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Who is a Better Imitator: Subjective and Objective Quality

Assessment of Animated Humans
Yingjie Zhou, Zicheng Zhang, Jun Jia, Yanwei Jiang, Xiaohong Liu,

Xiongkuo Min, Member, IEEE, Guangtao Zhai, Fellow, IEEE

Abstract—Animated human (AH) have gained popularity due
to their vivid appearance and smooth, natural movements. Vari-
ous animation methods based on artificial intelligence (AI) have
been introduced, which are viewed as “Imitators,” offering new
solutions for designing AHs. However, the effectiveness of these
AI-generated AHs varies significantly across different categories
and within the same category, leading to visual distortions that
adversely affect the viewer’s experience. Consequently, it is
essential to evaluate the quality of AHs to provide reliable and
objective indicators for their further development and to ensure
the delivery of higher-quality AH videos to users. In this paper,
the first Animated Human Quality Assessment (AHQA) dataset
is constructed by selecting 6 advanced and popular imitators and
10 common actions to animate 20 AI-generated characters. The
constructed dataset integrates different genders and age groups of
character images, and two types of poses, standing and sitting,
are selected, highlighting the comprehensiveness and diversity
of the AHQA dataset. Subjective experiments reveal significant
differences in the quality of AHs produced by different imitators.
Finally, we propose a quality assessment method, VIP-QA,
incorporating Video quality, Identity consistency, and Posture
similarity for the AHQA dataset. Experimental results show that
VIP-QA significantly outperforms existing assessment methods
on multiple datasets by about 5%, more closely approximates
human visual perception, and provides a valid objective metric
for assessing imitators. All the work in this paper has been
released at https://github.com/zyj-2000/Imitator.

Index Terms—Quality assessment database, video quality as-
sessment, digital human, computer animation, AIGC.

I. INTRODUCTION

THE emergence of the metaverse concept has positioned
virtual digital human (DH) design as a cutting-edge

and rapidly evolving technology within digital media [1],
[2]. Broadly defined, DH technology encompasses any media
content that replicates human appearance and behaviors. This
technological capability has enabled digital humans to be
utilized across a diverse range of fields, including education,
medicine, and industry. Despite its potential, as shown in
the Fig. 1, DH design remains a complex and time-intensive
process. This complexity arises from the dual challenge of
creating a DH image that meets audience expectations and the
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Fig. 1. Current state of animated human generation and the importance of
quality assessment.

even more demanding task of generating realistic animations.
Presently, many high-quality DH animations are still crafted
by designers using specialized animation software. However,
advancements in artificial intelligence (AI) have introduced
new possibilities in the field of animated human (AH) design.
AI can not only generate virtual DH images within seconds
but also replicate the movements of characters from input
videos to create continuous AH videos [3]–[5]. Although sev-
eral methods have been proposed to achieve these “imitator”
animations, the results often fall short of expectations. This
can be attributed to the nascent stage of research in this field
and underdevelopment of quality assessment methods.

To address the gap in quality assessment metrics within
this field and to support its ongoing development, this paper
undertakes a comprehensive evaluation of the subjective and
objective quality of AHs. Specifically, this research intro-
duces the first Animated Human Quality Assessment (AHQA)
dataset. The AHQA dataset is created by collecting 20 full-
body portraits, which are then animated to mimic 10 common
actions by 6 imitators. Consequently, the dataset comprises
a total of 1,200 AH videos. To assess the subjective qual-
ity of these animations, multiple participants are invited to
provide ratings. Analysis of the participants’ feedback reveals
significant quality differences across the various imitators,
underscoring the critical importance of quality assessment in
AH development. Additionally, this paper proposes a novel
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TABLE I
COMPARISON WITH EXISTING DIGITAL HUMAN QUALITY ASSESSMENT DATABASES.

Database Content Form Scale Distortions Description

DHH-QA [6] 3D Mesh 1,540 Noise, JPEG, Downsampling, Quantization Scanned Real Human Heads
DDH-QA [7] Mesh Sequence 800 Model and Motion Distortions Dynamic 3D Digital Humans
SJTU-H3D [8] 3D Mesh 1,120 Noise, JPEG, Downsampling, Quantization Static 3D Digital Humans
6G-DHQA [9] Mesh Sequence 400 JPEG, Downsampling, Quantization, Stall, Rebuffer Digital Twins
THQA [10] 2D Video 800 Image Quality, Lip-sound Consistency, Overall Naturalness Speech-driven Talking Heads
THQA-3D [11] Mesh Sequence 1,000 Quantization, Stall, Rebuffer, Conversion, Synchronization Scanned Real Talking Heads
ReLI-QA [12] 2D Image 840 AI-Generated Distortions Relighted Human Heads
MEMO-Bench [13] 2D Image 7,145 Sentimental Error Emotional Human Heads
AHQA (Proposed) 2D Video 1,200 Character, Video, Motion Distortions and Hallucination Animated Human Videos

evaluation algorithm, VIP-QA, which integrates Video quality,
Identity consistency, and Pose similarity. Specifically, video
quality is used to perceive the blurring and jittering of the AH
videos, and identity consistency is used to measure character
fidelity. To address the challenge of measuring the motion
accuracy of AH videos at different frame rates and resolutions,
the Motion-p2point method is proposed. Experimental results
demonstrate that VIP-QA outperforms existing image and
video quality assessment methods in terms of assessment
accuracy, consistency, robustness, and generalization on both
AHQA and DDH-QA [7] datasets. Moreover, VIP-QA proves
effective for evaluating the quality of both 2D generative AHs
and 3D manually-modeled animated digital humans, providing
a robust objective quality metric for AHs. Overall, the main
novelties and contributions of this paper are as follows:

