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Abstract—Point clouds often suffer from geometric and color
noise, as well as compression artifacts, during their produc-
tion, storage, and transmission. Therefore, accurately and au-
tomatically evaluating the quality of point clouds is crucial
for optimizing storage and compression strategies. This paper
introduces the VIP-PCQA, a novel framework that combines
Video, Image, and Point cloud modalities for no-reference Point
Cloud Quality Assessment. The framework begins by rendering
projection videos and normal images from point clouds, followed
by sampling patches and computing statistical features related
to color and geometry. Subsequently, a video encoder, two image
encoders, and a point cloud encoder are employed to extract
modality-specific features. Finally, these features are fused to
regress the quality score. Experimental results on three publicly
available benchmark databases demonstrate that VIP-PCQA
achieves outstanding performance with excellent generalization
capabilities. An ablation study further highlights the indispens-
able contribution of each modality to the framework’s success.
The code is released on https://github.com/ZedFu/VIP-PCQA.

Index Terms—3D model, multi-modal, point cloud, quality
assessment

I. INTRODUCTION

Point clouds, as a fundamental 3D representation, are widely
applicable in various domains, including virtual/augmented
reality, automatic driving, and facial expression modeling [1].
However, representing 3D models accurately often requires
large numbers of points, leading to high memory consumption.
Consequently, storing and transmitting point clouds neces-
sitates compression, which can degrade their visual quality.
Point Cloud Quality Assessment (PCQA) aims to predict
the quality of point clouds, a task closely tied to human
visual system (HVS). This makes PCQA as a crucial com-
ponent for enhancing compression strategies and improving
the visual fidelity of point cloud data. According to the
reliance on reference point clouds, PCQA methods can be
divided into Full-Reference (FR), Reduced-Reference (RR),
and No-Reference (NR) methods. In practical scenarios, such
as 3D reconstruction, the availability of the pristine reference
point cloud is often limited, making NR-PCQA methods
more broadly applicable. Depending on the domain in which
the PCQA metric is computed, PCQA methods can also
be divided into model-based and projection-based categories.
Model-based PCQA methods directly utilize the geometric and
color attributes of distorted point clouds to predict quality
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Fig. 1. The different modalities have different sensitivities to different
degradation, this is why we choose these modality to extract quality aware
features. Red indicates that this modality is more sensitive to the degradation,
while blue indicates that it is less sensitive.
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scores, making them more sensitive to down sampling and
geometric Gaussian noise. In contrast, projection-based PCQA
methods use projection video/image of distorted point clouds
to quantify quality, making them more sensitive to color
noise and video-based point cloud compression (V-PCC).
MM-PCQA [2] represents the first attempt to integrate point-
based and projection-based methods, achieving notable perfor-
mance. However, this approach relies on separate and static
projections, which is inconsistent with how people actually
view point clouds [3]. Additionally, methods such as [4], [5]
leverage normal or depth images to capture local geometric
information, significantly enhancing performance.

Therefore, we propose a novel multi-modal framework for
NR-PCQA, named VIP-PCQA, which extracts the perception
quality features from the video modality, the image modality,
and the point cloud modality. Fig 1 illustrates the different
sensitivities of each modality to various degradation. The video
modality is more sensitive to color noise, while the structural
damage and geometry down sampling are more obvious in
the point cloud modality. The geometric compression and
color quantization are more noticeable in the normal image
modality. Consequently, the proposed multi-modal framework
compensates for the limitations of each modality by leveraging
their unique strengths.

For the video modality, we first rotate the camera around
the point cloud along two orthogonal circular pathways to
capture two projection videos, ensuring coverage of quality-



aware content. Next, following strategies commonly used in
Video Quality Assessment (VQA) methods [6]-[9], we extract
spatial and temporal features from selected key frames and
video clips using the Swin Transformer [10] and SlowFast
R50 [11]. For the image modality, we render normal images
from six perpendicular projections in a cube of the point cloud
and utilize the Swin Transformer to extract relevant features.
For the point cloud modality, we extract 3D Natural Scene
Statistics (3DNSS) from the distorted point cloud as described
in [12], and sample patches containing local patterns such as
smoothness and roughness. Local features are then extracted
from these patches using PointNet++ [13]. Finally, we employ
the simple fully connected layers to regress the concatenated
quality features into final quality scores. Extensive experimen-
tal results demonstrate that the proposed method outperforms
existing NR-3DQA methods on three PCQA benchmark.

