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Abstract—In recent years, significant efforts have been ded-
icated to advancing 3D content generation. However, existing
quality assessment research predominantly focuses on evaluating
Text-to-3D Content (T23DC) while ignoring Single Image-to-3D
Content (SI23DC). In this paper, we establish the first Single
Image-to-3D Content Quality Assessment (SI23DCQA) database
to comprehensively study the perceptual quality of SI23DCs.
The database contains 1500 SI23DCs, which are generated by
5 common SI23DC algorithms from 300 images including real-
istic images, AI generated images, and model rendered images.
Afterward, we carry out a well-designed subjective experiment
to collect subjective quality ratings for SI23DCs from three
perspectives including overall, color, and shape. Additionally,
a benchmark experiment is conducted with the state-of-the-art
no reference image quality assessment (NR-IQA), no reference
video quality assessment (NR-VQA), and no reference 3D quality
assessment (NR-3DQA) and the experimental results show that
current quality assessment methods are limited in evaluating
the perceptual loss of SI23DCs. The database is released on
https://github.com/ZedFu/SI23DCQA.

Index Terms—artificial intelligence generated content, quality
assessment database, 3D quality assessment

I. INTRODUCTION

With the advancement of generation model, artificial intelli-
gence generated content (AIGC) algorithms provide a new way
to generate contents including text, image, video, 3D model,
etc., and have been used to many areas such as search sites,
games, films, and entertainment, efc. At the same time, many
studies have focused on artificial intelligence generated content
quality assessment (AIGCQA) [1]-[5] and have established
many corresponding subjective quality assessment database.
For the AI generated 3D content, it can be divided into two
categories, including T23DC and SI23DC. However, current
quality assessment studies only focus on evaluating T23DC [5]
while ignoring SI23DC. Compared with the T23DC, SI23DC
generally generates higher quality and more detailed 3D
contents, since the input image can provide more information
than prompt text. Meanwhile, the subjective quality assessment
manner of SI23DC is quite different from T23DC. The former
needs to pay attention to the correspondence of color and
shape between the generated 3D contents and the input images,
while the latter needs to focus on the alignment between
the generated 3D contents and the prompt texts. SI23DCQA
is both significant and promising, yet there is currently no
existing work dedicated to addressing it.
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In order to address this problem, we establish the first
SI23DC database to tackle the mentioned challenge. First,
we collect 300 images of three types: realistic images, Al
generated images and model rendered images. Then we utilize
5 common SI23DC algorithms to generate 1500 3D contents.
Afterward, we carry out a well-designed subjective experiment
to collect the perceptual quality scores from three perspec-
tives including color, shape and overall. of the generated
3D contents. Finally, we conduct a benchmark experiment
on the proposed database with state-of-the-art NR-IQA, NR-
VQA and NR-3DQA methods, which shows that current
quality assessment methods are not effective for predicting
the visual quality levels of SI23DCs. Our contributions can be
summarized as followed:

e To the best of our knowledge, we establish the
first Single Image-to-3D content quality assessment
database, which contains 1,500 3D contents generated
by 5 SI23DC algorithms from 300 images of three types:
realistic images, Al generated images and model rendered
images.

e We carry out a subjective study to collect three types
perceptual quality scores (overall, color, and shape) of the
generated 3D contents. A total of 94, 500 = 21x3x 1, 500
quality ratings are gathered.

e We also conduct a benchmark experiment to exhibit the
performance of the existing state-of-the-art NR-IQA, NR-
VQA and NR-3DQA methods.

II. RELATED WORK

A. Single Image-to-3D Content Generation

Single Image-to-3D Content, the task of generating 3D con-
tent from a single 2D image, is a challenging and meaningful
problem in the computer version community and is essen-
tial for numerous applications, such as 3D content creation,
AR/VR as well as robotic manipulation and navigation [11],
[12]. There have been extensive efforts to address this problem.
Early approaches learn 3D priors from 3D synthetic data
or real scans. Since 3D data can be represented in various
formats, some approaches focus on generating point clouds,
meshes or voxels, while others concentrate on generating
implicit representations, such as SDFs and NeRF. However
these methods are category-specific generation and produce
barely satisfactory results. In recent years, the vision-language
models and 2D generation models have trained on Internet-
scale image datasets and learned human-like visual concepts,



TABLE I
SUMMARY OF THE EXISTING AIGCQA DATABASES AND PROPOSED SI23DCQA DATABASE. THE NUMBERS IN PARENTHESES OF SCORE TYPE
REPRESENT THE DIMENSIONS OF THE SUBJECTIVE EXPERIMENTAL ANNOTATIONS.

