-dimensional images captured
by cameras. Consequently, both humans and vision models
may experience visual illusions, leading to difficulties or errors
in interpreting these images [8].

Q: The girl leaning forward is: ‘I
A. Standing on the ground .
B. Standing on the table I
C. In the air (correct) I
D. we do not know A

®!

@ GPT-40: B. Standing on the table
¥ Gemini-Pro-1.5: B. Standing on the tabl(—.\®.I

Check if the following description is correct:
The person in the photo is raising his fist

{ Correct answer: False

@ GPT-40: True ®

¥ Gemini-Pro-1.5: True ®

Fig. 1: Error cases from IllusionBench.

To address this challenge, the human visual system lever-
ages contextual cues for cognitive reasoning and utilizes
monocular cues, such as perspective, occlusion relationships,
shadows, and lighting, to alleviate the difficulties in informa-
tion interpretation [9]. However, the extent to which current
VLMs can recognize and interpret these visual illusions in
real-world scenes remains an open question, as shown in Fig.
1.

Recent advancements in VLMSs, like GPT-40 and Gemini-
pro-1.5, have greatly improved visual question answering
(VQA) [10]-[12]. The improvements highlight their growing
ability to bridge the gap between visual and textual informa-
tion, enabling them to understand visual illusions.

Previous research has used artificially synthesized classic



TABLE I: Comparison of IllusionBench with other illusion datasets

Base Question Number of Text
Dataset Image Type Instance Description? Image Type
GVIL 16 Binary 1600 X Color & Size illusions and variant
HallusionBench 72 Binary 1129* X Color & Size illusions and variant
IlusionVQA 374 Multiple-choice 1435 x 12 types, mainly classical
Ll _______ synthetic cognitive illusions
. Classic illusions,
Binary, real scene illusions
Ours 1051 Multiple-choice, 6599 v . S
Open-ended descrintion trap illusions, no illusion,
P serp and Ishihara images
* Note: The instances in HallusionBench include more than just visual illusions.
— GPT-40 Gemini-pro-1.5 Qwen-vl-Max Human
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Fig. 2: Performance of advanced VLMs and human evaluators
on IllusionBench perception tasks (left) and description tasks
(right). The left image shows P1-P5 representing perception
tasks on the subsets of Classic Cognitive Illusion, Real
Scene Illusion, No Illusion, Ishihara Image, and Trap
Illusion, respectively. Similarly, the right image shows DI1-
D5 representing description tasks on these subsets. “T/F”,
“Mul”, “Sem”, and “Illu” respectively represent true-or-false,
multiple-choice and semantic descriptions.

cognitive visual illusion images as benchmarks for VLMs
to explore the similarities between artificial intelligence and
human visual cognition and to evaluate VLMs’ understanding
of visual illusions [13]-[15]. Unlike previous studies, our work
includes not only classic cognitive illusion images, which
lack real-world context, but also a large collection of real-
scene visual illusions. These real-world images better represent
practical applications and assess VLMs’ ability to use contex-
tual cues, similar to human perception. Additionally, because
SOTA VLMs may have already learned classical illusions,
these images may no longer be sufficient to test the visual
perception ability of VLMs. To address the issue of potential
overfitting to classic cognitive illusions, we introduce Ishihara
color blindness detection images and trap illusion images.
These images are accompanied by carefully crafted, manually
annotated question-answer pairs, as well as image descriptions
that cover image semantics, the presence of visual illusions,
and their underlying causes.

Using our testing framework, we comprehensively evaluate
the latest SOTA VLMs, such as GPT-40, Gemini-pro-1.5,
and several open-source models. Specifically, our framework
includes true-or-false, multiple-choice, open-ended questions.

