Samba: A Unified Mamba-based Framework for General Salient Object Detection
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Abstract

Existing salient object detection (SOD) models primarily
resort to convolutional neural networks (CNNs) and Trans-
formers. However, the limited receptive fields of CNNs and
quadratic computational complexity of transformers both
constrain the performance of current models on discover-
ing attention-grabbing objects. The emerging state space
model, namely Mamba, has demonstrated its potential to
balance global receptive fields and computational complex-
ity. Therefore, we propose a novel unified framework based
on the pure Mamba architecture, dubbed saliency Mamba
(Samba), to flexibly handle general SOD tasks, including
RGB/RGB-D/RGB-T SOD, video SOD (VSOD), and RGB-D
VSOD. Specifically, we rethink Mamba’s scanning strategy
from the perspective of SOD, and identify the importance of
maintaining spatial continuity of salient patches within scan-
ning sequences. Based on this, we propose a saliency-guided
Mamba block (SGMB), incorporating a spatial neighboring
scanning (SNS) algorithm to preserve spatial continuity of
salient patches. Additionally, we propose a context-aware
upsampling (CAU) method to promote hierarchical feature
alignment and aggregations by modeling contextual depen-
dencies. Experimental results show that our Samba outper-
forms existing methods across five SOD tasks on 21 datasets
with lower computational cost, confirming the superiority of
introducing Mamba to the SOD areas. Our code is available
at https://github.com/Jia-hao999/Samba.

1. Introduction

Salient object detection (SOD) is an essential vision task that
aims to identify and segment the most visually prominent
objects within a scene. This technique plays a crucial role in
various applications such as object tracking [90], semantic
segmentation [14], image enhancement [51], autofocus [28]
and evaluation of large models [29].

Current state-of-the-art (SOTA) SOD methods are pri-
marily dominated by convolutional neural networks (CNNs)
and transformers, addressing various SOD tasks, including
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Figure 1. Comparison between existing scanning strategies and
our scanning strategy. (a) Sequential scanning of patches in a
“Z” pattern [43]. (b) Sequential scanning of patches in diagonal
directions [60, 84]. (c) Sequential scanning of patches in an “S”
pattern [76]. (d) Compared to (a/b/c), our spatial neighboring
scanning (SNS) can preserve spatial continuity of salient patches.

RGB/RGB-D/RGB-T SOD [4, 23, 40, 62, 63, 72], video
SOD (VSOD) [21, 80, 85], and RGB-D VSOD [36, 39, 53].
While CNN-based backbones are known for their scalability
and linear computational complexity, they suffer from lim-
ited receptive fields, making it challenging to capture global
dependencies. In contrast, transformer-based backbones
offer superior visual modeling by leveraging global recep-
tive fields. However, their self-attention mechanism incurs
quadratic complexity, raising efficiency concerns. Although
efficient transformer architectures, such as Swin transformer
[44] and MobileViT [50], have been proposed, they typically
sacrifice some global modeling capability for efficiency, fail-
ing to achieve an optimal balance between the two.

Recently, Mamba [16], a novel state space model (SSM),
has emerged as a highly promising backbone to balancing
global receptive fields and computational efficiency. Mamba
employs a selective scanning algorithm to model long-range
dependencies while preserving linear complexity. Besides,
with a specially designed hardware-aware algorithm, Mamba
achieves efficient training on GPUs. Building on this foun-
dation, visual Mamba backbones [43, 92], with task-specific
models [6, 68, 78, 87, 91] based on them, have been rapidly
developed. Given Mamba’s success across various vision
tasks and its absence in SOD areas, we seek to explore its
potential for efficient global modeling in SOD tasks.

In this paper, we propose a novel unified model, saliency
Mamba (Samba), to flexibly handle general SOD tasks. Ow-
ing to the strong performance of visual Mamba backbones,
many task-specific models [49, 68, 78, 91] have leveraged
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them to extract global cues. Inspired by this, we adopt
Vmamba [43] as our backbone, and attempt to design a
Mamba-based decoder to produce elaborated results. In
our approach, we refer to existing Mamba-based decoders
[20, 49, 68, 74, 76, 84], and identify two crucial issues for
designing Mamba-based SOD decoders:

Spatial continuity issue. In the workflow of visual
Mamba models, 2D feature maps are first divided into
patches and then scanned into 1D sequences before being
fed to SSMs. Since SSMs are designed to provide continu-
ous predictions for 1D causal sequences, the prediction of
a current image patch heavily relies on preceding patches,
especially the nearest ones. Therefore, continuous (or suc-
cessive) salient patches within 1D sequences can help SSMs
accurately locate complete salient regions, enhancing fea-
ture representation. However, previous scanning strategies
[43, 60, 76, 84] neglect this issue and fail to maintain spatial
continuity of salient patches (as shown in Fig. 1 (a), (b) and
(c)), hindering SSMs to generate high-quality features.

Feature alignment issue. Existing Mamba-based de-
coders [49, 68, 91] typically employ nearest-neighbor inter-
polation to upsample low-resolution (i.e., high-level) fea-
tures before incorporating them with high-resolution (i.e.,
low-level) features. However, this approach leads to two
limitations: 1) it lacks learnability; 2) it neglects the con-
textual dependencies between hierarchical features. These
issues result in misalignment during feature fusion, causing
deviations in the final prediction. Although previous works
[42, 64] have proposed learnable upsampling methods, they
still fail to model the contextual dependencies between hier-
archical features during the upsampling process.

