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Abstract. Rapid advances in medical imaging technology underscore
the critical need for precise and automated image quality assessment
(IQA) to ensure diagnostic accuracy. Existing medical IQA methods,
however, struggle to generalize across diverse modalities and clinical
scenarios. In response, we introduce MedIQA, the first comprehensive
foundation model for medical IQA, designed to handle variability in im-
age dimensions, modalities, anatomical regions, and types. We developed
a large-scale multi-modality dataset with plentiful manually annotated
quality scores to support this. Our model integrates a salient slice as-
sessment module to focus on diagnostically relevant regions feature re-
trieval and employs an automatic prompt strategy that aligns upstream
physical parameter pre-training with downstream expert annotation fine-
tuning. Extensive experiments demonstrate that MedIQA significantly
outperforms baselines in multiple downstream tasks, establishing a scal-
able framework for medical IQA and advancing diagnostic workflows and
clinical decision-making.

Keywords: Medical image quality assessment · Foundation model ·
Prompt strategy · Upstream and downstream validation.

1 Introduction

Medical image quality assessment (IQA) is critical for essential for reliable diag-
nosis. However, the heterogeneity of modalities, anatomical regions, and clinical
scenarios poses significant challenges. Traditional IQA approaches, often based
on handcrafted features or domain-specific models, struggle with generalization
in various scenarios [1–3]. As medical imaging technologies become increasingly
complex and data volumes surge, these limitations are further exacerbated.
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Recent deep learning advances—especially foundation models pretrained on
large-scale data—offer a powerful means to overcome these challenges. Founda-
tion models, pretrained on large datasets, excel at learning universal represen-
tations that can be fine-tuned for specific tasks [4–7]. Their ability to generalize
across domains and adapt to new tasks with minimal supervision makes them
highly suitable for medical IQA. These models have demonstrated superior per-
formance in tasks such as denoising, artifact detection, and quality scoring [8–11].

Despite their promise, foundation models for medical IQA still face signif-
icant challenges: there is a scarcity of high-quality annotated datasets, a need
for dynamic adaptation to varying imaging conditions, and difficulty integrat-
ing domain-specific knowledge into model architectures [12–16]. Moreover, the
"black box" nature of these models limits their interpretability and clinical ac-
ceptance.

Fig. 1. Overview of the MedIQA workflow. (A) Salient slice assessment. (B) and (C)
Prompts generation and encoding. (D) Backbone structure. (E) Training procedure.

Based on these insights, we introduce MedIQA, a prompt-driven and scal-
able foundation model for medical IQA. Our contributions are as follows: (1) We
construct a large-scale MedIQA dataset of approximately 15k 2D and 3D radio-
graphic scans, including CT, MRI, and other modalities, with high-quality expert
annotations across various anatomical regions. (2) We propose a salient slice
assessment module to reduce redundant data and suppress background noise,
allowing the model to focus on diagnostically relevant regions feature retrieval
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and enhancing both generalization and efficiency. (3) We implement a two-stage
training strategy: an upstream pre-training stage using physical parameters (e.g.
dose, magnetic field strength) and a downstream fine-tuning stage with expert
annotations. This approach creates an explicit link between objective physical
characteristics and subjective quality assessment, thereby improving model in-
terpretability. (4) We integrate domain-specific imaging information (dimension,
modality, position, and type) into an automated prompt strategy to ensure the
model dynamically adapts to cross-modality multi-organ IQA tasks.

2 Methodology

2.1 Dataset

Existing medical IQA datasets are limited in scale, reliability, and diversity. To
overcome these issues, we designed, proposed, and constructed a MedIQA dataset
by integrating a large-scale annotated CT dataset and existing medical image
datasets. The dataset is divided into a pretrain dataset (2,500 cases, including
in-house chest CT and public MRI brain/breast datasets [17, 18]) and a domain-
specific dataset (12,545 cases, including expert-annotated Chest-CTIQA and
public LDCTIQAC2023, ADNI MRI, and Kaggle DR datasets [19–21]). The
pre-training dataset and Chest-CTIQA are 3D data, while LDCTIQAC2023 and
Kaggle DR are 2D data. Chest-CTIQA is the first large chest CT IQA dataset (10
readers per volume). For ADNI MRI, in order to ensure the quantity and balance
of data, we selected different 2D images from the 3D volume to construct the MRI
dataset. The pretrain data labels were generated by extracting dose (mAs) and
magnetic field strength (Tesla) from image physical parameters, with label values
positively correlated with image quality [22, 23]. All domain-specific images were
annotated by radiologists or trained professionals. All datasets were preprocessed
for consistency, and normalized for training. MedIQA is the first multimodal
IQA dataset addressing diverse quality assessment needs. Fig.2 shows dataset
examples, quantities, and distributions.