II. RELATED WORK
A. Model-based PCQA

Model-based PCQA directly use the attributes of point
clouds, such as geometry and color, to predict quality scores.
Early methods [4], [14]-[17] calculate and analysis the simi-
larity of various aspect between reference and distorted point
cloud to predict quality of distorted ones. Afterwards, 3D-
NSS [12] utilizes some classic Natural Scene Statistics (NSS)
distributions to quantify the quality of distortion point clouds.
ResSCNN [18] employs an end-to-end convolutional neural
network (CNN) to extract quality features and predict quality
score of distortion point clouds. Model-based methods are
relatively insensitive to the distortion likes Video-based Point
Cloud Compression and color noise, so many works are now
turning to projection-based PCQA.

B. Projection-based PCQA

The early projection-based FR-PCQA methods calculate the
quality scores by projections rendered from distorted point
clouds. These work [5], [19] employ conventional Image
Quality Assessment (IQA) metrics to these projections and
depth images on six perpendicular projections for quality eval-
vation. The development of deep learning networks has further
enhanced the performance of projection-based methods. VQA-
PC [3] deal with PCQA as the VQA problem by evaluating
point cloud from moving camera videos. Yang et al. [20]
introduces domain adaptation to use natural images to help
model understand the quality of point cloud rendering im-
ages. GMS-3DQA [21] propose a multi-projection grid mini-
patch sampling strategy to improve the efficiency of PCQA.
Recently, LMM-PCQA [22] introduces Large Multi-modality
Models (LMM) to evaluate the quality of point clouds through
their projections, achieving outstanding performance.

III. PROPOSED METHOD

The framework overview is clearly exhibited in Fig 2.
The distorted point clouds are converted to projection videos,
normal images, patches, and 3DNSS features through prepro-
cessing. Afterwards, these data are fed to different modules

to extract corresponding features. Finally, the features are
concatenated and mapped to the quality scores via the quality
regression.

A. Data preprocessing

Suppose we have a distorted point cloud P =
{g(i), (i)}, where g(i) € RY™™? and c(i) € R'*3 indi-
cate the geometry coordinate and corresponding RGB color
information respectively. K stands for the number of points.
In order to get projection videos, we use camera in 2 orthog-
onal circular pathways to render projection videos, these two
pathways can be represented as:

2,2 _ p2
eA:{I + 2z = R~

242 = R2,
=0 eB:{x ! (1)
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where z,y, and z indicate the coordinate in the Cartesian
coordinate system with O = & Zle g(k) as the center, R is
the radius of the circular pathways. With the help of Open3d
[23], we can render corresponding video sequence V. :

Ve = \IJC(P)7 € (A7B)a 2

where W  represents the video capture operation in the corre-
sponding pathway. For the image modality, we define 6 per-
pendicular viewpoints of the given point cloud, corresponding
to the 6 surfaces of a cube:

I=14(P), 3)

where I = {I;]i = 1,...,6} is the set of 6 normal projections
and v (+) indicates the normal projections capture process. For
the point cloud modality, we can get 3DNSS features following
[12]:

F,s = 3DNSS(P), 4)

where 3DNSS(+) and F,,; are the extract operation and features
of 3DNSS respectively. Additionally, we can get the geometry
normalized point cloud P = {g(k)}/, and then we utilize
the farthest point sampling to sample K, anchor points. We
then employ K nearest neighbor (KNN) algorithm to find K,

neighboring points around each anchor points:
S ={S; =KNN(g(i))li=1..., K.}, 5)

where S is the set of patches and KNN(+) indicates the KNN
operation.