To address the first issue, we propose a novel saliency-
guided Mamba block (SGMB), which emphasizes spa-
tial continuity of salient patches, and leverage SSM’s
global modeling capability to enhance feature representa-
tion. Specifically, we design a spatial neighboring scanning
(SNS) algorithm to generate scanning paths, which are ap-
plied to flatten 2D feature maps into 1D sequences while
preserving spatial continuity of salient patches (Fig. | (d)).
These 1D sequences are then processed by SSMs to gener-
ate high-quality features. Notably, compared to commonly
fixed scanning strategies (Fig. | (a/b/c), SNS can dynami-
cally tune scanning directions to handle various scenarios,
offering insights for future designs of scanning strategies.
To tackle the second issue, we propose a context-aware up-
sampling (CAU) method, with a novel patch pairing and
ordering scheme, to promote hierarchical feature alignment
and aggregations during decoding. First, patches from shal-
low and deep features are paired as subsequences to model
the contextual dependencies between hierarchical features.
These paired subsequences are then concatenated and in-
put to SSMs. By leveraging powerful causal prediction of
SSMs, deep features can progressively learn data distribu-

tions of shallow features, and then are expanded to the same
shapes as shallow features for fusion. To flexibly handle
general SOD tasks, we also propose a multi-modal fusion
Mamba (MFM) to explore the interaction and integration of
multi-modal information.

In a nutshell, this paper provides four main contributions:

* To the best of our knowledge, we are the first to adapt
state space models to SOD tasks, and propose a novel
unified framework based on the pure Mamba architec-
ture to flexibly handle general SOD tasks.

* We propose a saliency-guided Mamba block (SGMB),
incorporating a spatial neighboring scanning (SNS)
algorithm, to maintain spatial continuity of salient
patches, thus enhancing feature representation.

* We propose a context-aware upsampling (CAU) method
to promote hierarchical feature alignment and aggrega-
tions by modeling contextual dependencies.

e Our Samba achieves SOTA results across five SOD
tasks on 21 datasets, validating its effectiveness as well
as the potential of introducing Mamba to the SOD areas.

2. Related Work

2.1. Deep Learning based SOD

RGB SOD. Initially, SOD researches focus solely on the
RGB modality, and design various methods, such as bound-
ary enhancement [31, 83], feature refinement [73, 86] and
attention mechanism [72, 86]. Recently, transformer-based
methods [40, 48, 93] have become mainstream, offering
superior performance due to their powerful global model-
ing. However, these methods fail to tackle some challenging
scenes, such as complex and low-contrast backgrounds.

RGB-D and RGB-T SOD. To address the challenging
scenes, some works introduce depth [3, 12, 23, 24, 32, 63,
88] or thermal images [2, 4, 25, 65, 81, 82] to assist saliency
detection. For example, Fu et al. [12, 13] utilize a Siamese
network to extract shared information from RGB and depth
inputs for more accurate detection in complex scenes. Tu et
al. [65] propose a novel dual-decoder architecture to inte-
grate the multi-type interactions between RGB and thermal.
VSOD. In contrast to static images, dynamic video scenarios
present considerable difficulties due to the diversity of mo-
tion patterns. Therefore, leveraging temporal contexts within
video sequences is crucial for VSOD methods. Some studies
[19, 21, 80, 85] use the interaction between video frames
to extract motion cues. Other researches [26, 35, 41, 59]
precompute optical flow maps between adjacent frames, and
then extract complementary motion information from them.
RGB-D VSOD. The effectiveness of integrating depth into
VSOD models has been demonstrated in [46], giving rise to
a potential research direction: RGB-D VSOD. As acquiring
RGB-D videos becomes easier, RGB-D video datasets have
been introduced [36, 39, 53]. At the same time, RGB-D
VSOD methods such as DCTNet+ [53] and ATFNet [39]
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Figure 2. Overall architecture of the proposed Samba model for general SOD tasks.

have shown encouraging potential in detection performance.

2.2. Visual Mamba

Motivated by the success of Mamba in language modeling,
Zhu et al. [92] transfer this success to vision, and design an
efficient visual backbone, vision Mamba (Vim), which incor-
porates the bidirectional SSMs for global context modeling.
Liu et al. [43] design visual state space blocks, and based
on them, a novel visual Mamba backbone (Vmamba) is de-
veloped and demonstrates promising performance across
a range of vision tasks, including semantic segmentation
[68, 91] and object detection [6, 87]. Due to the impact of
the SSM’s selective scanning direction on effective receptive
fields, Zhao et al. [84] expand on VMamba’s four-directional
scanning by adding four additional diagonal directions, i.e.,
Fig. 1 (b), to extract large spatial features from multiple
directions. Yang et al. [76] propose PlainMamba, with a
continuous 2D scanning approach, i.e., Fig. 1 (¢), ensuring
that the scanning sequences are spatially continuous.

3. Methodology

3.1. Preliminaries

SSMs [17, 18, 61] are sequence-to-sequence models de-
signed to capture long-range dependencies using linear time-
invariant (LTI) systems. These systems map an input se-
quence x (t) € R to an output sequence y (t) € R via a
latent state h (t) € RY, represented by the following ordi-
nary differential equations (ODEs):

y(t) = Ch(t) + Dx(t),h' (t) = Ah(t) + Bx(t), (1)

where A € RV*N B ¢ RV*1 C € RV, and D € R!
are system parameters. h'(¢) is the time derivative of h(t).

The discretization of this continuous-time system is essen-
tial for integrating SSMs into deep learning frameworks. A
common method for discretization is zero-order hold (ZOH)
[17], which can be formulated as:

A = exp(AA),B = (AA) (exp(A) —I)- AB, (2)

where A € RP is a predefined timescale parameter.