Type Dataset Contents | Prompts | Models | Annotators | Ratings | Score type
AGIQA-1K [1] 1,080 540 2 22 23,760 MOS
AGIQA-3K [2] 2,982 497 6 21 125,244 MOS(2)
Text-To-Image AGIQA-20K [6] 20,000 20,000 15 21 420,000 MOS
AIGCIQA2023 [3] 2,400 100 6 28 201,600 MOS(@3)
AIGCOIQA2024 [7] 300 25 5 20 18,000 MOS(3)
Chivileva’s [8] 1,005 201 5 24 48,240 MOS(2)
Text-To-Video EvalCrafter [9] 3,500 700 7 3 73,500 MOS(5)
FETV [10] 2,476 619 3 3 11,142 MOS(2)
T2VQA-DB [4] 1,000 1,000 9 27 27,000 MOS
Text-To-3D 3DGCQA [5] 313 50 7 40 25,040 MOS(2)
Single Image-To-3D Ours 1500 300 5 21 94,500 MOS(@3)

which can possess powerful priors about our 3D world.
Therefore, some recent methods [11], [13] first utilize view-
conditioned 2D generation model which can generate multi-
view images though inputted single image, and then feed these
multi-view images to 3D reconstruction model to generate 3D
contents. In the same time, with the release of large-scale
3D datasets [14], some approaches [12], [15], [16] adopt the
encoder-decoder framework, which first use pretrained vision
model to encoder the input image as a middle tensor and
convert it to 3D triplane representation by a large transformer
decoder.

B. Al Generated Content Quality Assessment

In recent years, diffusion model has achieved great success
in generation tasks and can generate very realistic contents,
which leads to an exponential increase of AIGC in daily lives.
In the same time, many researchers have established lots of
databases and proposed many methods to evaluate the quality
of generated content. Some work [1]-[3], [6], [7] focus on Al
generated image quality assessment and other work [4], [8]-
[10] concentrates on Al generated video quality assessment.
Recently, Al-generated 3D content quality assessment [5] has
gained significant attention. However, these databases only
focus on T23DC. For 3D content generation, three are many
work on SI23DC, which can utilize more detail information
and generate more satisfying results. In order to address
the SI23DCQA, we establish a SI23DCQA database. Table
I presents the attributes of existing AIGCQA databases and
proposed SI23DCQA database. For the proposed database, the
“Prompts” column denotes the number of input single images.

ITII. DATABASE CONSTRUCTION

A. Image Selection

According to previous AIGCQA work [3], [6], we need
to select relatively few images to cover a large number of
real user inputs, this is because the generated 3D content will
be fine-grained scored. Considering the practical application
scenarios of SI23DC, the input single image generally comes
from realistic images, Al generated images, and 3D model
rendered images, so we collected the above three sets of
images, each set contains 100 images with the resolution
of 512 x 512. For realistic images, we collected images of

five categories from the Internet, including 30 animals, 20
fruits, 20 objects, 10 people, and 20 vehicles and replaced
the background of the images with white; For Al generated
images, we asked the ChatGPT to get 20 common animals,
household appliances, plants, vehicles and food, and then
used the prompt “the front photo of ‘object’ with full body,
the background area is all white.” and DeepFloyd Model to
generate 100 images; For 3D model rendered images, we
selected 100 non-repetitive 3D models from these datasets
[17]1-[19] and used MeshLab to render the front view of these
3D models; Fig 1 (a), (b) and (c) show sample images from
realistic images, Al generated images or 3D model rendered
images respectively.

(b) AI Generated Images
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Fig. 1. Examples of the input images, (a), (b), and (c) are realistic images,
Al generated images and 3D model rendered images respectively.
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Fig. 2. The samples of SI23DCs from the database. The first to third rows are SI23DC generated from real images, Al generated images, and model rendered
images respectively. The leftmost images in each row represent the input images.

