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Abstract

Evaluating text-to-vision content hinges on two crucial as-
pects: visual quality and alignment. While significant
progress has been made in developing objective models
to assess these dimensions, the performance of such mod-
els heavily relies on the scale and quality of human anno-
tations. According to Scaling Law, increasing the num-
ber of human-labeled instances follows a predictable pat-
tern that enhances the performance of evaluation models.
Therefore, we introduce a comprehensive dataset designed
to Evaluate Visual quality and Alignment Level for text-to-
vision content (Q-EVAL-100K), featuring the largest col-
lection of human-labeled Mean Opinion Scores (MOS) for
the mentioned two aspects. The Q-EVAL-100K dataset
encompasses both text-to-image and text-to-video models,
with 960K human annotations specifically focused on visual
quality and alignment for 100K instances (60K images and
40K videos). Leveraging this dataset with context prompt,
we propose Q-Eval-Score, a unified model capable of eval-
uating both visual quality and alignment with special im-
provements for handling long-text prompt alignment. Ex-
perimental results indicate that the proposed Q-Eval-Score
achieves superior performance on both visual quality and
alignment, with strong generalization capabilities across
other benchmarks. These findings highlight the significant
value of the Q-EVAL-100K dataset. Data and codes will be
available at https://github.com/zzc-1998/Q-
Eval.

1. Introduction
With the rapid advancement of generative AI, millions of
text-to-image and text-to-video content are being generated
daily across various platforms [26, 57], applied in indus-
trial production or directly used by consumers. However,
due to current technological limitations, text-to-vision con-
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Figure 1. Illustration of the unified evaluation dimensions of Q-
Eval-100K. We focus on visual quality (including all factors that
may impact the viewing experience) and alignment level, which
measures the accuracy of the generated content to the prompt.

tent often falls short of being perfect upon generation and
cannot be immediately deployed [35, 37, 41], which usu-
ally requires expert evaluation, editing, and fine-tuning. As
a result, numerous efforts have been made to develop auto-
mated methods for evaluating text-to-vision content, aiming
to control the quality of generation and guide the necessary
optimizations effectively [14, 27, 28, 30, 41, 61–64, 66, 71,
73]. Through extensive theoretical and experimental analy-
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Table 1. A brief comparison of the latest text-to-vision evaluation
datasets (I. for image, V. for video). For Annotation Type, SBS
(side-by-side) and MOS (mean-opinion-score) refer to selecting
the preferred instance from a pair of instances and assigning an
average absolute score to a single instance respectively. For Rat-
ing Concerns, Overall indicates assigning scores from a holistic
perspective while ✓denotes assigning separate scores to quality or
alignment. For Number, Ins. and Ann. stand for the number of
instances and human annotations respectively.

Dataset Year Content Annotation Type Evaluation Concern Number
(Single/Pair) Quality Alignment Ins./Ann.

Pick-a-pic [28] 2023 I. SBS Overall 1M/500K
ImageReward [66] 2023 I. SBS Overall 68k/137k
HPDv2 [64] 2023 I. SBS Overall 430k/645K
AGIQA-3k [35] 2023 I. MOS ✓ ✓ 3K/81K
AIGCIQA2023 [59] 2023 I. MOS ✓ ✓ 2K/17K
PKU-AIGIQA-4k [68] 2024 I. MOS ✓ ✓ 4K/84K
AIGIQA-20k [36] 2024 I. MOS Overall 20K/420K
RichHF [40] 2024 I. MOS ✓ ✓ 18K/54K
VideoFeedback [20] 2024 V. MOS ✓ ✓ 37.6K/37.6K
T2VQA-DB [29] 2024 V. MOS Overall 10K/27K
GenAI-Bench [34] 2024 I.&V. 1-5 Likert Scale Overall 9.6K/9.6K
Q-Eval-100K (Ours) 2024 I.&V. MOS ✓ ✓ 100K/960K

sis, the evaluation of text-to-vision content can be primarily
divided into two dimensions [42, 65, 66, 74, 77]: Visual
Quality (the perceived quality of the visual content, which
can be simply understood as how good it looks) and Align-
ment level (the consistency between text and vision, which
can be interpreted as how accurate the generation is).

To meet the need for evaluation, many text-to-vision
evaluation datasets have been proposed, along with corre-
sponding evaluation algorithms [12, 13, 20, 20, 25, 29, 34–
36, 40, 42, 59, 68, 72, 75, 76]. However, these efforts face
the following significant limitations: 1) The key evalua-
tion dimensions for text-to-vision content are often not
systematically captured. Some datasets propose too many
dimensions, adding unnecessary complexity to the evalua-
tion process. The practical applicability of these dimensions
can be narrow or lead to redundancy. 2) Most text-to-vision
evaluation datasets fail to disentangle visual quality and
alignment. These datasets either focus solely on alignment
or visual quality, or merge both dimensions into a single
score, leading to results that are often incomplete and am-
biguous, making it challenging to address specific evalua-
tion needs. 3) The scale of these datasets remains insuf-
ficient.With the rise of Large Multimodal Models (LMMs),
which have demonstrated strong capabilities in visual and
textual understanding, researchers are increasingly leverag-
ing them for text-to-vision evaluation. However, current
dataset sizes remain inadequate to fully unlock the potential
of LMM-based models [77], conceivably restricting their
applicability and generalization in real-world scenarios.