This process allows the discrete-time SSM to be ex-
pressed in a recurrent form, mapping the input sequence
{1, x2, ..., 1} to the output sequence {y1, y2, ..., Yk }

yr = Chy + Dz, hy = Ahy_1 + Bz, 3)

SSMs efficiently handle long-range dependencies with
linear complexity, but their time-invariance limits capturing
dynamic context. To address this, the recent advancement,
Mamba [16], introduce an input-dependent selection mecha-
nism (S6) that relaxes the time-invariance constraint. Mamba
allows the system parameters, specifically B, C, A, to vary
based on the input, thereby enhancing the model’s flexibil-
ity in capturing complex interactions within long sequences.
Mamba also employs a new parallel scanning algorithm,
enabling efficient training and inference on GPUs.

3.2. Big Picture

In this section, we present an overview of the proposed
Samba model for general SOD tasks, as shown in Fig. 2.
The “Input” encompasses various SOD tasks that Samba can
adapt to, with the “...” indicating other potential tasks not
explicitly listed, such as RGB-T SOD. The “Encoder” em-
ploys a Siamese backbone that contains four visual state
space (VSS) layers [43], to extract multi-level features from
the inputs. The “Convertor” integrates information from
different modalities through a multi-modal fusion Mamba
(MFM). For the “Decoder”, we mainly propose a novel
saliency-guided Mamba block (SGMB) and a context-aware
upsampling (CAU) method. SGMB employs a novel scan-
ning strategy to maintain spatial continuity of salient patches,
thereby enhancing feature representation. CAU is designed
to facilitate the alignment and aggregations of hierarchical
features by modeling contextual dependencies. In the subse-
quent sections, we will provide detailed descriptions of the
“Encoder”, “Convertor”, and “Decoder”.

3.3. Encoder

To address general SOD tasks, we implement a Siamese
encoder based on VSS layers. The encoder begins by parti-
tioning the input images into patches. Then four VSS layers,
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Figure 3. Diagram of the visual state space (VSS) block and selec-
tive scan (SS2D) module.

each containing multiple VSS blocks and a downsampling
operation, are cascaded to extract multi-level features f;”,
where m € [r,d, f,t] represent RGB, depth, optical flow and
thermal modalities, respectively, and ¢ € [1, 2, 3, 4] denotes
the layer index. Fig. 3 provides a detailed illustration of the
VSS block and its core selective scan (SS2D) module.
VSS. The input first undergoes a layer normalization (LN),
after which it is split into two information flows. The first
flow is processed by a sequence of operations: a linear pro-
jection (Linear), a reshape operation (Reshape), a depth-wise
convolution (DWConv) and a SiLLU activation function [7].
Next, an SS2D module is applied to model global depen-
dencies, followed by another LN layer. The second flow, by
contrast, only passes through a Linear and a SiL.U activation
function. After that, the two flows are multiplied and pro-
cessed by a Linear layer for an output. Finally, the original
input is added to the output via a residual connection.
SS2D. The input 2D feature is first flattened into four 1D
sequences by scanning along four distinct directions. Then
the four sequences are processed by S6 blocks [16] to cap-
ture long-range dependencies. Lastly, the sequences are re-
ordered into the same direction, and then summed to merge
information.

3.4. Convertor

To facilitate flexible extension from single-modal SOD
(RGB SOD) to dual-modal (RGB-D/T SOD, VSOD) and
tri-modal SOD (RGB-D VSOD), we design a multi-modal
fusion Mamba (MFM) as the convertor and insert it between
the encoder and decoder. When handling the RGB SOD task,
the convertor remains empty, and f] is directly fed to the de-
coder. Within the dual-modal convertor, f] € RHaxWaxCa
and f§ € RHaXWaxCi where x € [d, f,t], are first pro-
cessed by a Linear and a DWConv, respectively. The outputs
are then flattened into RE*4 where L = H, x Wy, and
concatenated along the L dimension. To explore the interac-
tion of multi-modal information, we utilize an S6 block to
process the concatenated sequence. Finally, the sequence is
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Figure 4. Diagram of the saliency guided Mamba block (SGMB).

split into two outputs, which are summed and processed by
a Linear projection. This process can be formulated as:

fi = DWConv (Linear (f1)),
fi = DWConv (Linear (f})),

fr. f2 = Split (S6 (Cat (f7, 7)), “)
f1a = Linear (ﬁ + fj) .

Building upon the dual-modal convertor, we can seamlessly
extend it to a tri-modal convertor.

3.5. Decoder

As discussed in Sec. 1, two crucial issues remain in designing
Mamba-based SOD decoders. To address them, we propose a
novel saliency-guided Mamba block (SGMB) and a context-
aware upsampling (CAU) method.

3.5.1. Saliency-guided Mamba Block

As shown in Fig. 2, the extracted RGB features f;, where

€ [1,2, 3], and a coarse saliency map S, predicted from
f1 are fed to SGMB, aiming to enhance the RGB features.
As emphasized in Sec. |, maintaining spatial continuity of
salient patches within 1D sequences is crucial for accurate
prediction by SSM. To this end, we design a spatial neigh-
boring scanning (SNS) algorithm that flattens 2D feature
maps into 1D sequences while preserving spatial continuity
of salient patches, as illustrated in Fig. 4. Specifically, we
transfer maintaining spatial continuity of salient patches to a
shortest path traversal problem of salient patches. In other
words, during scanning, the next salient patch to be scanned
should be spatially close to the current salient patch. In order
to reduce computational complexity and keep the traver-
sal path as short as possible, SNS scans each salient patch
through an approximate shortest path. The core process of
SNS is detailed in Algorithm 1.