2.2 Model

The overall architecture of the model is designed to achieve comprehensive med-
ical IQA, as illustrated in Fig.1. First, the image input module receives and
preprocesses input images. For 3D volume, the salient slice assessment module
extracts seven salient slices from the sequence, focusing on diagnostic regions
feature retrieval. Next, the pre-trained Vision Transformer (ViT) classifier gen-
erates encoded prompts for dynamic adaptation to different imaging conditions
while matching upstream and downstream tasks. The main framework of the
model uses MANIQA [24] as the backbone network for feature extraction and
quality assessment. Finally, the model outputs the overall image quality score.

Salient slice assessment for feature retrieval. Due to the minimal qual-
ity differences between adjacent slices, continuous sampling often results in re-
dundant data. Therefore, in order to focus on the region of interest while reduc-
ing computational complexity, we select seven salient slices from each volume for
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Fig. 2. Examples, quantities, and distributions of the MedIQA-dataset.

feature retrieval (Fig.1.A). Specifically, the 3D medical volume V ∈ RH×W×D

is divided into seven regions Ri = S[vi−1 : vi], i = 1, 2, ..., 7 along the Z axis
by removing the irrelevant slice that does not contain any region of interest.
The middle slice si = Ri

[⌊
|Ri|
2

⌋]
is selected from each region to ensure uniform

sampling constraints globally while covering the local critical slice that contains
the diagnostic region. All images were min-max normalized to align the intensity
distribution, and image sizes were normalized to 224*224 for consistency.

Upstream physical parameters-driven foundation model learning.
Physical parameters p ∈ Rk such as dose or magnetic field strength are pretrained
to help the model learn the effects of these parameters on underlying image
features f ∈ Rm (noise, contrast, resolution). The objective function is defined
by min

θ
Lpre = E(τ,p)

[
∥gφ(Eθ(τ))− p∥22

]
, where the encoder Eθ : τ → f , the

parameter is θ, gφ : f → p is the parameter prediction head, and the explicit
association between the feature f and p is constrained by the mean square error
(MSE). The explicit association formed by the "parameter → feature" mapping
established in the pre-training stage provides a physical basis for the subsequent
quality assessment. In the fine-tuning stage, the intermediate features generated
by pre-training and strongly related to physical parameters will be reused to
make the model decision-making process more transparent.

Prompt-based upstream and downstream matching. Prompts include:
dimensional (pdim), modality (pmod), region (preg), and type (ptype). Dimen-
sional prompts are derived from input dimensions, while others are generated
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using a pre-trained ViT for classification. A 12-layer, 12-head ViT with a size of
3072 is employed as the decoder (Fig.1.B). For integration, four one-hot encoded
prompts are concatenated and projected into Swin Transformer Layers (STL)
via a fully connected (FC) layer (Fig.1.C). Prompts are added to the feature
vector at each decoder layer, enabling dynamic adaptation. Each layer has an
independent FC layer, allowing task updates without new branches. The im-
plementation is, y = x + FCi(concat(pdim, pmod, preg, ptype)), i = 1, 2. Prompts
contribute the same amount in each STL layer. Prompt strategy matches up-
stream physical parameters-driven foundation model learning with downstream
expert annotation-driven domain-specific knowledge learning to achieve dual su-
pervision of expert annotation and physical characteristics.

Quality assessment. Given the lack of high-quality reference images in
medical IQA, no-reference IQA (NR-IQA) has become the optimal choice. There-
fore, we adopt MANIQA, a state-of-the-art NR-IQA model, as our backbone
(Fig.1.D). MANIQA uses ViT extracts features F ∈ Rb×

∑
i Ci×HiWi sent to

Transposed Attention Block (TAB) and Scale Swin Transformer Block (SSTB)
to implement multi-dimensional attention mechanisms in both channel and spa-
tial. The final score is given by the dual-branch prediction module of the scoring
(s) branch and the weighting (w) branch. For 2D images, predict quality score is
computed as q =

∑
0<i<N wi×si∑

0<i<N wi
, where N denotes the number of patches for one

image. For 3D volumes, features are extracted from seven salient slices, slice-level
scores q = [q1, q2, ..., q7] are obtained by dual-branch structure, corresponding
weights w̄ = [w̄1, w̄2, ..., w̄7] are generated by linear layer, and the final image
quality score Q is calculated as Q =

∑7
i=1 w̄iqi . These weights dynamically

adjust based on the importance of each slice, enhancing the model’s precision
and sensitivity to local quality variations.