To address these challenges, we present Q-Eval-100K,
which, to the best of our knowledge, is the largest text-
to-vision evaluation dataset with Mean Opinion Scores
(MOSs), comprising 100K instances (including 60K gen-
erated images & 40K generated videos). A brief com-
parison of Q-Eval-100K and previous text-to-vision eval-

uation datasets is illustrated in Table 1. We manually
gather prompts from existing benchmarks and create diverse
prompts that focus on three key aspects: entity generation,
entity attribute generation, and interaction capability. The
instances in Q-Eval-100K are then generated from a diverse
range of generative models, both open-source and closed-
source, to ensure high diversity. We implement a rigorous,
scientifically grounded subjective evaluation process using
a Sample & Scrutinize strategy, focusing on both visual
quality and alignment level for each of the 100K instances,
yielding a total of high-quality 960K human annotations.

Building on the proposed Q-Eval-100K, we propose Q-
Eval-Score, a unified evaluation framework capable of as-
sessing both visual quality and alignment, providing sep-
arate scores for each dimension. We first adapt Q-Eval-
100K into a Supervised Fine-Tuning (SFT) dataset opti-
mized for injecting knowledge into LMMs. Scores are
transformed into adjective-based ratings, then reformulated
within a well-guided context-prompt format. Specifically,
for visual quality, we guide the model to identify positive
and negative visual impacts, evaluate the intensity of these
impacts, and make a balanced judgment. For alignment,
we guide the model to perceive the overall situation, exam-
ine details, and reach a balanced judgment. The fine-tuning
process is then supervised by a combined CE and MSE loss.
During inference, the final score is computed as a weighted
average based on the probability of each rating token. No-
tably, in handling long-prompt alignment, we observed that
direct alignment assessment often yields low scores due to
oversimplification. To address this, we propose a Vague-to-
Specific strategy, where a long prompt is converted into a
vague version retaining only core information and multiple
prompts with specific details. These prompts are evaluated
separately and the alignment scores are combined to the fi-
nal score. Our contributions can be summarized as follows:

• We present Q-Eval-100K, the largest text-to-vision
evaluation dataset with MOSs, comprising 100K in-
stances from various generative models. We employ a
scientifically grounded evaluation methodology, using a
Sample & Scrutinize strategy to collect 960K human an-
notations focusing on visual quality and alignment.

• We propose Q-Eval-Score, a unified evaluation frame-
work capable of independently assessing visual quality
and alignment, providing separate scores for each di-
mension. Specifically, we adapt Q-Eval-100K into an
SFT dataset with adjective-based ratings in a structured
context-prompt format for enhancing the visual quality
and alignment evaluation capabilities of LMMs.

• To improve alignment evaluation for long prompts, we
introduce a Vague-to-Specific strategy, which separates
prompts into core and detailed variants, yielding a more
accurate alignment score through weighted averaging.
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2. Related Works

2.1. Benchmarks for Text-to-Vision Evaluation

Early text-to-vision benchmarks largely depend on multi-
modal datasets labeled with captions [11, 23, 44]. However,
with increasing recognition of human feedback’s value [15,
24, 77], many benchmarks begin to employ human annota-
tions. Common annotation methods include SBS (side-by-
side) and MOS (mean opinion score) [50, 69]. SBS requires
selecting a preferred instance from a pair, while MOS as-
signs a score to a single instance. SBS is generally easier
for human subjects and more precise, but MOS is more ver-
satile and broadly applicable to various situations [7, 33].

Text-to-vision evaluation dimensions [42, 74] can be cat-
egorized into visual quality and alignment. While some
benchmarks [12, 13, 20, 25] treat aspects like naturalness,
aesthetics, and temporal consistency as distinct dimensions,
we view these as components of visual quality since they
collectively influence the quality of experience (QoE) for
viewers. Early benchmarks [35, 36, 59, 68] for generated
images comprehensively address both visual quality and
alignment for evaluation. RichHF [40] enhances these eval-
uations by incorporating subjective scores, heatmaps, and
misalignment tokens. For video, VideoFeedback [20] in-
troduces five dimensions of quality and alignment, while
T2VQA-DB [29] focuses primarily on visual quality. Fur-
ther, GenAI-Bench [34] evaluates alignment for both gen-
erated images and generated videos. The proposed Q-
Eval-100K dataset offers a unified text-to-vision evaluation
framework, significantly increasing dataset scale and diver-
sity, making it distinct from prior benchmarks.

2.2. Metric for Text-to-Vision Evaluation

Previous evaluation methods separately focus on either vi-
sual quality or alignment. Perceptual methods assess the
visual quality of generated content, utilizing traditional
scores like IS [53], FID [22], and LPIPS [70] with pre-
trained neural networks. Recently, data-driven models [35]
trained on specialized datasets have further advanced per-
ceptual score prediction. Additionally, methods such as
CLIP-IQA [58] and Q-Align [63] leverage text prompts to
enhance perceptual alignment. Alignment methods, inte-
grating both text and vision modalities, initially use CLIP-
Score [21] due to its ease of application. To address more
complex prompts, some approaches [28, 64, 66] incorpo-
rate human feedback to improve evaluation accuracy. Given
the powerful interpretative capabilities of LMMs, recent
work [14, 27, 30, 41, 71] has begun to apply these mod-
els to alignment assessments. Most existing models evalu-
ate either perceptual quality or alignment exclusively. The
proposed Q-Eval-Score addresses this gap by offering de-
coupled scores for both perceptual quality and alignment.
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Figure 2. Illustration of the Sample and Scrutinize quality con-
trol strategy for annotations in Q-Eval-100K. We randomly select
a sample of 5K instances from the full dataset, which are then
reviewed by experts to establish golden scores. A batch of annota-
tions is approved only if the scores of the sampled instances show
a high correlation with these expert-assigned golden scores.