The input is S., where each salient patch is assigned an
index representing its position in the map. The output is a
list I that stores the indexes of all salient patches, reflecting
the scanning path of salient regions. Starting from the first



Algorithm 1 Core process of SNS

Input: 2D coarse saliency map S, with shape = (h, w)
Output: 1D array I that stores the indexes of all salient patches

1: Initialize the current scanning row of S, as the first row (cur =

1), the scanning direction of cur from left to right (dir = [ —
r) and 1D array I, as empty (I, = @).
2: while cur <= h do
3:  Scan the salient patches in the current row according to the
direction dir, and append their indexes to I.

4:  Calculate the distances between the last salient patch in I
and both the leftmost (dist;cf+) and rightmost (dist,ignt)
salient patches in the next row.
if distiepr <= dist,ign: then

Set the scanning direction from left to right (I — 7).
else
Set the scanning direction from right to left (r — [).
end if
10:  Jump to the next row(cur = cur + 1).
11: end while
Return: 7,

0 W

Figure 5. Scanning paths of salient regions generated
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row, SNS scans all salient patches row by row. Since salient
patches within the same row are almost continuous, we can
approximate that two adjacent patches within the same row
are the closest to each other. Thus, we can scan the salient
patches within each row either from left to right or right to
left. After scanning the current row, the algorithm moves to
the next row. To maintain spatial continuity and minimize
computation time, we compare the distance between the last
salient patch in the current row and both the leftmost and
rightmost salient patches in the next row. The patch with
the smaller distance is selected as the starting patch in the
next row. These steps are repeated until all rows have been
scanned, and the final I, is generated. Once I, is obtained,
we store the indexes of all non-salient patches sequentially
in a list 1,5, and then concatenate it to I, generating a
complete scanning path for 2D feature maps. To enhance
the robustness of SNS, we generate three variants of the
scanning path by altering the directions: 1) concatenate I to
I,s; 2) reverse I, I, and concatenate I, to I,; 3) reverse
I, I,s and concatenate I to I,,s. These scanning paths are
then applied to the RGB features, flattening them into 1D
sequences. The remaining steps of SGMB are similar to
those in the VSS block. Finally, the input RGB features f
are enhanced into high-quality features f7".

Discussions of SNS. (1) Compared to the “S” pattern in
Fig. 1, our SNS requires extra computation to determine the

scanning direction for each row to preserve spatial continuity.

However, in certain cases, SNS could generate the similar
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Figure 6. Diagram of the context-aware upsampling (CAU) method.

scanning paths of salient regions as the “S” pattern. Thus, to
confirm the necessity of SNS, we count the number of images
where scanning paths of salient regions are different from the
“S” pattern, and its proportion across all images is found to be
~31%. Besides, some visual examples are provided in Fig.
5. (2) Notably, from another perspective, the proposed SNS
can be deemed as a novel approach to inject information of
a prior map into the processed features, by changing patch
orders according to the map. Such an approach could provide
insights for future designs of Mamba-based infrastructures.

3.5.2. Context-aware Upsampling Method

Previous upsampling methods lack learnability and fail to
model the contextual dependencies between hierarchical
features, leading to misalignment during feature fusion. To
tackle this, we propose a learnable context-aware upsampling
(CAU) method, and integrate it into the decoder.

Fig. 6 shows the diagram of CAU. Firstly, two input
features f;11 € RTW*C and ' € RY¥W*C/2) where
1 € [1,2, 3], are processed by a Linear, a Reshape and a DW-
Conv, yielding fiy1 € REXWXC and fr7 ¢ R2IX2WXC,
To align fi+1 with f[ " after upsampling, we propose lever-
aging the patch information of f[ " to guide the upsampling
process. Due to the neighborhood correlation of patches
between hierarchical features, each patch in fi+1 can be as-
sociated with four most relevant patches within ff ’. Based
on this, we can model the contextual dependencies between
fit1 and fI'. Specifically, we first group the patches of f!’
using 2 x 2 windows. Then, we sample the patches from
fi+1 one by one, and sequentially pair them with the patch
groups of f[’ . Next, we concatenate the paired subsequences
into a long sequence, and input it to an S6 block. By ex-
ploiting the causal prediction capabilities of the S6 block,
each patch from fi+1 can progressively simulates the feature
distribution of its corresponding patch group from f{" . To
enhance this simulation process, we alter the connection
order of the paired subsequences to generate a new long
sequence, and input it to the other S6 block. Afterward, we
sample the patches belonging to fi+1 from the processed
long sequences, and restore them to the same order, yielding
two features shaped as R > Then they are merged and
processed by a Linear layer to generate a new feature shaped
as REW*2C To reorganize its feature distribution, we use a
rearrange function to expand its length fourfold and reduce
its channels to a quarter of the original, obtaining an upsam-



Table 1. Quantitative comparison of our Samba against other SOTA RGB SOD methods on five benchmark datasets.

is not available. “1” denotes that the larger value is better. The best two results are stressed in red and blue.

@

indicates the result

Method ‘ Params | MACs DUTS [71] DUT-O [77] HKU-IS [34] PASCAL-S [38] ECSSD [75]
™) G) [Smt Fmt Emt|Smt Fnt Emt|Sm?t Fm? En 1| Sm?l Fml Em 1 |[Sm T Fm 1 Em T
CNN-based
GateNet-R [86] [ 128.63 [162.22[0.891 0.874 0.93210.840 0.782 0.878 [ 0.921 0.926 0.959 [0.863 0.836 0.886 [0.924 0.935 0.955
CSF-R2 [15] 36.53 | 18.96 | 0.890 0.869 0.929 | 0.838 0.775 0.869 - - - 0.863 0.839 0.885 |0.931 0.942 0.960
EDN [73] 42.85 | 20.41 | 0.892 0.893 0.933 | 0.849 0.821 0.884 [ 0.924 0.940 0.963 | 0.864 0.879 0.907 | 0.927 0.950 0.957
ICON-R [93] 33.09 | 2091 | 0.890 0.876 0.931 | 0.845 0.799 0.884 | 0.920 0.931 0.960 | 0.862 0.844 0.888 | 0.928 0.943 0.960
MENet [72] 27.83 | 94.62 | 0.905 0.895 0.943 | 0.850 0.792 0.879 | 0.927 0.939 0.965 | 0.871 0.848 0.892 | 0.927 0.938 0.956
Transformer-based