2.3 Model Training Procedure

Training process: During the pre-training stage, we use the pret-raining dataset
and labels derived from DICOM tags related to image quality. In domain-specific
training stage, we use domain-specific datasets (Fig.1.E). The data were manu-
ally annotated by experienced radiologists and trained professionals. Both stages
share consistent training settings, differing only in the training data and labels.

Loss Function: The MSE loss function is used to measure the difference
between predicted quality scores and true annotations. MSE ensures minimized
prediction errors and alignment with expert annotations, while its smoothness
promotes stable convergence during optimization. The MSE loss is calculated as
LMSE = 1

n

∑
(xi − yi)

2, where n is the number of samples, xi and yi is the true
value and the predicted value of the model.
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3 Experiments

3.1 Implementation Details and Metrics

Our experiments are implemented on an Intel(R) Xeon(R) W2245 CPU @ 3.90GHz
and an NVIDIA RTX A6000 GPU with Python 3.9 and PyTorch 1.10 for train-
ing and testing. Hyperparameters included a learning rate of 1e-5, a batch size
of 1, and 50 training epochs, optimized using the Adam optimizer. The dataset
was split into training, validation, and test sets in an 8:1:1 ratio across diverse
data distributions.

Table 1. Analyse the performance on the upstream and downstream tasks. Our-s and
Our-e indicate the single baseline and the ensemble model. Best in red and second in
blue. S, SRCC; P, PLCC; R, RMSE.

Upstream – pretraining dataset

Test Lung window Soft window Brain T1 Brain T2 Breast T1Backbone S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓
VGG 0.6623 0.6744 0.2838 0.6857 0.6972 0.2141 0.7054 0.7247 0.2149 0.6838 0.6770 0.2679 0.5914 0.6142 0.4153 0.6452 0.6589 0.3062
Resnet 0.5413 0.5506 0.2994 0.6283 0.6438 0.2112 0.2988 0.2848 0.2569 0.5945 0.6129 0.3112 0.5559 0.5901 0.4083 0.6290 0.6187 0.3121
Swin-transformer 0.6626 0.6758 0.2842 0.7034 0.7221 0.2102 0.7018 0.7021 0.2175 0.6619 0.6771 0.2771 0.5566 0.5774 0.4137 0.6886 0.6792 0.3086
ViT 0.5852 0.5858 0.3044 0.7118 0.7021 0.2175 0.6591 0.6498 0.2339 0.5396 0.5515 0.3313 0.4193 0.4378 0.4284 0.5993 0.5887 0.3211
DeepViT 0.5402 0.5432 0.3108 0.5490 0.5644 0.2396 0.6203 0.6054 0.2376 0.5213 0.5339 0.3338 0.4127 0.4422 0.4327 0.5968 0.5857 0.3217
CNNIQAnet 0.5486 0.5266 0.3202 0.5549 0.5466 0.2471 0.6096 0.5876 0.2404 0.5382 0.5032 0.3423 0.4957 0.5098 0.4499 0.5434 0.4851 0.3404
WaDIQaM 0.6478 0.6298 0.2998 0.7152 0.7225 0.2103 0.7091 0.6891 0.2196 0.6154 0.5930 0.3192 0.5873 0.5546 0.4135 0.6094 0.5657 0.3173
Ours 0.7770 0.8110 0.2609 0.7316 0.7363 0.2029 0.7114 0.7674 0.2031 0.7891 0.8739 0.2443 0.6828 0.6689 0.3843 0.8148 0.9246 0.1957

Downstream – domain-specific datasets
Chest-CTIQA Brain-T1 Brain-T2 Brain-FLAIR Fundus LDCTIQAC2023Backbone S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓

VGG 0.4166 0.3686 0.2670 0.6172 0.6127 0.2103 0.5313 0.5394 0.3419 0.6283 0.6214 0.3345 0.7368 0.6923 0.2899 0.8350 0.8298 0.1609
Resnet 0.3902 0.3976 0.2026 0.5719 0.5284 0.2571 0.4919 0.5039 0.3467 0.5202 0.5214 0.3556 0.7119 0.6897 0.3772 0.7972 0.7775 0.1599
Swin-transformer 0.4741 0.5004 0.2232 0.8026 0.8694 0.2137 0.6968 0.7012 0.3749 0.6968 0.7012 0.2849 0.8118 0.7755 0.3068 0.9013 0.9009 0.0922
ViT 0.4044 0.4225 0.2040 0.6373 0.6797 0.2589 0.6015 0.5631 0.3051 0.5659 0.5664 0.3364 0.7156 0.6717 0.3777 0.8127 0.7432 0.1124
DeepViT 0.4592 0.4697 0.2964 0.7988 0.8646 0.1822 0.6585 0.6582 0.2775 0.6131 0.5879 0.3203 0.7368 0.6923 0.3899 0.8342 0.8336 0.1257
CNNIQAnet 0.4641 0.4990 0.2530 0.6547 0.6567 0.2161 0.6517 0.6369 0.3027 0.6323 0.6286 0.3429 0.7842 0.7734 0.3002 0.8661 0.8866 0.1036
WaDIQaM 0.4835 0.4810 0.1945 0.7119 0.6897 0.2172 0.7056 0.6717 0.2777 0.6585 0.6582 0.3275 0.7672 0.7775 0.2519 0.8798 0.8583 0.1213
Ours-s 0.4875 0.5255 0.1661 0.8659 0.8905 0.1507 0.7058 0.7035 0.2731 0.7177 0.7184 0.2798 0.8329 0.9144 0.2054 0.9761 0.9759 0.0631
Ours-e 0.7070 0.7455 0.1276 0.8681 0.8985 0.1196 0.8861 0.8912 0.1696 0.7654 0.7578 0.2657 0.8504 0.9320 0.1837 0.9764 0.9762 0.0618

The performance of IQA tasks was evaluated by Spearman rank-order cor-
relation coefficient (SRCC), Pearson linear correlation coefficient (PLCC) and
Root mean square error (RMSE). SRCC and PLCC measure the monotonicity
and linear correlation of the model, while RMSE assesses the consistency of the
model’s predictions.

3.2 Experimental Results and Analysis

Classification experiments. To enable automatic prompt generation, we trained
VGG and ViT models using additional classification data and evaluated them
on the MedIQA dataset. Experimental results show that VGG achieved an av-
erage test accuracy of 0.9445, while ViT achieved 0.9969. Meanwhile, ViT’s self-
attention-based design allowed for higher performance with fewer parameters
(86M VS 138M). Therefore, we selected ViT for prompt generation.

Upstream foundation experiments. The proposed model was trained
and tested on pre-training dataset as well as five sub-benchmarks (chest lung
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window benchmark, chest soft tissue window benchmark, brain T1 benchmark,
brain T2 benchmark and breast T1 benchmark). Table 1 shows the results of
our model and other methods. The experimental results show that the proposed
model can learn quality features of different modality images, accurately predict
quality-related parameters on different benchmarks, and provide a good basis
for training downstream tasks.

Downstream tasks. In domain-specific task experiments, we evaluated the
model’s performance on six benchmarks: 3D chest CT benchmark, 2D brain
T1, T2, and FLAIR MRI benchmarks, 2D fundus image benchmark, and 2D
synthetic abdominal CT benchmark. Results (Table 1) show that the model
performed relatively poorly on 3D chest CT data due to the complexity of high-
dimensional data. In contrast, synthetic abdominal CT data achieved the best
results, as the significant quality variations enabled the model to learn assessment
features more effectively. T1 and T2 MRI data showed stable performance, while
FLAIR MRI data underperformed due to a lack of pre-training data information.
Fundus image assessment results were moderate, likely due to resolution and
lighting limitations. Future work should focus on optimizing 3D data handling
and leveraging synthetic data for pre-training.

Performance Comparisons. To validate the effectiveness of MedIQA, we
evaluated it against other models, including VGG [25], ResNet [26], ViT, Swin-
Transformer [27], DeepViT [28], CNNIQAnet [29], and WaDIQaM [30]. Results
(Table 1) demonstrate that our model outperformed all others in image quality
assessment tasks. In upstream tasks, the average result of our model (0.7511,
0.7970, 0.2485) is significantly improved (+0.2027, +0.2706, -0.0748) compared
with the average result of CNNIQAnet (0.5484, 0.5264, 0.3233). For downstream
tasks, the average results of our model (0.8422, 0.8668, 0.1546) improved by
7.79% and 7.88% over the average results of baseline (0.7643, 0.7880, 0.1897). It
is also significantly higher than the average result of ResNet (+0.2617, +0.2971,
-0.1285). The experimental results show that compared with classical models
(VGG and ResNet), our model’s multi-dimensional attention mechanisms and
salient slice assessment modules better retrieve local and global features, over-
coming traditional CNN limitations and significantly improving accuracy. Addi-
tionally, our model outperformed other transformer-based models by enhancing
generalization through pretraining and prompt strategies, while capturing finer
details via salient slice assessment module. It also surpassed specialized IQA
models like CNNIQAnet and WaDIQaM. These results validate the effectiveness
of our novel designs, offering an efficient solution for IQA tasks.