3. Q-Eval-100K Construction
3.1. Basic Principles

The construction process of Q-Eval-100K is illustrated in
Fig. 3. We follow these guiding principles: 1) Ensuring
diversity in generated content by collecting a wide range of
prompts and using multiple generative models; 2) Ensuring
annotation quality through carefully designed experimen-
tal settings and standards to achieve the highest accuracy;
3) Ensuring effective learning, through adapting the data
for LMM suitability by transforming both visual quality and
alignment scores into a context-aware SFT dataset.

3.2. Sources Collection

Prompt Designing. The prompt design focuses on three
main aspects: Entity Generation, Entity Attribute Gen-
eration, and Interaction Capability. 1) Entity generation
targets the primary entities (people, objects, etc.) to be gen-
erated. 2) Entity attribute generation emphasizes the at-
tributes (clothing, color, material, etc.) of the entities. 3) In-
teraction capability focuses on the interactions between the
generated entities and other entities or the background, such
as their spatial relationships and actions. Following the out-
lines mentioned above, we manually create a portion of the
prompts and extract some from existing datasets [34, 47].
Generation Models. We utilize multiple popular text-to-
image and text-to-video models to ensure diversity, which
include FLUX [31], Lumina-T2X [18], PixArt [10], Sta-
ble Diffusion 3 [4], Stable Diffusion XL [51], DALL·E
3 [48], Wanx [16], Midjourney [45], Hunyuan-DiT [39],
Kolors [55], ERNIE-ViLG [17], CogVideoX [67], Runway
GEN-2 [19], Runway GEN-3 [52], Latte [43], Kling [54],
Dreamina [9], Luma [2], PixVerse [3], Pika [32], Stable
Video Diffusion [8], Vidu [56].
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Figure 3. Overview of the Q-Eval-100K construction process. We design a wide range of prompts and employ various text-to-vision
models to generate diverse content. Subjective evaluations are then conducted to rate the visual quality and alignment of these generated
instances. The resulting scores form the SFT dataset, which can help inject corresponding knowledge into LMMs.

3.3. Subjective Experiment

Given the large scale of Q-Eval-100K, we develop rigor-
ous experimental protocols to ensure the highest possible
accuracy in our annotations. To facilitate this, we establish
a well-controlled indoor experimental environment, where
more than 200 human subjects are recruited to participate
in the annotation. To ensure the accuracy of annotations
is not compromised by individual cognitive differences or
annotator fatigue, we propose a Sample & Scrutinize data
control strategy as shown in Fig. 2. The strategy includes
two steps: 1) First, we randomly sample 5,000 instances
from the entire dataset. We then organize experts with rich
experience to discuss and score these instances, leading to
the establishment of golden scores for both visual quality
and alignment. These golden scores remain hidden for all
subsequent experimental subjects. 2) Next, we provide hu-
man annotators with comprehensive training before they be-
gin the annotation process. After each batch, we gather the
scores for instances that have golden scores and compare
them with these golden scores, calculating the correlation
values (SRCC-rank similarity). Only batches with an SRCC
above 0.8 are accepted, otherwise, they are rejected.

Additionally, we split Q-Eval-100K into training and
testing sets in an 80:20 ratio. Each instance in the train-
ing set has at least three annotations, while each instance in
the testing set has a minimum of twelve annotations to en-
sure accuracy. This process results in a total of over 960K
annotations, calculated as follows: 80K (training instances)
x 2 (visual quality & alignment) x 3 (minimum annotation
number) + 20K (training instances) x 2 (visual quality &
alignment) x 12 (minimum annotation number) = 960K an-
notations. Finally, we calculate the average of the multiple
annotations to derive the score for each instance.

3.4. Statistical Analysis

The distributions of MOSs for visual quality and alignment
are exhibited in Fig. 4 respectively, which reveal several
key insights. In general, there are substantial differences
among generation models in both visual quality and
alignment, with their distributions displaying significant
inconsistencies, indicating varied performance across dif-
ferent generation prompts. 1) For image alignment, distri-
butions are generally skewed higher, suggesting that models
perform relatively well in aligning images, though multiple
peaks in the 4-5 and 2-3 score ranges indicate some fluctu-
ation in performance. 2) In video alignment, model perfor-
mance varies more markedly, with most scores concentrated
between 2 and 4, highlighting the need for improvement in
alignment in video generation. 3) Visual quality for images
scores noticeably lower than image alignment, indicating
that generation models perform significantly worse in vi-
sual quality. Furthermore, the wider distribution spread in
image visual quality suggests greater variance and instabil-
ity across models. 4) Similarly, video visual quality scores
are lower than alignment scores, highlighting a consistent
underperformance in visual quality. Interestingly, models
such as Kling, Dreamina, Luma, PixVerse, and Pika exhibit
similar distributions for alignment and visual quality, indi-
cating consistent capability across both aspects. However,
this consistency is not observed across all models.

Overall, the findings above highlight a notable dispar-
ity in that visual quality generally falls behind alignment.
This gap likely stems from the current emphasis on align-
ment optimization, which is also relatively easier to im-
prove, whereas visual quality has received less focus. This
analysis underscores the importance of Q-Eval-100K as a
comprehensive benchmark for evaluating both dimensions.
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Figure 4. MOS distributions for the visual quality and alignment of generated images and videos in the Q-Eval-100K dataset respectively.