EBM [79] 118.96 | 53.38 [ 0.909 0.900 0.949 | 0.858 0.817 0.900 [ 0.930 0.943 0.971 [ 0.877 0.856 0.899 | 0.941 0.954 0.972
ICON-S [93] 94.30 | 52.59 | 0917 0911 0.960 | 0.869 0.830 0.906 | 0.936 0.947 0.974 | 0.885 0.860 0.903 | 0.941 0.954 0.971
BBREF [48] 74.40 | 48.60 | 0.908 0.905 0.951 | 0.855 0.820 0.898 | 0.935 0.946 0.936 | 0.871 0.884 0.925 |0.939 0.957 0.972
VST-S ++ [40] | 74.90 | 32.73 | 0.909 0.897 0.947 | 0.859 0.813 0.890 | 0.932 0.941 0.969 | 0.880 0.859 0.901 | 0.939 0.951 0.969
VSCode-S [47] | 74.72 | 93.76 | 0.926 0.922 0.960 | 0.877 0.840 0.912 | 0.940 0.951 0.974 | 0.887 0.864 0.904 | 0.949 0.959 0.974
Samba 49.59 | 46.68 | 0.932 0.930 0.966 [ 0.889 0.859 0.922 [ 0.945 0.956 0.978 [ 0.892 0.896 0.931 [ 0.953 0.965 0.978

Table 2. Quantitative comparison of our Samba against other SOTA RGB-D SOD methods on five benchmark datasets.

Method Params | MACs NJUD [30] NLPR [56] SIP [9] STERE [54] DUTLEF-D [58]

™M) Q) [Smt Fmt Em1|Smt Fnt Ent|[Smt Fnl Em 1| Sm?l Fm 1 Em 1 |[Sm T Fmt Em T
CNN-based

BBSNet [11] 49.77 | 31.20 [ 0.921 0.919 0.949 [ 0.931 0.918 0.961 [ 0.879 0.884 0.922 [ 0.908 0.903 0.942 [ 0.882 0.870 0.912
JL-DCF [12] 143.52 | 211.06 | 0.877 0.892 0.941 | 0.931 0.918 0.965 | 0.885 0.894 0.931 | 0.900 0.895 0.942 | 0.894 0.891 0.927
SP-Net [88] 67.88 | 175.29]0.925 0.928 0.957 | 0.927 0.919 0.962 | 0.894 0.904 0.933 | 0.907 0.906 0.949 | 0.895 0.899 0.933
DCF [27] 53.92 | 108.60 | 0.904 0.905 0.943 | 0.922 0.910 0.957 | 0.874 0.886 0.922|0.906 0.904 0.948 | 0.925 0.930 0.956

SPSN [32] - - 0.918 0.921 0.952 [0.923 0.912 0.960 | 0.892 0.900 0.936 | 0.907 0.902 0.945 - - -

Transformer-based

SwinNet-B [45] | 199.18 | 122.20 [ 0.920 0.924 0.956 [ 0.941 0.936 0.974 | 0911 0.927 0.950 [ 0.919 0.918 0.956 | 0.918 0.920 0.949
CATNet [63] 262.73 | 172.06 | 0.932 0.937 0.960 | 0.938 0.934 0.971 | 0.910 0.928 0.951 | 0.920 0.922 0.958 | 0.952 0.958 0.975
VST-S ++ [40] | 143.15 | 45.41 | 0.928 0.928 0.957 | 0.935 0.925 0.964 | 0.904 0.918 0.946 | 0.921 0.916 0.954 | 0.945 0.950 0.969
CPNet [23] 216.50 | 129.34 1 0.935 0.941 0.963 | 0.940 0.936 0.971 | 0.907 0.927 0.946 | 0.920 0.922 0.960 | 0.951 0.959 0.974
VSCode-S [47] | 74.72 | 93.76 | 0.944 0.949 0.970 | 0.941 0.932 0.968 | 0.924 0.942 0.958 | 0.931 0.928 0.958 | 0.960 0.967 0.980
Samba 5494 | 71.64 | 0.949 0.956 0.975[0.947 0.941 0.976 [ 0.931 0.949 0.966 | 0.935 0.933 0.963 [ 0.956 0.964 0.976

pled feature shaped as R*#" *C/2_ Finally, the original f!’
is added to the upsampled feature for feature aggregation.

3.5.3. VSS Decoder Layers

We implement VSS decoder layers based on VSS blocks,
aiming to decode the aggregated features from CAU. To
explore inter-channel dependencies, we introduce a channel
attention mechanism (CAM) [22] following SS2D, forming
our VSS decoder layers. The process of these layers mainly
follows a LN — Linear — DWConv — SS2D —
CAM — LN — Linear flow with a residual connection.