B. Video modality features extraction

Following previous VQA methods [6], [7], [24], [25], we
extract the quality-aware features of the projection videos from
the spatial and temporal domains. In the spatial domain, we
employ a image encoder E,5(-) to extract spatial features F,
from the key frames sampled from projection videos:

Ff;; == Evs(’%g'% (6)

where &}, is the i-th key frame from projection video V,< €
(A, B), whose number of frames and frame rate are [ and
respectively. we can split the projection video into clips C =
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Fig. 2. The data preprocessing and framework of our proposed method. We obtain the data in video, image, and point cloud modality from point clouds in
data preprocessing and our method extract features from these data to predict the quality score.

{Cili = 1,...,K; = l/r} and the key frame are the first
frame in each clip.

In the temporal domain, we use a pretrained 3D-CNN
model to extract temporal features from the downsampled low
resolution projection videos, this is because pretrained 3D-
CNN model is able to capture the effect of content changes
and extract the motion information that is highly correlated
with the HVS [7] and the temporal features are not sensitive
to the resolution. the temporal features F),; can be derived as:

Fji = Eu(C5), )

where C7 is the i-th clips from projection video V.,¢ €
(A, B), E,; indicates the pretrained 3D-CNN model. Finally,
we fusion the spatial features and temporal features to get the
video modality features F,:

1

FkB
2 % Kk

F, = vt (8

Ky
Y P eFr+FiPe
k=1
where @ indicates the concatenation operation.

C. Image modality features extraction

We employ a image encoder E;(-) to extract quality-aware
features from normal projections set I :

€))

where F; represents the image modality features, which is
more sensitive to point cloud compression and local geometry
distortion.

D. Point modality features extraction

For the set of patches obtained in preprocessing, we employ
a point cloud encoder E,(-) to convert the patches to quality
aware embedding space:

Kq
Fy = Kia > E,(Sk), (10)
k=1
where F),; is the average of the quality aware features of
obtained patches and is capable to express the local geometry
of point clouds. Finally we concatenate the 3DNSS features
and local geometry features to get point modality features F,:

F,=F, & Fp,. (11)

E. Quality Regression & Loss Function

We simply use several fully connected layers FC to
regress the concatenated perceptual quality features into qual-
ity scores:

¢q=FC(F, & F; & F)), (12)

following previous works [2], [6], we use the Mean Squared
Error (MSE) loss and rank loss to compose our loss, which
is because the quality assessment task emphasizes not only
the accuracy of the predicted quality values but also the



importance of preserving quality rankings. The MSE loss is
aim to ensure the predicted values closely align with the
quality labels, which is defined as:

1
Lmse = X7 n / Qa 13

N ;(q qn) (13)
where ¢,, and q;L are predicted and labeled quality scores re-
spectively, and N indicates the size of the mini-batch. The rank
loss helps the model differentiate the relative quality of point
clouds, making it particularly effective for evaluating point
clouds with similar quality levels. We use the differentiable
rank function proposed in [6] to calculate rank loss:

L:“jank = mam((), |q1 - qJ| - e(qiv qj) : (qz - qj))7 (14)
o1 4i=g
e(qz,qj)—{_1 G < 0, (15)

where ¢ and j are the indexes of two point clouds in the mini-
batch and the rank loss can be derived as:

AL
Lyank = m Z Z L;L"jank

i=1 j=1

(16)

The final loss function can be calculated as the weight sum of
MSE loss and rank loss:

Loss = )\1Lmse + >\2Lrank7 (17)

where \; and )\, are hyperparameters to control the proportion
of above losses.

IV. EXPERIMENT
A. Experiment Protocol

1) Databases: We test the performance of proposed VIP-
PCQA on three commonly used databases: SITU-PCQA [5],
WPC [26], and WPC2.0 [27]. The SJTU-PCQA database ap-
plies 7 types of distortion (color noise, compression, geometric
shift, down-sampling, and three mixed distortions) with 6
levels to 9 reference point clouds and generates 378 distorted
point clouds. The WPC database contains 20 reference point
clouds and each point cloud is degraded into 37 distorted
stimuli by 4 distortions (Gaussian white noise, down sampling,
Geometry-based Point Cloud Compression (G-PCC), and V-
PCC), a total of 740 distorted point clouds in the WPC
database. The WPC2.0 database has 16 reference point clouds,
each undergoing 25 degradation (V-PCC) settings, leading to
400 distorted point clouds.