4. Q-Eval-Score
4.1. Unified Pipeline for Decoupled Evaluation

Although the evaluation of visual quality and alignment are
two relatively independent tasks, we leverage the adapt-
ability and extensive prior knowledge of LMMs to pro-
pose a unified model, Q-Eval-Score, that addresses both
visual quality and alignment level evaluation within a sin-
gle framework. Specifically, we convert the human-labeled
MOS from the Q-Eval-100K dataset for both visual quality
and alignment levels into a fixed-prompt format, creating a
mixed SFT dataset. We then fine-tune the LMM, enabling
it to evaluate both visual quality and alignment levels.

4.2. How to Teach LMMs to Evaluate

4.2.1 Context Prompt

In previous work using prompts with LMMs for evaluation,
the questions are often straightforward and simple, such as
‘Can you evaluate the quality of the image?’ (Q-Align [63])
or ‘Does this figure show [Prompt]? Please answer yes or
no.’ (VQAScore [41]). However, this simplicity may lead to
confusion for the model, as the prompts may not be specific
enough to guide a more detailed or accurate evaluation.

Inspired by the chain-of-thought (CoT [60]) concept and
given that humans undergo a reasoning process when eval-
uating visual quality and alignment, we propose a Context-
Prompt format to construct our SFT dataset. For the visual
quality task, the human evaluation process can be summa-
rized as first identifying both positive and negative quality
factors, then measuring these factors, and finally weighing
them to reach a conclusion. Based on this process, we de-
sign the following prompt structure:

Context Prompt for Visual Quality
# User: Suppose you are an expert in evaluating the visual
quality of AI-generated image/video. First, identify any vi-
sual distortions and positive visual appeal regarding low-
level features and aesthetics. Next, assess the severity of
distortions and their impact on the viewing experience, not-
ing whether they are subtle or distracting, and evaluate how
the positive features enhance the visual appeal, consider-
ing their strength and contribution to the overall aesthet-
ics. Finally, balance the identified distortions against the
positive aspects and give your rating on the visual quality.
Your rating should be chosen from the following five cat-
egories: [Excellent, Good, Fair, Poor, and Bad]. For this
image/video [Image/Frames], the text prompt is [Prompt].
# Answer: [Rating] (Excellent, Good, Fair, Poor, Bad).

For the alignment task, the human evaluation process
involves observing whether the overall content generally
aligns with the text, followed by a more detailed compari-
son, and finally a comprehensive evaluation for conclusion:
Context Prompt for Visual Quality
# User: Suppose you are an expert in evaluating alignment
between the text prompt and the AI-generated image/video.
Begin by considering whether the overall concept of the
prompt is captured in the image/video. Then, examine the
specific details, such as the presence of key objects, their
attributes, and relationships. Check if the visual content
accurately reflects these aspects. Finally, give your align-
ment rating considering both overall and detailed accuracy.
Your rating should be chosen from the following five cate-
gories: [Excellent, Good, Fair, Poor, and Bad]. For this
image/video [Image/Frames], the text prompt is [Prompt].
# Answer: [Rating] (Excellent, Good, Fair, Poor, Bad).
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Figure 5. The pipeline of the proposed Q-Eval-Score model involves multiple stages. First, the Q-Eval-100K SFT dataset is used to
train the LMM on visual quality and alignment knowledge. Then, context prompts are applied to guide the LMM towards generating
more detailed and accurate outputs. Finally, the rating token probabilities are converted into predicted scores. Additionally, long prompt
alignment is achieved through a Vague-to-Specific strategy to further refine the model’s responses.

4.2.2 ‘Translating’ MOS into Ratings

It is well established that discrete adjective ratings are easier
for LMMs to interpret compared to numerical scores [63,
73]. Since MOS in Q-Eval-100K is labeled in absolute
terms, we can easily map MOS to the corresponding rating:

R(s)=ri if m+
i−1

5
×(M−m)<s≤m+

i

5
×(M−m),

{ri |i=1∼5}={Bad, Poor, Fair,Good,Excellent},
(1)

where m = 1 and M = 5 (score range bound of Q-Eval-
100K), R(s) indicates the mapped rating of MOS value s.

4.3. Model Architecture

Using the constructed SFT dataset with the question-answer
pairs as described, we select Qwen-VL [6] as the LMM
model (Qwen2-VL-7B-Instruct) for training, which has
demonstrated strong visual understanding capabilities for
both images and videos. For video processing, each video
is converted into a sequence of images at a rate of one
frame per second, which is then fed into the model as
the input. The scoring computation method is detailed
as follows. For the rating token, we first calculate the
model output probabilities pj for each of the five rat-
ing terms {Excellent,Good,Fair,Poor,Bad}, where j ∈
{1, 2, 3, 4, 5}. Then we define the final predicted rating r̂
as the weighted average of these probabilities:

r̂ =

5∑
j=1

pj · wj , (2)

where wj is the numerical weight assigned to each rating
(e.g., wj = {1, 0.75, 0.5, 0.25, 0} for Excellent to Bad).

4.4. Loss Function

The loss function for the model consists of two parts: Cross-
Entropy (CE) Loss and Mean Squared Error (MSE) Loss.
The CE Loss can assist the LMM in learning the general
question-answer format and necessary knowledge. Mean-
while, the MSE Loss refines the score prediction accuracy.
The CE Loss for question-answer pairs is defined as:

LCE = −
N∑
i=1

yi · log(pi), (3)

where yi is the one-hot encoded vector representing the true
label for instance i, and pi is the predicted probability vector
for the answer tokens. The MSE Loss can then be given by:

LMSE = (r̂ − rMOS)
2
, (4)

where r̂ and rMOS represent the predicted scores and the
MOS labels repectively. The total loss L is a weighted sum
of the CE Loss and MSE Loss:

L = α1 · LCE + β1 · LMSE , (5)

where α1 and β1 (default set as 1 & 1) are weight parame-
ters controlling the contribution of each loss term.