4. Experiments
4.1. Datasets and Metrics

For RGB SOD, we evaluate Samba on five commonly used
benchmark datasets, i.e., DUTS [71], DUT-O [77], HKU-IS
[34], PASCAL-S [38] and ECSSD [75]. As for RGB-D
SOD, we use five benchmark datasets, including NJUD [30],
NLPR [56], SIP [9], STERE [54] and DUTLF-D [58]. Re-
garding RGB-T SOD, we employ three benchmark datasets:
VT821 [69], VT1000 [67] and VT5000 [66]. For VSOD,
we utilize five widely used benchmark datasets: DAVIS [57],
DAVSOD-easy [10], FBMS [55], SegV2 [33] and VOS [37].
In terms of RGB-D VSOD, three public datasets are con-
sidered, including RDVS [53], DVisal [36] and ViDSOD
[39]. We adopt three saliency metrics to evaluate model
performance, i.e., structure-measure (.5,,,) [8], maximum F-
measure (F},,) [1] and maximum enhanced-alignment mea-

sure (E,,) [5]. To assess model computational complexity
and model size, we also report the multiply accumulate op-
erations (MACs) and the number of parameters (Params).

4.2. Implementation Details

Our Samba is implemented in PyTorch trained on an
NVIDIA 4090 GPU. Following previous works, we have
arranged the training sets for each task as follows: the train-
ing set of DUTS for RGB SOD, the training sets of NJUD,
NLPR and DUTLF-D for RGB-D SOD, the training set
of VT5000 for RGB-T SOD, the training sets of DAVIS
and DAVSOD for VSOD. Due to the lack of a benchmark
training set for RGB-D VSOD, we train and test Samba on
RDVS, DVisal and ViDSOD separately. In the training pro-
cess, we adopt AdamW optimizer with an initial learning
rate of le — 4 and the batch size of 2. All input images are
uniformly resized to 448 x 448 for training and testing, and
are also augmented using various strategies like random flip-
ping, random cropping and random rotating during training.
The model converges after 30 training epochs.

4.3. Comparison with State-of-the-Art Methods

Quantitative Evaluation. Since our Samba is a unified
model to handle general SOD tasks, we present comparative
experiments of Samba against existing SOTA methods across
five SOD tasks, including 10 models for RGB SOD, 10 mod-
els for RGB-D SOD, 10 models for VSOD, 10 models for
RGB-T SOD, 3 models for RGB-D VSOD, as shown in Ta-
ble 1, 2, 3, 4 and 5. The comprehensive results illustrate that



Table 3. Quantitative comparison of our Samba against other SOTA VSOD methods on five benchmark datasets.

Method Params | MACs DAVIS [57] DAVSOD-easy [10] FBMS [55] SegV2 [33] VOS [37]
M) G) [Sm T Fmt Em1|SmT Fnl Enl|Smt Fnl En1|Sm?l Fnl Em 1 |Sm T Fm 1 Em 1
CNN-based
MGAN [35] 91.51 [123.57|0.913 0.894 0.965[0.740 0.611 0.778 [ 0.909 0.903 0.946 [ 0.902 0.869 0.950 | 0.797 0.725 0.829
PCSA [19] - - 0.900 0.877 0.960 | 0.725 0.590 0.759 | 0.872 0.844 0.917 | 0.886 0.848 0.938 | 0.802 0.699 0.816
FSNet [26] 83.41 | 3532 1 0.922 0.909 0.972 | 0.760 0.637 0.796 | 0.875 0.867 0.918 | 0.849 0.773 0.920 | 0.678 0.621 0.755
DCFNet [80] 69.56 | 93.27 | 0.914 0.899 0.970 | 0.729 0.612 0.781 | 0.883 0.853 0.910 | 0.903 0.870 0.953 | 0.838 0.773 0.861
UGPL [59] - - 0.911 0.895 0.968 | 0.732 0.602 0.771 | 0.897 0.884 0.939 | 0.867 0.828 0.938 | 0.751 0.685 0.811
MMNet [85] 50.81 | 82.63 | 0.911 0.895 0.968 | 0.732 0.602 0.771 | 0.897 0.884 0.939 | 0.867 0.828 0.938 | 0.751 0.685 0.811
Transformer-based

MGTNet [52] 150.91 [265.21]10.925 0.919 0.976 [0.765 0.653 0.800 [ 0.900 0.881 0.929 [0.903 0.861 0.946 [ 0.814 0.727 0.819
UFO [21] 55.92 |248.80|0.918 0.906 0.978 | 0.747 0.626 0.799 | 0.858 0.868 0.911 | 0.888 0.850 0.951 - - -
CoSTFormer [41] - - 0.923 0.906 0.978 [0.779 0.667 0.819 | 0.869 0.861 0.913 | 0.874 0.813 0.943 | 0.791 0.708 0.811
VSCode-S [47] 7472 | 93.76 | 0.936 0.922 0.973 | 0.800 0.710 0.835 | 0.905 0.902 0.939 | 0.946 0.937 0.984 - - -
Samba 5494 | 71.64 [ 0.943 0.936 0.985 [ 0.813 0.734 0.856 | 0.925 0.922 0.954 | 0.943 0.938 0.987 | 0.870 0.820 0.898

Table 4. Quantitative comparison of our Samba against other SOTA RGB-T SOD methods on three benchmark datasets.