Additionally, each image in our dataset is assigned a manually
annotated cognitive difficulty level, and we conduct human
testing to provide a multidimensional, fine-grained comparison
between human performance and VLMs’ performance on
visual illusion cognition tasks. Fig. 2 shows the performances
of SOTA VLMs on these tasks. Our contributions can be
summarized as follows:

o IllusionBench Dataset: We build a large-scale dataset
that includes both classic and real-world visual illusions,
color blindness test images, and trap illusions, supple-
mented with question-answer pairs and detailed annota-
tions on image semantics, the presence of illusions, and
their causes. To the best of our knowledge, IlluisionBench
is the largest and most comprehensive visual illusion
benchmark for VLMs to date.

o Comprehensive Testing Framework: We apply a rigor-
ous framework to evaluate SOTA VLMs, such as GPT-
40 and Gemini-pro-1.5, using a range of question types
including true-or-false, multiple-choice, open-ended, en-
suring a thorough evaluation of the models’ capabilities
in understanding visual illusions.

II. RELATED WORK

Existing research has demonstrated that visual illusions for
humans can induce equivalent illusions in models [16], [17].
However, these studies primarily focus on specific types of
illusions, including motion [18], brightness and color [19], and
completion [20].

Recent studies have explored VLMs’ ability to perceive
visual illusions through natural language. A pioneering work
[13] tested this by using a dataset of 1,600 variants from
16 root images, focusing on color and geometric distortions.
The study aims to evaluate if SOTA VLMs align with human
perception in visual illusions. Results show that while larger
models perform better in localization tasks, VLMs generally
struggle to interpret visual illusions as humans do.

Another study [14] introduced a benchmark to evaluate
VLMs’ handling of visual illusions and language hallucina-
tions using a dataset of 346 images, including 72 focused
on illusions, paired with question-answer tasks. The models,
including GPT-4V, struggle with these illusions and halluci-
nations, achieving only 31.42% accuracy. This highlights a
misalignment with human perception and suggests that SOTA



Fig. 3: Categories in IllusionBench. The annotations under each image represent the human cognitive difficulty score.

VLMs may overfit classic illusions, making them less effective
for testing complex visual understanding.

Additionally, [15] introduced a dataset of 374 classic cog-
nitive illusion images, generating 439 question-answer pairs
to test VLMs’ understanding and localization of challenging
visual content. The study finds that advanced VLMs like GPT-
4V and Gemini Pro perform poorly on visual illusions, with
accuracy below that of human evaluators, highlighting current
limitations in interpreting complex visual scenes.

Previous studies mainly focus on synthetic cognitive il-
lusions, but our study expands this by including real-world
scenes with visual illusions to better assess VLMs’ use of
contextual cues. Additionally, we introduce Ishihara and trap
illusions to evaluate potential overfitting, ensuring a more
precise alignment with human visual perception. To the best
of our knowledge, IllusionBench is the largest and most
comprehensive visual illusion benchmark for VLMs to date,
as shown in Table I.

III. ILLUSIONBENCH

To evaluate VLMs’ understanding of visual illusions, we create
IllusionBench with more than 1K images equipped with 5K
QA pairs and manually annotated golden descriptions, as
shown in Fig. 4. IllusionBench includes five image types:
classical illusions, real scene illusions, no illusions, Ishihara
images, and trap illusions (Fig. 3). Testing tasks involve
judgment, multiple-choice, and descriptive questions focused
on illusion existence, causes, and content. This section details
the dataset composition, question generation methods, and
tasks.

A. Collection and Composition of Images

We collect 1K+ images from various online repositories. After
manual selection, 780 images are confirmed to contain visual
illusions, 26 are Ishihara color blindness detection images, and
245 images have no illusions, as shown Appendix Fig. 1. The
details are:

o Classic Cognitive Illusion Images These include blur,
distortion, paradox, and fictitious illusions—key exam-
ples of traditional synthetic illusions. Designed by psy-
chologists, these ambiguous images test VLMs’ align-
ment with human perception. However, their classic na-

ture and limited number may reduce their effectiveness, as
they could be part of advanced VLMs’ training datasets.

e Trap Illusion Trap illusions are edited versions of
classic visual illusions, resembling them in appearance
but differing in physical properties. These images test
whether VLMs overfit classic cognitive illusions, poten-
tially causing hallucinations.