4.5. Handling Long Prompt Alignment

During inference, we observe that the trained LMM tends
to undervalue alignment when handling long prompts (more
than 25 words). This is partly because long prompts are un-
derrepresented in the training data, leading to insufficient
training. More importantly, the LMM acts as a strict evalu-
ator, often penalizing significant points for inconsistencies
that may seem minor to humans. These small discrepancies
occur more frequently with long prompts. To manage this

6



A new Chinese style painting, 
a group of animals are 

having a meeting, the owl is 
sitting in the leader‘s 

position and speaking, they 
are all wearing clothes with 
futuristic designs, and the 
picture should have a sense 

of technology.

In a futuristic Chinese-style painting, an owl 
leads a tech-themed animal meeting.
-A group of animals are depicted in a meeting.
-The owl is the leader, sitting 
in the center, speaking.

-Each animal wears futuristic clothing, adding 
a tech flair to the scene.
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Figure 6. An example of the Vague-to-Specific strategy. The
original long prompt is divided by the LLM (QwenLM [5]) into
a Vague Prompt and several Specific Prompts. The alignment
score is first calculated separately for each part, then combined us-
ing weighted averaging to form the final score.

issue, we propose a Vague-to-Specific strategy. We use an
additional LLM (QwenLM [5]) to summarize long prompts,
retaining only the core features while filtering out details,
producing a concise Vague Prompt. Then, we split the
long prompt into Specific Prompts (no more than three),
each maintaining full details but avoiding redundancy:

(Pv, {Ps1 , · · · , Psn}) = VS(PLong), (6)

where Pv represents the Vague Prompt, {PS1
, · · · , PSn

}
stands for the set of Specific Prompts, VS(·) indicates
the prompt split function, and PLong is the original long
prompt. For the Vague Prompt, we calculate alignment
in the usual way. However, directly asking for consistency
with the Specific Prompts is not appropriate since each
one addresses only part of the vision content. Drawing
inspiration from the VQAScore [41] approach, we mod-
ify the question to a softer format, such as ‘Does the im-
age/video show [Prompt]?’ to evaluate alignment (measur-
ing as the logit probability of answering ‘Yes’) for each Spe-
cific Prompts. Finally, we combine the results from both
the Vague Prompt and Specific Prompt using a weighted
approach to calculate the final alignment score:

Af = α2Av + β2

(
1

n

n∑
i=1

Asi

)
, (7)

where Af , Av , and Asi are the alignment scores for the
final evaluation, vague prompt, and i-th specific prompt. α2

and β2 (0.5 & 0.5 as default) are weight parameters.

Table 2. Performance comparison on the visual quality aspect of
Q-Eval-100K. Best in bold, second underlined.

Model
(Visual
Quality)

Q-Eval-Image Q-Eval-Video
Instance-level Model-level Instance-level Model-level
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

NIQE 0.239 0.238 0.829 0.758 -0.057 -0.074 -0.333 -0.241
CLIP-IQA 0.334 0.324 0.600 0.685 0.194 0.175 0.095 0.076
Q-Align 0.587 0.578 0.714 0.914 0.500 0.502 0.762 0.762
IPCE 0.550 0.560 0.933 0.937 0.299 0.302 0.476 0.568
Q-Eval-Score 0.732 0.731 0.943 0.949 0.601 0.609 0.762 0.814

Table 3. Performance comparison on the alignment aspect of
Q-Eval-100K. Considering that CLIPScore, BLIP2Score, and
VQAScore are popular zero-shot alignment evaluation metrics, we
provide the corresponding performance with the official default
weight as well (marked with *).

Model
(Align-
ment)

Q-Eval-Image Q-Eval-Video
Instance-level Model-level Instance-level Model-level
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

CLIPScore* 0.245 0.252 0.617 0.685 0.186 0.219 0.518 0.500
BLIP2Score* 0.297 0.330 0.764 0.835 0.218 0.250 0.295 0.296
VQAScore* 0.549 0.468 0.385 0.555 0.433 0.432 0.433 0.351
CLIPScore 0.768 0.740 0.958 0.956 0.431 0.443 0.519 0.509
BLIP2Score 0.766 0.743 0.933 0.934 0.483 0.488 0.512 0.481
ImageReward 0.762 0.732 0.925 0.955 0.472 0.485 0.375 0.362
Q-Eval-Score 0.822 0.802 0.964 0.969 0.607 0.634 0.648 0.605

5. Experiment

5.1. Experimental Setup

Training & Evaluation. The Qwen2-VL-7B-Instruct [6]
serves as the backbone LMM for Q-Eval-Score. All visual
quality and alignment data from images and videos are com-
bined for training. Training is conducted on 8 A100 GPUs
for one epoch by default. For evaluation metrics, we use
SRCC and PLCC, which measure the rank and linear cor-
relation between predicted scores and MOSs. We propose
evaluations at the Instance-level and Model-level which as-
sess accuracy in ranking specific generated instances and
generative models based on overall performance.
Competitors. Few models can simultaneously predict
both visual quality and alignment. Thus we selected task-
specific competitors for each sub-task: For visual quality,
we include NIQE [46], CLIP-IQA [58], Q-Align [63], and
IPCE [49] (the top method from the ‘NTIRE 2024 Quality
Assessment of AI-Generated Content Challenge’ [42]). For
alignment, we choose CLIPScore [21], BLIP2Score [38],
ImageReward [66] and VQAScore [41] as the competitors.
All models are trained and tested using their default recom-
mended parameters and the corresponding train-test sets of
the Q-Eval-100K dataset unless specified.