Method CNN—ba_sed ] Transfozmer—based
MIDD [65] ECFFNet [89] CGFNet [70] CSRNet [25] MGAI [62] TNet [4] CGMDR [2] SPNet [82]|SwinNet-B [45] VSCode-S [47]|Samba
Params (M)| 52.43 - 69.92 1.01 87.09 87.04 - 104.03 199.18 74.72 54.94
MACs (G)| 217.13 - 382.63 5.76 78.37 54.90 - 67.59 122.20 93.76 71.64
Sm T 0.871 0.877 0.881 0.885 0.891 0.899 0.894 0.913 0.904 0.926 0.934
V1821 Fp, 1| 0.847 0.835 0.866 0.855 0.870 0.885 0.872 0.900 0.877 0.910 0.927
[69] En 1| 0916 0911 0.920 0.920 0.933 0.936 0.932 0.949 0.937 0.954 0.965
Sm 1| 0916 0.924 0.923 0.919 0.929 0.929 0.931 0.941 0.938 0.952 0.953
VT1000 Fyp, 1| 0.904 0.919 0.923 0.901 0.921 0.921 0.927 0.943 0.933 0.947 0.956
[67] En T 0956 0.959 0.959 0.952 0.965 0.965 0.966 0.975 0.974 0.981 0.983
Sm T| 0.868 0.876 0.883 0.868 0.884 0.895 0.896 0.914 0.912 0.925 0.928
VT5000 Fp, 1| 0.834 0.850 0.852 0.821 0.846 0.864 0.877 0.905 0.885 0.900 0919
[66] En 1| 0919 0.922 0.926 0.912 0.930 0.936 0.939 0.954 0.944 0.959 0.963

Table 5. Quantitative comparison of our Samba against other SOTA
RGB-D VSOD methods on three public datasets.

CNN-based
Method | 5TRG 537 DVSOD [36] ATENet [39] [ Samba
Params (M) 90.69 97.34 124.07 60.28
MACs (G)|  117.94 276.46 5436 | 96.60
S T 0.860 0.639 0.741 | 0.383
RDVS Fp, 1 0.814 0.574 0.592 | 0.834
[53] Epm 1 0.914 0.733 0.785 | 0.936
S T 0.814 0.729 0.723 | 0.847
DVisal Fp, 1 0.807 0.648 0.659 | 0.825
[36] Epm 1 0.909 0.813 0.809 | 0.914
S T 0.877 0.770 0.875 | 0.023
ViDSOD Fy, 1 0.820 0.687 0.832 | 0.895
[39] Ep 1 0.901 0.846 0911 0.944

Samba outperforms existing SOTA CNN- and transformer-
based SOD models across 21 datasets, with a comparable
number of Params and relatively low MACs, demonstrat-
ing the superior performance of Samba. Specifically, for
RGB SOD, the Params and MACs of Samba are lower than
those of transformer-based methods (except VST-S++ [40]),
while Samba also achieves best results on the given datasets.
Although some CNN-based methods (ICON-R [93], EDN
[73] and CSF-R2 [15]) are more efficient than our Samba,
their performance is substantially inferior to Samba. Re-
garding RGB-D/T SOD, VSOD and RGB-D VSOD, most
methods (except BBSNet [11], VST-S++ [40], FSNet [26],
SPNet [82], TNet [4], CSRNet [25], ATFNet [39]) exhibit
higher computational complexity than Samba, regardless of
whether they are CNN- or transformer-based. Nevertheless,
Samba still outperforms these methods on the given datasets.
It should be noted that VSCode-S has received joint train-
ing data from all SOD sub-tasks, since it aims at a general
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Figure 7. Visual comparison against SOTA RGB SOD methods.

ICON-S EBM

prompt-based scheme, while Samba is only trained on indi-
vidual SOD sub-tasks separately. In this regard, VSCode-S
has been fed with more training data than Samba.
Qualitative Evaluation. To clearly demonstrate the supe-
riority of our Samba, we display visual comparison results
among the top-performing RGB SOD models in Fig. 7.
The 1% row showcases a large object with hollow parts. In
comparison to other models, Samba can accurately detect
hollow parts and produce more reliable results. In the 2%
and 3"? rows, we present two scenes with multiple salient
objects. From the comparison results, it can be observed that
Samba effectively locates all salient objects and segments
them more accurately than the other models. The last row
depicts a scene with cluttered backgrounds and object oc-
clusion, where Samba successfully detects the salient object
while other models misidentify non-salient regions.

4.4. Ablation Study

To verify the relative contribution of different components in
Samba, we conduct thorough ablation studies by removing



Table 6. Ablation study of Samba on three RGB SOD, three RGB-D SOD and one RGB-D VSOD datasets. Bolded results are the best.