o Real Scene Illusion Images IllusionBench includes 597
real-scene images with visual illusions. These images
depict real-world objects and scenes, with unique and
definite semantic descriptions. The illusions arise from
the inverse projection problem, where information is
lost in the transition from 3D to 2D. Understanding
these images requires monocular cues like perspective,
occlusion, shadows, and lighting, as well as contextual
reasoning.

o Ishihara Color Blindness Detection Images Illusion-
Bench includes 26 Ishihara images, verified by vision-
healthy individuals, where the patterns convey unique and
definite semantics. These images test whether VLMs’ vi-
sual cognition aligns with human perception, specifically
regarding Gestalt principles such as grouping, similarity,
and proximity.

o No Illusion Images IllusionBench contains 245 images
with no illusions, depicting diverse subjects such as
people, landscapes, and objects. These images provide a
baseline for evaluating VLMs’ visual understanding and
the impact of illusions and evaluate the models’ yes-bias
when addressing questions about illusion presence.

B. Benchamrk on Illusion Perception Ability
1) Question Types and QA Pairs Generation
The question-answer pairs in IllusionBench include both bi-
nary (true-or-false) and multiple-choice questions. Each image
is accompanied by at least two binary questions and three
multiple-choice questions, all manually annotated by humans.
Each image also has a manually assigned cognitive difficulty
rating, categorized as Easy, Neutral, or Hard, with all questions
related to a given image sharing the same difficulty level.
e True-or-false Question: IllusionBench includes over
2,200 binary questions focused on semantic content and
the presence of illusions, with 57% of correct answers



What is the man wearing?
i. Ahatii. A t-shirt iii. A jacket iv. Adress
What causes the visual illusion?
i. The can is closer to the camera

iii. The can is digitally altered

ii. The man is a giant can, even though the can is actually much 1
iv. The sky is artificially colored . % closer to the camera than the man. s

In this picture, a man stands with his mouth

+4 open in front of a beer can held in another .
person's hand. There is a visual illusion in the
« image. The illusion is created by the clever &

i use of forced perspective, camera angle and
i positioning, making it appear as though the ~ :
» man is about to drink from an enormous beer &

Fig. 4: Example of real scene illusion in IllusionBench. Each image in IllusionBench is equipped with at least two true-or-false
questions, three multiple-choice questions, and a description that summarizes the semantic content of the image, the existence

of visual illusions, and their causes.

TABLE II: Performance of VLMs across different image categories and difficulty levels on IllusionBench true-or-false task.
The best performance is marked in bold. “Human” refers to the average performance of two human evaluators.

Sub-category Image Category Difficulty Rating
Classical ~ Real Scene  No Illusion  Ishihara Traj All

VLMs P1) (P2) P3) (P4) (PSP)) Easy Neutral Hard
Closed-Source VLMs

"GPT40 T T T T T T T T T T 7076537 T 08082 08532  0.7692° T0.5000 [ 0.8526 ~ 0.8040  0.7397 [ 0.8059 -
Gemini-pro-1.5 0.6363 0.6998 0.8319 0.8269 0.5000 | 0.7907  0.6943  0.6591 | 0.7183
Qwen-vl-Max 0.6276 0.7223 0.8589 0.8269 0.3684 | 0.8295 0.6913  0.6777 | 0.7338
Qwen-vl-plus 0.5522 0.6479 0.8250 0.9800 0.3055 | 0.7592 0.6447  0.6058 | 0.6742
Opened-Source VLMs