B. 3D Content Generation

To ensure the diversity of SI23DCs, our database con-
sidered five representative SI23DC generation models. As
mentioned above, Current SI23C methods can be divided into
two categories, one category utilizes vision-language and 2D
diffusion model to predict multi-view images which are used
for 3D content reconstruction. We chose One-2-3-45 [11] and
CRM [13] as representatives of this category; another category
employs an image encoder—3D decoder framework, trained
on large-scale 3D datasets [14] to generate 3D content. We
selected LRM [12], InstantMesh [15], and TripoSR [16] as
representatives of this category. It is worth noting that, One-
2-3-45 [11] adopts SDF-based generalizable neural surface
for 3D reconstruction, the rest use implicit triplane. For the
generation process of SI23DCs, since LRM [12] does not
have publicly available code, we chose to use the code of
OpenLRM [20], and the remaining methods all used open
source code. Additionally, we chose the default configurations
and the weight files with the most parameters. Since some
methods can not export generated 3D contents as meshes with
texture images, we export generated 3D contents as vertex
colored meshes, which contains colored vertices V € R"*6
and faces F' € ZF*3. These vertex colored meshes are directly
used in subsequent subjective experiments. Fig 2 show the
samples of SI23DCs from the database.

C. Subjective Experiment

To collect human visual preferences for SI23DCs, we fur-
ther conducted a well-designed subjective assessment exper-
iment. As highlighted in prior AIGCQA studies [3], [7], the
Al generated content are significantly different from human
captured or created content, which need to be evaluated from
multiple perception perspectives. Hence, in this paper, we
propose to evaluate human visual preferences for SI23DCs
from three perspectives, including overall, color, and shape.
Fig. 3 shows the differences between the selected color and
shape dimensions, which further manifests the importance,

Overall:52.2226
Color: 64.1399
Shape:42.5017

Overall:49.3659
Color:61.5215
Shape: 41.6188

Overall:38.7668
Color:53.1502
Shape:37.6517

Overall:53.0222
Color:39.7977
Shape:62.9029

Overall:60.3424
Color:47.3506
Shape:70.1089

Overall:52.4626
Color:41.2328
Shape:60.7204

Fig. 3. The illustration of the differences between the two dimensions of
color and shape. For each row, the left image is input image and the rest are
images rendered from generated 3D content. (a) and (b) show examples of
good color correspondence but poor shape correspondence and good shape
correspondence but poor color correspondence respectively.

and significance of evaluating SI23DCs from multiple per-
spectives.

We conducted the subjective experiment following the
guidance in ITU-R BT.500-13 [21], which mentions several
subjective assessment methodologies, such as single stimulus
(SS), double-stimulus impairment scale (DSIS) and paired
comparison (PC). Since the input images can be treated as
a reference, we adopt DSIS strategy to obtain the subjective
quality ratings of generated 3D contents. As shown in Fig 4,
for each generated 3D content, subject first views the input
image and uses MeshLab software to view the generated 3D
content at any angle and distance. There have three sliders
ranging from 0 to 5, with a minimum interval of 0.1, are
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Fig. 4. The subjective quality assessment interface. The left and right part
are the SI23DC displayed in MeshLab and the input image respectively.

provided for the subject to assign scores for overall, color, and
shape. Additionally, two buttons are used to select previous,
next generated 3D content. They are seated at a distance of
about 2 feet from the monitor, and this viewing distance is
roughly maintained during each session. The experimental
environment is arranged to simulate a typical indoor home
setting with standard lighting conditions. A total of 21 subjects
(12 males and 9 females) participated in the subjective ex-
periment, all possessing normal or corrected-to-normal vision.
Each participant received detailed experimental instructions
prior to engaging in the subjective evaluation. Since the
collect input image can be divided in to realistic images, Al
generated images and 3D model rendered images, we also
divided the subjective experiment into three subsets. For each
subsets subjective experiment, subject has 4 hours to label the
perception scores of generated 3D contents.

D. Data Processing

Following the data processing used in previous work [22]
to conduct the subject rejection and outlier detection. Specif-
ically, for each subset and each evaluation dimension, the
kurtosis score of the raw subjective quality ratings for each
3D content is calculated to determine whether it follows a
Gaussian or non-Gaussian distribution. For the Gaussian case,
the raw score for generated 3D content is regarded as an
outlier if it is out side 2 standard deviations (stds) about the
mean score of that 3D content; for the non-Gaussian case, it is
consider to be an outlier if it outsize /20 stds about the mean
score of that 3D content. A subject is removed if more than
3% of his/her evaluations of any dimension are outliers. As a
result, only 1 subject is rejected in Al generated images subset.
Finally, we convert the raw ratings into Z-scores, which are
then linearly scaled to the range [0,100] and averaged over
subjects to obtain the final MOSs as follows:
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(a) The MOS distribution of realistic (b) The MOS distribution of Al gen-
images. erated images.