2) Evaluation Criteria: Four common consistency evaluation
criteria are use to judge the correlation between the predicted
scores and quality annotations, including Spearman Rank
Correlation Coefficient (SRCC), Kendall’s Rank Correlation
Coefficient (KRCC), Pearson Linear Correlation Coefficient
(PLCC), and Root Mean Squared Error (RMSE). An effec-
tive model should achieve SRCC, KRCC, and PLCC values
approaching 1, while maintaining a RMSE value close to 0.
Followed by [?], [28]-[31], we adopt a four-parameter logistic
function to map the predicted scores into the subjective quality
scores before calculating the criteria.

3) Compared Methods: For the above PCQA databases, We
compare our proposed method with the following methods:

o FR quality assessment methods: MSE-p2point (MES-
p2po) [14], Hausdorff-p2point (HD-p2po) [14], MSE-
p2plane (MSE-p2pl) [4], Hausdorff-p2plane (HD-p2pl)
[4], PSNR-yuv [32], PCQM [15], GraphSIM [16], and
PointSSIM [17].

o NR quality assessment methods: BRISQUE [33], NIQE
[34], IL-NIQE [35], IT-PCQA [20], ResSCNN [18],
PQA-net [36], 3D-NSS [12], GMS-3DQA [21], MM-
PCQA [2], and LMM-PCQA [22].

It is worth noting that BRISQUE, NIQE, IL-NIQE are
image-based quality assessment method and validated on the 6
perpendicular projections and the average scores are recorded.

4) Experiment Setup: For the image encoders E,s and E;,
we both use the architecture of Swin transformer tiny [10] and
initialize it with the weights pretrained on the ImageNet-1k
[37]. The SlowFast RS0 [11] is utilized as the temporal feature
extractor E,;. Additionally, we use the point++ [13] as the
point cloud encoder E,(-). The Adam optimizer with the initial
learning rate 5e — 5 and batch size 4 are used for training the
proposed model. The learning rate decays with a multiplicative
factor of 0.9 for every 5 epochs and the number of epochs is
set at 50. Specifically, we set the number of anchor points
K, and neighboring points K,, as 6 and 2048. The normal
projection and projection videos are rendered in the resolution
of 2048 x 2048 and 512 x 512 respectively. In addition, we
remove the white background in the normal projection and key
frames and crop it in the resolution of 224 x 224 as input. The
weights Ay and A\ for L,,s. and L., are both set as 1.

Following the practices in [2], [21], [24], [38], [39], we em-
ploy the k-fold cross validation strategy in the experiments on
the above databases to accurately estimate the performance of
the proposed VIP-PCQA. The 9-fold, 5-fold, and 4-fold cross
validation is selected for SITU-PCQA, WPC, and WPC2.0
respectively. The average performance is recorded as the final
results.

B. Experimental Results

The final experimental results on the SJTU-PCQA, WPC,
and WPC2.0 databases are shown in Table I, from which we
can make several useful conclusions: 1) The proposed method
demonstrates outstanding performance on the aforementioned
databases, achieving the best results on the SJITU-PCQA and
WPC databases and ranking second on the WPC2.0 database.
2) From the SJTU-PCQA database to WPC database and
WPC2.0 database, the performance of most methods has
dropped significantly, which may be due to WPC database
and WPC 2.0 database use more complex and finer-grained
degradation to reference point clouds, which is more difficult
to PCQA task. 3) Based on the previous conclusions, we
attempt to explain why the result of our methods on the
WPC2.0 database is not as good as LMM-PCQA. Since
WPC2.0 has more finer-grained degradation and less data, it
requires higher generalization of the method. LMM-PCQA
is based on LMM, which uses the Internet-scale data for



TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES ON THE SJTU-PCQA, WPC, AND WPC2.0 DATABASES. BEST IN RED, SECOND IN

BLUE.
Type | Methods SJITU-PCQA WPC WPC2.0
ype SRCCT PLCCT KRCCT RMSE] | SRCCT PLCCT KRCCT RMSE] [SRCCT PLCCT KRCCT RMSEJ
; MSE-p2po 0.7294 0.8123 0.5617 1.3613 | 0.4558 0.4852 0.3182 19.8943 | 0.4315 0.4626 0.3082 19.1605
| HD-p2po 0.7157 0.7753 0.5447 1.4475 | 0.2786 0.3972 0.1943 20.8990 | 0.3587 0.4561 0.2641 18.8976
| MSE-p2pl 0.6277 0.5940 0.4825 2.2815 | 0.3281 0.2695 0.2249 22.8226 | 0.4136 0.4104 0.2965 21.0400
FR | HD-p2pl 0.6441 0.6874 0.4565 2.1255 | 0.2827 0.2753 0.1696 21.9893 | 0.4074 0.4402 0.3174 19.5154
| PSNR-yuv 0.7950 0.8170 0.6196 1.3151 | 0.4493 0.5304 0.3198 19.3119 | 0.3732 0.3557 0.2277 20.1465
| PCQM 0.8644 0.8853 0.7086 1.0862 | 0.7434 0.7499 0.5601 15.1639 | 0.6825 0.6923 0.4929 15.6314
| GraphSIM 0.8783 0.8449 0.6947 1.0321 | 0.5831 0.6163 0.4194 17.1939 | 0.7405 0.7512 0.5533 14.9922
I PointSSIM 0.6867 0.7136 0.4964 1.7001 | 0.4542 0.4667 0.3278 20.2733 | 0.4810 0.4705 0.2978 19.3917
"7 T TBRISQUE ~ [ 03975 ~0.4214 T02966 2:0937 | 02614 0.3155 0.2088 21.1736 | 0.0820  0.3353 ~ 0.0487 ~21.6679"
I NIQE 0.1379 02420 0.1009 2.2622 | 0.1136  0.2225 0.0953 23.1415 | 0.1865 0.2925 0.1335 22.5146
'IL-NIQE 0.0837 0.1603 0.0594 2.3378 | 0.0913 0.1422 0.0853 24.0133 | 0.0911 0.1233 0.0714 23.9987
: IT-PCQA 0.8651 0.8283 0.6430 1.1661 | 0.4870 0.4329 0.3006 19.8960 | 0.5661 0.5432 0.3477 18.7224
NR ResSCNN 0.8600 0.8100 - - - - - - 0.7500 0.7200 - -
| PQA-net 0.8372 0.8586 0.6304 1.0719 | 0.7026 0.7122 0.4939 15.0812 | 0.6191 0.6426 0.4606 16.9756
| 3D-NSS 0.7144 0.7382 0.5174 1.7686 | 0.6479 0.6514 0.4417 16.5716 | 0.5077 0.5699 0.3638 17.7219
| GMS-3DQA | 0.9108 09177 0.7735 0.7872 | 0.8308 0.8338 0.6457 12.2292| 0.8272 0.8218 0.6277 12.9904
I MM-PCQA | 09103 0.9226 0.7838 0.7716 | 0.8414 0.8556 0.6513 12.3506 | 0.8023 0.8024 0.6202 13.4289
| LMM-PCQA | 0.9376 0.9404 0.8002 0.7175 | 0.8825 0.8739 0.7064 11.8171| 0.8614 0.8634 0.6723 10.6924
I Ours 0.9459 0.9582 0.8176  0.6661 | 0.8902 0.8899 0.7160 10.2990 | 0.8565 0.8555 0.6745 10.9981
pretraining and contains several billions of parameters, so TABLE TI

it has better generalization performance. 4) The results of
BRISQUE, NIQE, and IL-NIQE are the worst, which may be
because these methods are designed for natural scene images
based on statistical regularities in natural images, which is
quite different from the geometry and color distortions in the
projection of point clouds.