Table 2. Ablation study on downstream tasks. Only 3D images use the salient slice
assessment module. Best in red and second in blue.

Module Chest-CTIQA(3D) Brain-T1(2D) Brain-T2(2D) Brain-FLAIR(2D) Fundus(2D) LDCTIQAC2023(2D)
Model PT PM SS S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓ S ↑ P ↑ R ↓

1 % % % 0.4875 0.5255 0.1661 0.8659 0.8905 0.1507 0.7058 0.7035 0.2731 0.7177 0.7184 0.2798 0.8329 0.9144 0.2054 0.9761 0.9759 0.0631
2 ! % % 0.5347 0.5541 0.1608 0.8706 0.8978 0.1261 0.8549 0.8559 0.1936 0.8294 0.8247 0.2203 0.8345 0.9438 0.1668 0.9742 0.9757 0.0589
3 ! ! % 0.5464 0.5927 0.1561 0.8681 0.8985 0.1196 0.8861 0.8912 0.1696 0.7654 0.7578 0.2657 0.8504 0.9320 0.1837 0.9764 0.9762 0.0618
4 ! ! ! 0.7070 0.7455 0.1276 / / / / / / / / / / / / / / /
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Ablation Study. We evaluated the impact of pretraining (PT), prompt
strategies (PM), and salient slice assessment (SS) performance on domain-specific
downstream tasks. Results (Table 2) show that the modules’ effects vary by data
type. For 3D chest CT data, all modules improved performance, with the salient
slice assessment module significantly enhancing 3D feature learning (+0.2195,
+0.2200, -0.0385). For 2D T2 data, all modules had positive effects (+0.1803,
+0.1877, -0.1035), as the prompt strategy and pretraining helped capture quality
features. However, for 2D FLAIR data, the prompt strategy caused performance
degradation, likely due to mismatches between FLAIR’s unique quality charac-
teristics and the prompt strategy’s design, leading the model to learn irrelevant
features. For 2D T1, 2D fundus, and 2D synthetic CT data, additional modules
had minimal impact, as these datasets’ simplicity or consistency already enabled
strong performance. Future work should optimize prompt designs for different
modalities to improve generalization and performance.

4 Discussion

By integrating large-scale cross-modality MedIQA dataset, prompt strategy and
salient slice assessment module and upstream and downstream matching, MedIQA
captures both global and local quality features, ensuring robust assessments.
Compared to other methods, our model shows significant improvements and
provides a scalable framework for medical IQA. In addition, preliminary experi-
ments revealed that CT image quality affects AI detection of lung nodules. Thus,
the relationship between medical image quality and disease detection rates will
be a focus of our future research.

Despite promising results, the study has limitations. First, pretraining data
may not fully capture variability across modalities or clinical scenarios, neces-
sitating more annotated data or unsupervised learning methods. Second, the
prompt strategy, while effective, relies heavily on high-quality prompt design,
requiring further optimization for diverse tasks. Third, salient slice assessment
module may miss subtle quality changes in long sequences, potentially underper-
forming in extreme conditions (e.g., excessive noise or missing images). Future
research will focus on: (1) Expanding datasets to include diverse modalities and
scenarios for better generalizability; (2) Developing interpretable architectures
to build clinician trust; and (3) Integrating the model into clinical workflows and
validating its impact on diagnostic accuracy and efficiency.

5 Conclusion

In this paper, we proposed a scalable foundation model for medical IQA. First,
we constructed the MedIQA dataset, a large-scale, multi-modal, and multi-organ
dataset with DICOM tags and plentiful manually annotated quality scores, pro-
viding a robust foundation for model learning. Second, we designed a salient
slice assessment module to focus on diagnostically relevant regions and enhance
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efficiency, and implement a two-stage training strategy to bridge physical pa-
rameters with expert annotations, improving interpretability. We also designed
domain-specific automated prompts for cross-modality multi-organ IQA tasks.
Experimental results demonstrate superior performance across multiple IQA
benchmarks and solved the limitations of traditional methods. Our approach
provides a scalable solution for clinical applications. Future research will focus
on mitigating data scarcity, optimizing prompt strategies, and refining salient
slice assessment to further enhance the model’s practicality and applicability.
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