(c) The MOS distribution of model (d) The performance of used SI23DC
rendered images. algorithms

Fig. 5. Distributions of the three types MOSs in three subsets and the
performance of used SI23DC algorithms.

where m;; is the raw rating given by the i-th subject to j-
th generated 3D content, ;; and o; are the mean rating and
standard deviation given by subject ¢ respectively, and N is
the total number of subjects.

E. Subjective Data Analysis

Based on the results of the subjective experiment, we draw
the MOSs distribution for overall, color, and shape dimensions
in three subsets and the performance of different generation
algorithms, which can be seen in Fig 5. By looking at these
figures, some conclusions can be drawn: (1) The overall score
of SI23DCs in each subset stays at around 40-60 points, which
indicates that the quality of current SI23DCs is not good
enough for large-scale application and shows the necessity of
SI23DCQA. (2) The MOSs in Al generated image subsets
are lower than others, this may because three are some
unnatural color distribution and unrealistic structural details
in Al generated images. (3) The performance of OpenLRM
[20] and InstantMesh [15] surpasses that of other algorithms,
while One-2-3-45 [11] performs the worst.

IV. BENCHMARK EXPERIMENT
A. Benchmark Competitors

Considering the traditional 3DQA can be divided into
projection-based and model-based methods, we test some NR-
IQA methods, including NIQE [23], ILNIQE [24], BRISQUE
[25], QAC [26], BPRI [27], BMPRI [28], Resnet [29], Swin
Transformer [30], CNNIQA [31], StairlQA [32], HyperIQA
[33], NR-VQA methods including MC3-18 [34], R2P1D-18
[34], R3D-18 [34], Swin3D [35], SimpleVQA [36], Fast-VQA
[37], DOVER [38], and NR-3DQA methods, including 3D-
NSS [39], MM-PCQA [40], GMS-3DQA [41]. These methods
contains handcrafted-based, common DNN-based methods.



TABLE 11
BENCHMARK PERFORMANCE ON THE PROPOSED SI23DCQA DATABASE. [KEY: Best, Second Best]

Dimension Overall Color Shape

Type Metric SRCC KRCC PLCC | SRCC KRCC PLCC | SRCC KRCC PLCC
NIQE [23] 0.2183  0.1472  0.2481 | 0.2230 0.1506  0.2824 | 0.2103  0.1413  0.2266

ILNIQE [24] 0.0985 0.0656 0.1796 | 0.1299 0.0858 02178 | 0.0756  0.0503  0.1560

BRISQUE [25] 0.2193  0.1444 0.2612 | 0.2492 0.1642 03005 | 0.1956  0.1285 0.2326

QAC [26] 0.2383  0.1596  0.2796 | 0.2486 0.1664 03078 | 0.2274 0.1522  0.2586

BPRI [27] 0.0493  0.0338  0.1445 | 0.0554 0.0391 0.1503 | 0.0548 0.0376  0.1406

BMPRI [28] 0.1639  0.1088  0.1969 | 0.1911 0.1276  0.2358 | 0.1512  0.0997 0.1772

NR-IQA Resnet-18 [29] 0.6436 04622  0.6599 | 0.6451 0.4641 0.6686 | 0.6320 0.4517 0.6397
Resnet-50 [29] 0.5853  0.4204 0.6154 | 0.5880 0.4208 0.6319 | 0.5656  0.4049 0.5915

Swin-T [30] 0.6913  0.5032 0.7068 | 0.7038 0.5147 0.7241 | 0.6717 0.4861 0.6822

Swin-B [30] 0.7151  0.5251 0.7254 | 0.7219 0.5322  0.7397 | 0.6983  0.5093  0.7048