C. Ablation Study

In order to investigate the contributions of different modali-
ties and validate the rationality of each modalities covered by
our approach, we undertake an ablation study and the result
are shown in Table II. From the experimental results, we can
draw the following conclusions: 1) The video modality, image
modality, and point cloud modality all contribute to the final
result, among which the video modality contributes the most,
which may be because the video modality can better reflect
various distortions in the point cloud. 2) The performance on
the WPC2.0 database and WPC database drops more than
that on the SJTU-PCQA database in the case of missing
same modality, this indicates that fusing multiple modalities
improve the model to cope with more complex and finer-
grained degradation.

D. Cross-Dataset Study

We conduct the cross-database evaluation to test the gener-
alization ability of proposed methods. Since the WPC database
has the largest number of point clouds, so we trained our
model on it and evaluated on SJTU-PCQA database and
WPC2.0 database. From the experimental results shown in
Table III, we can find that: Our proposed method has good
generalization performance and second only to LMM-PCQA,
which employs the LMM to evaluate the projections of point
clouds. This is understandable, because the LMM is pretrained
on huge scale data and has several billions of parameters.

CONTRIBUTIONS OF VIDEO MODALITY, IMAGE MODALITY, AND POINT
CLOUD MODALITY, WHERE ‘W/O VIDEO’, ‘W/O IMAGE’, AND ‘W/O POINT
CLOUD ’ INDICATES EXCLUDING THE VIDEO, IMAGE, OR POINT CLOUD
MODALITY RESPECTIVELY. BEST IN RED, SECOND IN BLUE.

Modal SITU-PCQA WPC WPC2.0
SRCCT PLCCT|SRCCT PLCCT|SRCCT PLCCT
w/o video | 0.8692 0.8874 | 0.7314 0.7445|0.7180 0.7201
wi/o point cloud| 0.8924 0.9021 | 0.7832 0.8093 | 0.7754 0.7653
w/o image | 0.9137 0.9228 | 0.8584 0.8579 | 0.8089 0.8066
complete model| 0.9459 0.9582 | 0.8902 0.8899 | 0.8565 0.8555
TABLE I

THE EXPERIMENTAL RESULTS OF CROSS-DATABASE STUDY,
‘WPC—SJTU-PCQA’ AND ‘WPC—WPC2.0’ SIGNIFIES THAT THE
MODEL IS TRAINED ON WPC DATABASE AND TESTED ON SJTU-PCQA
DATABASE AND WPC2.0 DATABASE RESPECTIVELY. ADDTIONALLY, WE
ELIMINATE THOSE POINT CLOUD GROUPS FROM THE WPC DATABASE
THAT HAVE REFERENCE COUNTERPARTS IN THE WPC2.0 TESTING SETS.
BEST IN RED, SECOND IN BLUE.

Model WPC—SITU-PCQA | WPC—WPC2.0
SRCCT  PLCCT | SRCCT PLCCT

PQAnet | 05411  0.6102 | 0.6006 0.6377
3D-NSS | 0.1817 02344 | 04933  0.5613
GMS-3DQA | 0.7421 07611 | 0.7822  0.7714
MM-PCQA | 07991 07902 | 0.7917  0.7935
LMM-PCQA | 0.8246  0.7999 | 0.8385  0.8387
Ours 0.8009  0.7916 | 0.7941  0.8081

V. CONCLUSION

In this paper, we propose the novel multi-modal learning
framework VIP-PCQA for NR-PCQA. The approach begins
by rendering projection videos, and normal images, obtaining
patches and 3DNSS features from distorted point clouds.
Features are then extracted from these data using video,
image, and point cloud encoders, which are subsequently fused
to predict the final quality score. Experimental evaluations
on three benchmark databases and comprehensive ablation
studies validate the effectiveness of the proposed approach and
underscore the potency of the proposed VIP-PCQA.
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