Settings DUTS[71] ECSSD[75] DUT-O[77] NJUD[30] NLPR[56] DUTLE-D[58] RDVS[53]
Smt Fm T Em MSm T Fn P Em P|Sm T Fin  Em 1|Sm 1 Fm T Em 1|Sm 1 Fm T Em 1[Sm 1 Fm 1 Em 1|Sm 1t Fm 1 Em T
Ours [0.932 0.930 0.966 |0.889 0.859 0.922{0.953 0.965 0.978|0.949 0.956 0.975]0.947 0.941 0.976|0.956 0.964 0.976 |0.883 0.834 0.936
Al 10.922 0.916 0.950|0.881 0.843 0.909 |0.946 0.954 0.966[0.940 0.941 0.961]0.942 0.932 0.965|0.947 0.952 0.963|0.876 0.822 0.929
A2 10.926 0.919 0.952]0.882 0.846 0.914|0.946 0.952 0.964|0.941 0.945 0.966|0.945 0.933 0.962|0.949 0.957 0.968|0.878 0.827 0.930
A3 10.929 0.924 0.961]0.884 0.852 0.917|0.950 0.961 0.973{0.945 0.949 0.970]0.944 0.937 0.974|0.949 0.959 0.971|0.880 0.829 0.931
A4 10.928 0.927 0.963|0.886 0.853 0.917|0.947 0.960 0.971]0.943 0.948 0.965|0.943 0.938 0.972|0.947 0.956 0.972|0.879 0.831 0.932
A5 10.930 0.928 0.963]0.886 0.857 0.918|0.951 0.962 0.973]0.946 0.952 0.972]0.945 0.940 0.973]0.949 0.961 0.972|0.881 0.831 0.933
A6 ]0.928 0.926 0.963]0.886 0.856 0.918|0.948 0.960 0.971|0.947 0.954 0.973]0.945 0.940 0.972]0.952 0.962 0.975|0.880 0.830 0.933
Bl ]0.927 0.923 0.960|0.887 0.856 0.912]0.952 0.961 0.976|0.941 0.952 0.966 [0.942 0.939 0.972]0.953 0.957 0.969|0.879 0.828 0.932
B2 ]0.921 0.918 0.952]0.877 0.848 0.905|0.949 0.955 0.9700.936 0.944 0.962|0.939 0.933 0.965|0.947 0.954 0.961|0.874 0.819 0.928
B3 ]0.923 0.924 0.956|0.884 0.855 0.913]0.946 0.959 0.968|0.937 0.946 0.966|0.938 0.933 0.963 |0.950 0.955 0.966|0.878 0.826 0.933
B4 10.931 0.928 0.964|0.887 0.857 0.921]0.951 0.965 0.974|0.947 0.955 0.972(0.946 0.939 0.971]0.955 0.963 0.974|0.882 0.834 0.934
B5 ]0.929 0.926 0.964|0.888 0.854 0.920|0.950 0.964 0.9760.948 0.953 0.971|0.944 0.936 0.973]0.955 0.962 0.971|0.879 0.832 0.931
B6 |0.926 0.922 0.963|0.888 0.853 0.916|0.949 0.961 0.974|0.945 0.952 0.971(0.940 0.934 0.972{0.952 0.959 0.972]0.877 0.833 0.928
Cl ]0.932 0.930 0.966{0.889 0.859 0.922]0.953 0.965 0.9780.944 0.954 0.970(0.945 0.936 0.973]0.952 0.961 0.969|0.878 0.831 0.926
C2 ]0.929 0.926 0.965|0.886 0.857 0.918|0.951 0.962 0.973|0.946 0.953 0.973|0.944 0.938 0.972]0.953 0.963 0.972|0.881 0.833 0.932

or replacing them from Samba. As shown in Table 6, we per-
form a range of experiments on three RGB SOD (DUTS, EC-
SSD, DUT-0), three RGB-D SOD (NJUD, NLPR, DUTLF-
D) and one RGB-D VSOD datasets (RDVS).

Effectiveness of SGMB. To validate the effectiveness of
SGMB, we first delete the SGMB module, denoted as vari-
ant “A1” in Table 6, and then utilize an SS2D module to
replace the SG-SS2D module of SGMB, denoted as variant
“A2”. From the comparison results, it is evident that our
model performs better than “A1” and “A2”, which indicates
the significant contribution of SGMB in boosting detection
performance. Since the core idea of SGMB lies in the SN'S
algorithm, which is used to maintain spatial continuity of
salient patches. To evaluate its contribution, we apply three
other scanning manners to salient regions, i.e., Fig. 1 (a), (b)
and (c), which fail to preserve spatial continuity of salient
patches. We denote these evaluations as “A3”, “A4” and
“AS5”. Compared to these variants, our model consistently
outperforms them on the evaluated datasets, highlighting
the importance of preserving spatial continuity of salient
patches. In the SNS algorithm, we generate three variants of
the scanning path by changing the directions to enhance the
robustness of SNS. To validate the contribution of the three
paths, we create three copies of the initial scanning path
to replace them, denoted as “A6”. The comparison results
between “Ours” and “A6” demonstrate the effectiveness of
using multiple paths with varying directions.

Effectiveness of CAU. The proposed CAU module achieves
learnable upsampling by modeling contextual dependencies
between hierarchical features, which facilitates the alignment
and aggregations of these features. To evaluate its effective-
ness, we compare it with three other upsampling methods.
Firstly, we utilize nearest-neighbor interpolation to replace
the upsampling operation in the CAU module, denoted as
variant “B1”. Besides, we investigate two other learnable
upsampling methods: DUpsampling [64] and DySample
[42], and apply them separately for feature upsampling, de-
noted as “B2” and “B3”. Comparing “B1”, “B2” and “B3”
with our full model, it is clear that CAU outperforms all

alternative upsampling methods. In the CAU module, we
introduce a novel patch pairing and ordering scheme, which
plays a central role in the upsampling process. To validate
the effectiveness of this design, we shift the original pairing
sequences by one patch, three patches, and five patches, re-
sulting in variants “B4”, “B5” and “B6”. The performance of
these variants shows a clear degradation with the increased
shifting of the original pairing order, indicating the effective-
ness of the proposed patch pairing and ordering scheme.

Effectiveness of MFM. In order to validate the proposed
MFM module, we replace it with a simple concatenation
followed by a convolution, denoted as variant “C1”. Be-
sides, we re-implement the convertor using the RFM module
proposed in [53], denoted as variant “C2”. The compari-
son results clearly demonstrate the superiority of MFM in
facilitating the interaction of multi-modal information.

5. Conclusion

In this paper, we are the first to adapt state space models to
SOD tasks, proposing a new unified framework based on the
pure Mamba architecture, named saliency Mamba (Samba),
which can flexibly handle general SOD tasks. We iden-
tify spatial continuity of salient patches within scanning se-
quences, and propose a novel saliency-guided Mamba block
(SGMB). Central to SGMB is a spatial neighboring scan-
ning (SNS) algorithm, which dynamically adjusts scanning
directions to maintain spatial continuity of salient patches.
Furthermore, we propose a context-aware upsampling (CAU)
to promote hierarchical feature alignment and aggregations
by modeling contextual dependencies. Extensive experimen-
tal results demonstrate that our Samba outperforms existing
SOTA CNN- and transformer-based models across five SOD
tasks on 21 datasets, with lower computational cost.
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