Swin-L [30] 0.7222  0.5306 0.7312 | 0.7371 0.5438 0.7488 | 0.6955 0.5075 0.7011

CNNIQA [31] 0.4483  0.3086  0.4631 | 0.4549 0.3137 0.4786 | 0.4399 03025 0.4512

StairlQA [32] 0.6526 04739  0.6680 | 0.6673 0.4864 0.6838 | 0.6316 0.4569 0.6462

HyperIQA [33] 0.6307 04520 0.6470 | 0.6396 0.4594 0.6656 | 0.6052 0.4317 0.6182

MC3-18 [34] 0.6498  0.4663 0.6647 | 0.6490 0.4661 0.6753 | 0.6350 0.4520 0.6441

R2P1D-18 [34] 0.6354  0.4556  0.6509 | 0.6509 0.4659  0.6730 | 0.6050 0.4288 0.6184

R3D-18 [34] 0.6365 04572  0.6533 | 0.6524 0.4692 0.6760 | 0.6271 0.4476 0.6354

Swin3D-T [35] 0.6844 04963 0.6973 | 0.6882 0.4990 0.7064 | 0.6676  0.4823  0.6761

NR-VQA Swin3D-S [35] 0.6999 05113  0.7171 | 0.7025 0.5139  0.7273 | 0.6856  0.4994  0.6972
Swin3D-B [35] 0.6430 04617 0.6616 | 0.6418 0.4620 0.6704 | 0.6273  0.4489  0.6401

SimpleVQA [36] | 0.7576  0.5642  0.7703 | 0.7799  0.5864  0.7998 | 0.7294  0.5393  0.7404

Fast-VQA [37] 0.6987 05131 0.7124 | 0.7326 0.5423  0.7471 | 0.6958  0.5098 0.7006

DOVER [38] 0.7077  0.5213  0.7177 | 0.7301  0.5414  0.7472 | 0.6917 0.5059  0.6953

3D-NSS [39] 0.4363  0.3007 0.4463 | 0.3259 0.2340 0.3887 | 0.3575 0.2484  0.3952

NR-3DQA MM-PCQA [40] 0.5362 0.3761  0.5520 | 0.5455 0.3825 0.5724 | 0.5177 0.3607  0.5298
GMS-3DQA [41] | 0.6399 04596 0.6474 | 0.6579 0.4741 0.6771 | 0.5999  0.4298  0.6043

B. Experimental Setup

With the help of Pytorch3D [42], we render the generated
3D contents to projection videos, each video contains 120
frames and lasts 4 seconds. For NR-IQA methods, we uni-
formly sample 12 frames from the video to predict scores
and use the average as the final quality score; For NR-VQA
methods, we use the rendered videos to predict quality scores;
For NR-3DQA methods, we directly use the generated 3D
contents to predict quality scores. For the methods that require
training, we follow the settings used in previous works [37],
[38], we partition the proposed database into training and test
sets at a ratio of 4:1. Additionally, we conduct 10 random
splits of the database and average the results to ensure unbi-
ased performance comparison. For other methods, we simply
operate them on the whole database and report the average
performance. Three mainstream consistency evaluation criteria
are utilized to compare the correlation between the predicted
scores and MOSs, which include Spearman Rank Correlation
Coefficient (SRCC), Kendall’s Rank Correlation Coefficient
(KRCC), and Pearson Linear Correlation Coefficient (PLCC).
An excellent model should obtain values of SRCC, KRCC,
and PLCC close to 1.

C. Performance Discussion

The experimental results are shown in Table II, from
which we can make several useful conclusions: (a) For the
NR-IQA methods, the DNN-based methods tend to predict
quality score more accurate than handcrafted-based methods.
This is because the handcrafted-based methods is aimed to
assessment the quality of natural image, so they are based
on the natural scene statistics (NSS) prior knowledge, which

are quite different from the distortions in the rendered images
of generated 3D content. (b) SimpleVQA achieves the best
performance among all the benchmark competitors in three
type MOSs. In our opinions, SimpleVQA utilizes 3D CNN to
extract motion features in addition to using 2D CNN for spatial
features extraction, which are more relevant to the quality
representation of generated 3D content. (c) For NR-3DQA
methods, the performance of these methods is more worse
than NR-VQA, which may because the features extracted from
patch and several projection images are not express the quality
of generated 3D content well.

V. CONCLUSION

In this paper, we propose the first SI23DCQA database.
We chose 3 types images and 5 common SI23DC algorithms
to generate 1500 SI23DCs. Afterward, a subjective study is
carried out to collect the subjective quality MOSs for the
generated 3D contents. Additionally, Some state-of-the-art
NR-IQA, NR-VQA, NR-3DQA methods are chosen for valida-
tion on the proposed database. A comprehensive performance
discussion is made as well. We hope our work will draw more
attention to the quality assessment of generated 3D contents
and inspire future research.
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