" CogVLM-17B (Vicuna-v1.5-7B) ~ ~ ~ = |7 0.4028 ~ 04291 =~ ~04431 =~ 04808 0.5263 | 0.4263  0.4352° 0.4286 [ 0.4308 ~
DeepSeek-VL-7B-chat 0.3994 0.4705 0.4812 0.4694 0.5263 | 0.4682 04649 0.4478 | 0.4626
InternLM-XComposer2-VL-7B (InternLM?2) 0.5552 0.6456 0.8033 0.7500 0.3158 | 0.7436  0.6379  0.5914 | 0.6625
LLaVA-v1.5 (Vicuna-v1.5-7B) 0.4128 0.4192 0.4741 0.4808 0.5263 | 0.4437 04319 0.4204 | 0.4333
LLaVA-v1.5 (Vicuna-v1.5-13B) 0.5145 0.7092 0.7847 0.7692 0.2632 | 0.7693  0.6719  0.6061 | 0.6895
LLaVA-NeXT (Llama3-8B) 0.6221 0.6735 0.8302 0.7885 0.5263 | 0.7897 0.6586  0.6489 | 0.6995
mPLUG-OwI2 (LLaMA-7B) 0.5843 0.6154 0.7557 0.6731 0.3421 | 0.7001  0.6026 0.616 0.6375
Qwen-VL-Chat 0.3866 0.4449 0.4534 0.4423 0.5263 | 0.4464 04416 0.4230 | 0.4391
Human 0.9130 0.9000 0.9787 1.0000 1.0000 | 0.9394 09170 0.9142 | 0.9234

marked as False to counteract yes-bias in some VLMs.
Semantic statements are intentionally misleading by hu-
man visual standards as shown in Fig. 4.

o Multiple-choice Questions: IllusionBench also features
over 3,300 multiple-choice questions targeting fine-
grained perception of image content and illusion causes.
Each question offers four options, with one correct an-
swer. Options are shuffled during evaluation.

2) LLM-assisted Evaluation for VQA

Our observations reveal that some VLMs do not output
answers in the specified format. So we employ a LLM-Assisted
Evaluation method, which involves inputting the questions,
correct answers, and VLM responses into a large language
model (LLM) to evaluate the accuracy of the responses. Qwen-
plus assisted in the evaluation of all models for 5 rounds.

While LLM-Assisted Evaluation is efficient, it can some-
times err when the model’s output significantly deviates from
the standard answer format. To address this, we manually
review and correct all cases marked incorrect by the LLM.
Thus, our evaluation combines manual and LLM-assisted
methods for accuracy. Further details are in the Appendix.
B.

C. Benchmarks on Illusion Description Ability
1) Golden Description Definition and Question Type

In addition to multiple question-answer pairs, each image is
also accompanied by a manually crafted golden description,

covering the main content of the image, the existence of any
visual illusion, and the causes of the illusion. The average
length of each description is 53.21 words. All descriptions
follow the format:

In this picture, [image semantics content]. There [is/is no]
visual illusion in the image. The reason for visual illusions is
[illusion causes].

Supported by the golden descriptions, we conduct open-
ended question-answer testing VLMs’ semantic describing
ability. To evaluate whether VLMs can accurately describe the
semantic content of the image with illusions, the prompt is:

# user: Please provide a description of the content in this
image.

2) LLM-assisted Evaluation for Description

This work examines how VLMs understand visual illusions,
which often lead to challenges and inaccuracies in image
interpretation. We evaluate VLM performance by assessing
the accuracy of their descriptions, specifically their alignment
with physical reality and human perception.

Previous studies have shown that single-modal language
models are effective for evaluating language tasks [21]. After
collecting open-ended responses from the VLMs, we use
advanced LLMs to quantitatively evaluate multimodal descrip-
tion tasks. Specifically, both the model’s output and the golden
description are input into the LLM, which compares the two to
identify significant conflicts. Preciseness is scored on a scale of
[0, 1, 2]. The evaluations of all models are assisted by Qwen-



TABLE III: Performance of VLMs across different image categories and difficulty ratings on IllusionBench multiple-choice
task. The best performance is marked in bold. “Human” refers to the average performance of two human evaluators.