• The first large-scale dataset targeting quality assessment
of animated human (AH) is created. It contains 1,200
AH videos generated from 20 character images and 10
common actions through 6 imitators.

• A posture similarity metric Motion-p2point combining
pose estimation and affine transformation is proposed to
efficiently measure the imitation accuracy of AH videos.

• VIP-QA, which integrates video quality, identity con-
sistency, and pose alignment, is proposed for quality
assessment of AHs and achieves about 5% performance
lead and the best generalization performance.

II. RELATED WORK

A. Imitators: Human Animation Methods

Human animation is a significant branch within the fields
of computer graphics and computer animation, focusing on
the creation of lifelike and expressive virtual characters and
their movements [14]–[16]. In the early stages, character ani-
mations were primarily created using keyframe-based design.
However, this interpolation approach often fails to produce
natural-looking movements for certain actions. As technology
advanced, researchers introduced forward kinematics (FK)
and inverse kinematics (IK) controllers, which conceptualize
character animation as the movement of the character’s skeletal
structure. In recent years, the emergence of diffusion modeling
and video generation has reignited interest in the intelligent
design of character-specific animation, leading to the develop-
ment of several notable approaches for the automated genera-
tion of character animations. Xu et al. introduced MagicAn-

imate [17], a diffusion-based framework designed to improve
temporal consistency and fidelity in human image animation.
Zhu et al. proposed Champ [18], a methodology that employs
a 3D human parametric model to achieve shape alignment
and motion guidance in human image animation. Wang et al.
developed VividPose [19], an end-to-end pipeline leveraging
Stable Video Diffusion (SVD) [20] to address issues of appear-
ance degradation and temporal inconsistencies. Additionally,
Wang et al. presented UniAnimate [21], a framework for the
efficient generation of long-term human videos without the
need for an external reference model. Hu introduced Animate
Anyone [22], which integrates SVD with Pose Guider modules
to enhance control over character movement. Zhang et al.
proposed MimicMotion [23], which incorporates confidence-
aware pose guidance to increase the accuracy of pose informa-
tion. While these studies collectively demonstrate significant
advancements in human image animation techniques, they
still lack robust metrics to reliably evaluate the quality and
effectiveness of the generated animations.

B. Digital Human Quality Assessment

Digital human quality assessment (DHQA) has become a
critical field alongside the growing prominence and popular-
ity of DHs [24]. This field not only evaluates the quality
of existing DHs but also plays a crucial role in guiding
and optimizing the design of DH communication systems,
ultimately enhancing the user’s experience. Consequently, a
range of research efforts has been dedicated to this area.
As outlined in Table I, various DHQA datasets have been
developed. The establishment of these datasets has spurred
further scholarly activity, leading to the development of quality
assessment methods that advance the field. For instance, Zhang
et al. introduced a twin network architecture for full-reference
(FR) digital face quality assessment [6], providing an effective
benchmark for algorithms related to 3D DH head compres-
sion and sampling. Additionally, they addressed the quality
assessment of dynamic DHs by leveraging geometric features,
such as curvature and the distribution of dihedral angles, in
their subsequent work [25], [26]. Recently, they pioneered a
reduced-reference (RR) algorithm in DHQA [27], combining
mesh and mapping features to offer a novel solution. Zhou
et al. employed a multi-task learning approach to enhance
the performance of DHQA methods by incorporating a sub-
task focused on 3D distortion classification [28]. They also
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Fig. 2. All selected full-body portraits.

concentrated on the quality assessment of talking heads, iden-
tifying various distortions inherent in current speech-driven
talking head algorithms through both subjective and objective
experiments [10]. However, there has been limited attention
to the quality assessment of AHs generated by AI. To address
this gap, this paper proposes the establishment of the AHQA
dataset and conducts an in-depth exploration of effective and
feasible subjective and objective quality assessment methods
based on this dataset.