5.2. Discussion & General Findings

The general performance on the visual quality and align-
ment is exhibited in Table 2 and Table 3, from which we can
draw several conclusions: 1) For visual quality, The pro-
posed Q-Eval-Score outperforms all competitors, achiev-
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Table 4. Ablation Study of Q-Eval-Score.

Model
Q-Eval-Image (Quality) Q-Eval-Video (Quality) Q-Eval-Image (Alignment) Q-Eval-Video (Alignment)

Instance-level Model-level Instance-level Model-level Instance-level Model-level Instance-level Model-level
SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

w/o SFT Training 0.071 0.096 0.257 0.136 0.018 0.008 0.262 0.314 0.529 0.423 0.560 0.705 0.464 0.437 0.567 0.478
w/o Context Prompt 0.504 0.509 0.600 0.756 0.598 0.591 0.571 0.638 0.805 0.776 0.960 0.963 0.588 0.597 0.601 0.602
w/o CE Loss 0.652 0.622 0.932 0.910 0.247 0.249 0.071 0.239 0.804 0.776 0.948 0.961 0.604 0.626 0.642 0.593
w/o MSE Loss 0.665 0.673 0.933 0.941 0.595 0.583 0.690 0.712 0.795 0.763 0.954 0.958 0.580 0.605 0.624 0.599
Q-Eval-Score 0.732 0.731 0.943 0.949 0.601 0.609 0.762 0.814 0.822 0.802 0.964 0.969 0.607 0.634 0.648 0.605

Table 5. Performance comparison on the alignment aspect of Q-
Eval-100K on the long prompt subset, where w/o V2S and w
V2S represents the proposed Q-Eval-Score model with and with-
out the Vague-to-Specific strategy respectively.

Model
(Align-
ment)

Q-Eval-Image (Long) Q-Eval-Video (Long)
Instance-level Instance-level

SRCC PLCC SRCC PLCC
CLIPScore 0.533 0.547 0.359 0.367
BLIP2Score 0.620 0.636 0.392 0.395
VQAScore 0.432 0.325 0.344 0.350
w/o V2S 0.591 0.599 0.480 0.470
w V2S 0.620 0.623 0.517 0.512

Table 6. Cross-dataset validation performance on GenAI-Bench.
The Q-Eval-Score is trained on the Q-Eval-100K and then vali-
dated on GenAI-Bench. * indicates using default weight.

Model
(Alignment)

GenAI-Bench (Image) GenAI-Bench (Video)
SRCC PLCC SRCC PLCC

CLIPScore* 0.174 0.169 0.269 0.269
BLIP2Score* 0.221 0.209 0.289 0.275
VQAScore* 0.556 0.502 0.527 0.505
CLIPScore 0.681 0.670 0.610 0.628
BLIP2Score 0.687 0.679 0.679 0.705
ImageReward 0.664 0.656 0.663 0.684
Q-Eval-Score 0.757 0.747 0.717 0.714

ing the best performance overall. The decline in video per-
formance is likely due to the 1fps frame sampling method,
which causes a loss of temporal information, leading to in-
accurate estimations. Despite this, at the instance-level, Q-
Eval-Score still leads the second-best competitor (Q-Align)
by 10% on video instance-level SRCC. 2) For alignment,
Q-Eval-Score also demonstrates a significant lead in align-
ment, outperforming competitors by 6% in image instance-
level SRCC and 12% in video instance-level SRCC. Ad-
ditionally, the substantial performance improvements seen
in the trained competitors suggest that Q-Eval-100K pro-
vides valuable knowledge for alignment evaluation. 3) In
comparison to alignment, Q-Eval-Score’s performance in
visual quality is notably lower, indicating that predicting
visual quality is more challenging. This is likely because
alignment evaluation is more straightforward and objective,
while visual quality perception is more complex and sub-
jective, making it harder to assess. Overall, the proposed
Q-Eval-Score exhibits exceptional potential in both visual
quality and alignment, achieving over 0.94 performance at
the image model-level, closely aligning with human eval-
uations. This strong performance not only highlights the
robustness of the model but also underscores its promising
ability to serve as an effective evaluation metric.

5.3. Further Experiments

I) Ablation Study. We conduct a detailed ablation study to
assess the contribution of proposed strategies and CE/MSE
loss. The results are presented in Table 4. It is clear that
each of the strategies we proposed and both CE/MSE loss
make a significant contribution to the final outcome.
II) Long Prompt. To test the Vague-to-Specific strategy
for long prompt alignment, we select a subset of 5,000 in-
stances from Q-Eval-100K that contain long prompts (over
25 words) for testing, performance shown in Table 5. Due
to the limited data size, we present only the instance-level
performance. The results clearly show that the Vague-to-
Specific strategy significantly improves performance, indi-
cating the effectiveness of handling long prompt alignment.
III) Cross-dataset Validation. To demonstrate the value of
the Q-Eval-100K dataset, we conduct a cross-dataset val-
idation, with performance results shown in Table 6. It is
important to note that instances generated from prompts in
GenAI-Bench are excluded from this validation. The results
clearly show that models trained on Q-Eval-100K signifi-
cantly outperform the current state-of-the-art VQAScore on
GenAI-Bench by a large margin, providing strong evidence
of the generalization value of the Q-Eval-100K dataset.