Sub-category Image Category Difficulty Rating
Classical ~ Real Scene  No Illusion  Ishihara Trap All

VLMs P1) (P2) P3) (P4) P5) Easy Neutral Hard
Closed-Source VLMs

"GPT4do ~ T T T T T T T T T T T T TIT072060 T 707620 T T T 0.8255 T T 0.7564 T0.6667 [ 0.8163 ~ 0.7558 0.7172 [ 0.7675 ~
Gemini-pro-1.5 0.7050 0.7432 0.7901 0.6795  0.6795 | 0.7998  0.7335  0.6818 | 0.7444
Qwen-vl-Max 0.6531 0.7026 0.7620 0.7051 0.7051 | 0.7608  0.6981  0.6392 | 0.7064
Qwen-vl-plus 0.5038 0.5715 0.7020 0.6410  0.5556 | 0.6720  0.5563  0.5339 | 0.5903
Opened-Source VLMs

" CogVLM-17B (Vicuna-v1.5-7B) ~ ~ = = ~|7 0.4624~ ~ 04979 ~ ~ 705943 ~ T 0.5256 0.5256 [ 0.5904 = 0.4980  0.4i47 [ 0.5112 ~
DeepSeek-VL-7B-chat 0.3158 0.3603 0.3623 0.1538  0.1538 | 0.3843  0.3388  0.3078 | 0.3473
InternLM-XComposer2-VL-7B (InternLM?2) 0.5188 0.6138 0.6961 0.4103 0.4103 | 0.6801 0.5863  0.5404 | 0.6077
LLaVA-v1.5 (Vicuna-v1.5-7B) 0.3195 0.3345 0.3835 0.2692  0.2692 | 0.3848  0.3134  0.3250 | 0.3395
LLaVA-v1.5 (Vicuna-v1.5-13B) 0.5075 0.5594 0.6274 0.4872 04872 | 0.6295 0.5322  0.5173 | 0.5612
LLaVA-NeXT (Llama3-8B) 0.5094 0.6042 0.6771 0.6410  0.6410 | 0.6515 0.6013  0.5404 | 0.6050
mPLUG-OwI2 (LLaMA-7B) 0.4530 0.5137 0.5794 0.3333  0.3333 | 0.5621  0.4997  0.4540 | 0.5107
Qwen-VL-Chat 0.3158 0.3614 0.3609 0.1538  0.1538 | 0.3834 03390 0.3106 | 0.3477
Human 0.9327 0.8712 0.9275 1.0000 09167 | 0.9170 0.8889  0.8889 | 0.8975

plus for 5 rounds. Our human study shows that Spearman’s
rank correlation coefficient (SRCC) between LLM and human
evaluation results exceeds 0.9. Details regarding prompts and
other specifics can be found in the Appendix. C.

IV. EXPERIMENT SETUP
A. Vision Language Models
We test four SOTA closed-source models and eight open-
source models. The closed-source models include GPT-40
(version 2024-05-13) [22], Gemini-pro-1.5 (latest update in
May 2024) [23], Qwen-VL-Plus, and Qwen-VL-Max [24].
We use the latest versions available at the time of writing,
with their default API parameters. The open-source models
include CogVLM-17B (Vicuna-v1.5-7B) [25], DeepSeek-VL-
7B-chat [26], InternLM-XComposer2-VL-7B (InternLM2)
[27], LLaVA-v1.5 (Vicuna-v1.5-7B), LLaVA-v1.5 (Vicuna-
v1.5-13B), LLaVA-NeXT (Llama3-8B) [28], mPLUG-OwI2
(LLaMA-7B) [29], and Qwen-VL-Chat [24]. These models
span different architectures and parameter scales, are trained
on a wide range of vision-language tasks, and exhibit strong
visual understanding capabilities.
B. Human vs VLMs

To evaluate the alignment of the perception of visual il-
lusion between VLMs and human, we utilize a subset of
[lusionBench to evaluate human visual illusion perception.
We recruited two human evaluators and provided them with a
subset of 200 sampled images from the dataset, proportionally
sampled according to image categories. The human evaluators
completed all multiple-choice and judgment questions within
this subset. We then quantify human cognitive abilities using
the same LLM-assisted method described earlier.
V. RESULT ON ILLUSIONBENCH
A. Result on Illusion Perception

The existence of visual illusions significantly affects the
visual perception of VLMs. We evaluate VLMs’ ability
to perceive visual illusions using true-or-false and multiple-
choice tasks, with results in Table II and Table III, revealing
several key insights:

1) GPT-40 performs best in both tasks, with a true-or-false
accuracy of 0.8059 and multiple-choice accuracy of 0.7675,
but still lags behind human performance, indicating room for
improvement in handling illusions.