6. Conclusion

In conclusion, we introduce Q-Eval-100K, the largest text-
to-vision evaluation dataset to date, featuring 100K in-
stances and 960K human annotations for assessing visual
quality and alignment. We also present Q-Eval-Score, a
unified evaluation framework that leverages this dataset to
provide separate scores for each dimension. Experimen-
tal results show that Q-Eval-Score outperforms existing
methods, demonstrating its potential for more reliable, com-
prehensive assessments of text-to-vision models. Look-
ing ahead, we hope this work can lay a strong foundation
for further advancements in text-to-vision model promotion
and real-world evaluation applications.
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Q-Eval-100K: Evaluating Visual Quality and Alignment Level
for Text-to-Vision Content

Supplementary Material

7. Dataset Construction Details

In this section, we mainly talk about the details of prompts
collection.

7.1. Prompts Collection

The prompt collection comprises two sources:
• Internally Constructed Prompts, which is based on in-

ternal capability requirement of Q-Eval-100K.
• Open-Source Prompts, which is based on other

text-to-vison alignment evaluation datasets, icluding
GenAIbench [34] and Docci [47]. GenAIbench fea-
tures comprehensive prompt designs, while Docci pro-
vides longer prompts, making it suitable for evaluating
long-prompt descriptions.

7.2. Internally Constructed Prompts

• Manual Construction: Data is manually created by
searching for commonly used prompts and rewriting them
to align with the distribution of specific capabilities.

• GPT-4 Augmentation: GPT-4 is used to expand the
dataset for specific capabilities. This process involves
leveraging a few manually constructed examples and ap-
plying a Chain-of-Thought (CoT) approach. GPT-4 gen-
erates prompts based on given definitions and examples,
which are then filtered and refined manually.

Example GPT-4 Prompt Generation Instruction:
You are an expert at crafting text-to-image prompts. I need
prompts for text-to-image models based on the following
category labels. Each label is explained with a descrip-
tion, the text before the ’;’ is the label, and the text after
the ’;’ provides details. Use your imagination and creativ-
ity to generate relevant English prompts. The prompt length
should be between [len min] and [len max]. Avoid extra
content, only output prompts.

7.3. Prompt Designing

As shown in Table 7, the prompt design focuses on three
main aspects: Entity Generation, Entity Attribute Gen-
eration, and Interaction Capability. 1) Entity generation
targets the primary entities (people, objects, etc.) to be gen-
erated. 2) Entity attribute generation emphasizes the at-
tributes (clothing, color, material, visual quality, etc.) of
the entities. 3) Interaction capability focuses on the interac-
tions between the generated entities and other entities or the
background, such as their spatial relationships and actions.

Table 7. Detailed Descriptions of Entity Generation, Entity At-
tribute Generation, and Interaction Ability

Category Subcategory Count

Entity Generation

Simple Entity Generation 1439
Simple Human Generation /
Simple Object Generation /
Other Simple Entity Generation /

Complex Entity Generation 1729
Character Information Generation /
Text and Symbol Generation /
Chart Generation /

Entity Attribute Generation

Basic Entity Attributes 1656
Entity Shape Generation /
Entity Position Generation /
Entity Color Generation /
Entity State Generation /
Other Entity Attributes Generation /

Person and Animal Attributes Generation 1500
Emotion Generation /
Action Generation /
Specific Age Person Generation /
Specific Gender Person Generation /
Other Person and Animal Attributes /

Portrait Generation 531
Simple Portrait Generation /
Complex Portrait Generation /

Scene and Theme Generation 2450
Theme Generation /
Scene Generation /

Style Generation 294
Basic Visual Attributes Generation 321

Image Sharpness Generation /
Exposure Generation /
Lighting Generation /
Contrast Generation /
Color Saturation Generation /
Noise Level Generation /
Composition Generation /
Color Balance Generation /
Depth of Field Generation /
Perspective Generation /
Camera Angle Generation /
Other Basic Visual Attributes Generation /

Interaction Ability

Interacting Multi-Entity Generation 1729
Sequential Relationship Multi-Entity Generation /
Causal Relationship Multi-Entity Generation /
Spatial Relationship Multi-Entity Generation /

8. Long Prompt Split

We use Qwen-VL-72B-Instruct [6] to help summarize the
long prompt and split the long prompt into short sentences.
Specifically, the prompt is designed as follows:
Summarize Prompt
# User: Please shorten the prompt to between 15 and 25
words, retaining the main information and ignoring details,
specifically the characters, attributes, actions, and scenes.
The prompt is as follows [Prompt].
Split Prompt
# User: Split the prompt into three or fewer shorter prompts,
with each short prompt describing one aspect of the original
long prompt’s subject and should be fewer than 15 words.
The prompt is as follows [Prompt].
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Figure 7. Radar charts of the overall performance on the Visual Quality and Alignment aspects on Q-Eval-100K, where IR, IP, MR,
MP indicate Instance-level SRCC, Instance-level PLCC, Model-level SRCC, Model-level PLCC, and -i, -v represents image and video
respectively.
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Figure 8. Visualization comparison results.
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Figure 9. Variance probability distributions for images/videos of
Q-Eval-100K respectively.

8.1. Subjective experiment details:

1) Each instance in the training and test sets is rated by at
least 3 and 12 individuals on average. 2) We ensure raters’
diversity by employing raters from a wide age range (18-52)
and selecting raters from various professional backgrounds.
Each rater annotates a maximum of 30 instances at a time,
followed by a mandatory 30-minute break. 3) Perfect-score
cases are rated by 12 individuals first, then reviewed and ad-
justed by a group of 5 experts. 4) Given the scale of Q-Eval-
100K (the largest AIGC QA dataset with MOS at the cost of
about 150,000 US dollars in total), involving 15 raters per
instance as suggested by ITU [1] would be impractical due
to time and cost constraints. To preserve the dataset’s scale
(crucial for LMM training under scaling laws), we reduce
the number of raters and implement a ‘Sample and Scruti-
nize’ approach to maintain annotation quality. 5) The vari-
ance distribution of instance annotations is shown in Fig. 9,
where most instances have a variance below 0.3.

9. Performance Details

9.1. Radar Charts of Overall Performance

To provide a comprehensive overview of the performance,
we present the radar charts in Fig. 7. The key observations
are as follows:
• Visual Quality. The proposed Q-Eval-Score outper-

forms all competitors, achieving the highest overall per-
formance. The slight decline in video performance can be
attributed to the 1fps frame sampling method, which re-
duces temporal information and affects accuracy. Despite
this limitation, Q-Eval-Score leads the second-best com-
petitor (Q-Align) by a notable margin of 10% in video
instance-level SRCC.

• Alignment. Q-Eval-Score also excels in alignment eval-
uation, surpassing competitors by 6% in image instance-
level SRCC and 12% in video instance-level SRCC.
Furthermore, the significant performance gains seen in
other trained models indicate that Q-Eval-100K serves
as a valuable dataset for improving alignment evaluation
methods.

• Comparison Between Tasks. The performance of Q-
Eval-Score in visual quality evaluation is relatively lower
than in alignment tasks, highlighting the greater complex-

ity of predicting visual quality. Alignment evaluation is
more straightforward and objective, while visual qual-
ity involves nuanced and subjective perception, making
it more challenging to assess.

Overall, the proposed Q-Eval-Score demonstrates remark-
able capabilities in both visual quality and alignment eval-
uation. With performance exceeding 0.94 in image model-
level metrics, it aligns closely with human judgment. These
results underscore the robustness of Q-Eval-Score and its
potential as a highly effective evaluation metric.

9.2. More Cross-validation Results

We further select 4 datasets for cross-validation (See Ta-
ble 8). AGIQAQuality [35] & T2VQA [29] are for visual
quality, while AGIQAAlign [35] & TIFA160 [23] are for
text alignment. The results show good generalization abil-
ity of Q-Eval-Score. (best in bold)

Table 8. Cross-validation (All pre-trained on Q-Eval-100K).

Dataset AGIQAQuality T2VQA AGIQAAlign TIFA160
Method SRCC/PLCC SRCC/PLCC SRCC/PLCC SRCC/PLCC
Q-Align 0.6581/0.6743 0.2539/0.2198 Inapplicable Inapplicable

CLIPScore Inapplicable Inapplicable 0.5515/0.5627 0.5903/0.5952
BLIP2Score Inapplicable Inapplicable 0.6873/0.7085 0.7267/0.7468

Q-Eval-Score 0.7256/0.7248 0.4479/0.4498 0.7544/0.7432 0.7845/0.7954

9.3. Visualization Results

We provide additional comparison examples in Fig. 8 to of-
fer a clearer understanding of the evaluation capabilities of
different models. It is evident from these examples that
both CLIPScore and BLIPScore struggle significantly in
tasks such as recognizing text within images and accurately
counting objects. These models often fail by assigning
disproportionately high scores to results that do not align
with the intended outputs, reflecting their limitations in fine-
grained assessment. Furthermore, when dealing with com-
plex scenarios involving long and detailed prompts, these
models exhibit a consistent tendency to assign significantly
lower alignment scores, likely due to their inability to effec-
tively parse and match intricate contextual information. In
contrast, Q-Eval-Score consistently demonstrates a much
higher degree of accuracy and reliability in these challeng-
ing scenarios. These results further highlight the potential
of Q-Eval-Score as a unified framework for evaluating text-
to-vision generative models across diverse and demanding
conditions.

10. Data Statement

Considering the large scale of the dataset and the complex-
ity of the model, we are actively organizing and refining
the content to ensure its quality and usability. We solemnly
pledge to release the Q-Eval-100K dataset in carefully
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planned batches, ensuring a comprehensive and system-
atic open-sourcing process that effectively supports com-
munity development. Furthermore, we confirm that the
dataset has successfully passed ethical review, affirming
our commitment to responsible AI practices. Alongside
the dataset, we will also release Q-Eval-Score and provide
continuous updates, ensuring the model remains aligned
with the rapid advancements in generative AI.

11. Broader Impact and Limitations
11.1. Broader Impact

• Empowering Generative AI Applications. The devel-
opment of comprehensive evaluation methods, such as
Q-Eval-100K and Q-Eval-Score, directly supports these
advancements by ensuring the quality and alignment of
generated content, enabling its effective deployment.

• Driving Standardization in Evaluation. By introduc-
ing a unified framework for assessing visual quality and
alignment, this work provides a benchmark for system-
atic evaluation. This standardization not only enhances
the reliability of evaluations across diverse use cases but
also fosters transparency in generative AI systems.

• Facilitating Improvements in Generative Models. The
dataset and framework encourage the refinement of gen-
erative models by providing detailed feedback on visual
quality and alignment. These insights guide iterative im-
provements, pushing the boundaries of what generative
AI can achieve.

11.2. Limitations

• Subjectivity in Visual Quality Evaluation. While Q-
Eval-Score aligns closely with human evaluations, the
inherently subjective nature of visual quality perception
may result in variability. Differences in individual prefer-
ences and cultural factors could affect the generalizability
of the evaluation framework.

• Dependency on Human Annotations. The reliance on
extensive human annotations for dataset creation intro-
duces scalability issues and potential biases. Automating
parts of this process without sacrificing quality remains
an open challenge.
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