2) Performances of all VLMs vary across image categories,
with higher accuracy for no-illusion images and real-scene
illusions compared to classical cognition illusions. GPT-40
excels in classic illusions but underperforms in trap illusions,
likely due to hallucinations when encountering patterns similar
to classic ones, suggesting that testing VLMs with only classic
illusions is insufficient.

3) We also use Ishihara color blindness test images to
examine if VLMs’ perception aligns with Gestalt principles.
Qwen-vl-plus shows the highest judgment accuracy (0.98),
nearing the human level, but the multiple-choice performance
is weaker, highlighting gaps in fine-grained perception and
specific knowledge of the Ishihara test. Other VLMs all have
gaps with humans in both tasks.

B. Result on Illusion Description

TABLE IV: Performance of VLMs on IllusionBench descrip-
tion task. The best performance is marked in bold. The blue
part represents the standard deviation between samples.

Semantic Content

VLMs L
Description

Closed-Source VLMs

" GPT40 T 12872 £ 09315
Gemini-pro-1.5 1.0257 + 0.9789
Qwen-vl-Max 0.7571 + 0.9492
Qwen-vl-plus 0.7924 + 0.9490
Opened-Source VLMs

" CogVLM-17B (Vicuna-vl.5-7B) ~ 0.9001 £ 09703~~~ ~
DeepSeek-VL-7B-chat 0.7550 + 0.9518
InternLM-XComposer2-VL-7B (InternLM2)  0.7431 + 0.9313
LLaVA-v1.5 (Vicuna-v1.5-7B) 0.4814 + 0.8260
LLaVA-vl.5 (Vicuna-v1.5-13B) 0.5290 + 0.8540
LLaVA-NeXT (Llama3-8B) 0.7364 + 0.9431
mPLUG-OwI2 (LLaMA-7B) 0.5975 + 0.8916
Qwen-VL-Chat 0.7336 + 0.9408

The performance results for VLMs on the open-ended



description task are shown in Table IV and Appendix Table II
, revealing several key insights:

As shown in Table IV, GPT-40 achieves the highest over-
all performance in the description task. The open-source
model CogVLM-17B performs comparably to the closed-
source Qwen-vl series. However, as shown in Fig. 2, GPT-40
performs poorly in the trap illusion subset, even worse than
some open-source models. Detailed test results can be found in
Appendix Table II. This is because GPT-40 exhibits significant
hallucinations regarding classical cognitive illusions, which
affects its perceptual ability with trap illusion images. This also
indicates that classical cognitive illusions have already been
learned by some SOTA models, making them insufficient for
testing the perceptual abilities of these models. The real-world
scene illusions in this study benefit from their diverse sources
and larger quantity, which not only enhance illusion-related
research but also compensate for the limitations of classical
cognitive illusions.

VI. CONCLUSION

In this study, we introduce IllusionBench, the most extensive
and comprehensive benchmark for evaluating VLMs on visual
illusions. Our findings demonstrate that while SOTA VLMs,
like GPT-40, perform well in various tasks, they still struggle
to interpret visual illusions accurately, highlighting a signifi-
cant gap between model performance and human perception.
However, because of the significant hallucinations regarding
classical cognitive illusions, GPT-40 performs poorly in the
trap illusion subset. The persistent challenges indicate that
there is still much room for improvement in aligning VLMs
with human visual cognition. IllusionBench can bring VLMs
closer to human-like understanding and interpretation of com-
plex visual scenes.
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