III. DATABASE CONSTRUCTION

A. Material Preparation

To ensure the representativeness of the proposed AHQA
dataset, the selection process for the original character portraits
considered a diverse range of ages and genders. To mitigate
potential copyright issues related to character portraits, Stable
Diffusion 3 [29] is employed to generate full-body images
of the characters. After a careful selection process, 20 full-
body portraits that meet the necessary criteria are chosen to
construct the AHQA dataset. As illustrated in the Fig. 2, the
selected images include 10 male and 10 female characters,
encompassing a broad spectrum of attributes such as age,
posture, and clothing. It is important to note that in modern
animation design and film production, cutout and segmentation
are commonly used in post-production video editing in order
to place the character against any background. It can be
seen that the background of the selected image is not an
important factor in practical applications compared to the
character image, so we just keep the original background of
the generated image for simplification. For the selection and
design of motions, 10 common actions are developed. Specifi-
cally, skeletal animations are created using Maya for the male
character provided in the DDH-QA dataset. These dynamic
3D models are then rendered into 2D animations using the
Arnold renderer, serving as the action material. As depicted
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Fig. 3. Illustration of the prepared action material.

TABLE II
DETAILS OF THE IMITATORS EMPLOYED.

Label Methods Posture Estimation Frame Rate Output Resolution
UNI UniAnimate DWPose 8fps 512×768
MIM Mimic Motion DWPose 15fps 576×1024
MUS Musepose DWPose 15fps 512×512
MAG MagicAnimate Densepose 25fps 512×512
ANI Animate Anyone DWPose 30fps 512×784
CHA Champ DWPose 24fps 768×1024

in Fig. 3, the rendered actions include six standing and four
sitting motions. To facilitate the subsequent evaluation of the
mimicry capabilities of various imitators over short, moderate,
and long durations, the selected actions varied in duration,
ranging from 1 to 45 seconds.

B. Animated Human Generation

As shown in Table II , six state-of-the-art (SOTA) imitators
are selected for evaluation: UniAnimate [21], MimicMotion
[23], MusePose [30] , MagicAnimate [17], Animate Anyone
[22], and Champ [18]. Among them, pose estimation employed
by imitators contains two common methods DWPose [31]
and Densepose [32]. Each imitator is used to mimic 10
prepared motions for each of the 20 AI-generated full-body
characters, resulting in a total of 1,200 AH videos. Notably,
these imitators are implemented using the original source code
provided by the authors, with consistent parameter settings
maintained across the board. The exception is the Animate
Anyone method, which utilizes a replication of Moore’s thread
code. Different imitators contribute to differences in frame rate
and output resolution.

C. Distortion Effects

To provide a more intuitive visualization of the distortion
effects in AH videos, representative distorted frames are
selected, as illustrated in Fig. 4. Additionally, to exemplify
distortion effects in AH videos temporally, an X-T Slice
analysis [33] is employed to characterize variations in the
legs, as shown in Fig. 6. Specifically, the X-T slice analysis
[33] employed is a two-dimensional spatio-temporal repre-
sentation of videos, formed by fixing horizontal rows of
pixels (X-axis) and stacking their values over time (T-axis).
Upon examining the distortion effects in Figs. 4 and 6, the
prevalent distortion issues can be classified into four primary
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Fig. 5. Software interface used for subjective scoring.

categories: character distortion, illusion, motion distortion, and
video distortion. 1) Character distortion includes distortions
affecting the character’s face, hands, and legs, highlighting
the limitations of current mimicry algorithms in preserving the
fidelity of character images. 2) Illusion involves the arbitrary
introduction of elements that do not originally exist in the
character photos, such as sofas or video watermarks. 3) As
identified in the research [7], inappropriate molding and range
of motion are still evident in this dataset. 4) Video distortion
includes typical issues such as blurriness and jittering in the
AHQA dataset. These observations indicate that there are still
significant quality issues related to the effectiveness of current
mimicry algorithms in AH generation. Consequently, it is
essential to conduct quality assessments of AH at this stage
to better align mimicry algorithms with human intention and
visual perception.

D. Subjective Experiment

To accurately and reliably assess the quality of AH videos in
the AHQA dataset, a well-controlled in-laboratory subjective
quality assessment experiment is conducted following the
guidelines of ITU-R BT.500-13 [34]. The experiment involves
20 male and 20 female participants with an age distribution
from 18 to 65 years. In addition, all invited subjects have
extensive experience in watching short-form videos and thus
have rich familiarity with the AH videos to be evaluated. A
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Fig. 6. Visualization of different distortions on X-T slice.

dual-stimulus protocol based on action cues is designed for
the experiment. This approach differs from traditional dual-
stimulus subjective scoring experiments by presenting subjects
with both the original action-driven video and the correspond-
ing AH video, thereby making the action information more
explicit. All video content is shown on an iMac display with
a resolution of 4,096 × 2,304 at the frame rate shown in
Table II, supporting repeated playback. Participants are asked
to provide a final quality rating for each AH video, considering
factors such as character appearance, action, and overall video
quality. To mitigate the effects of visual fatigue and other
factors that could impact the reliability of the ratings due to
the experiment’s duration, the entire subjective assessment is
divided into six phases, each containing 200 AHs. Participants
are required to take at least a 30-minute break after completing
each phase before proceeding to the next. Each participant is
allowed to complete a maximum of two phases per day, with
a 30-minute break scheduled before beginning the first phase
on each day.

All participants undergo a 30-minute training session before
commencing the first day of the subjective experiment. This
session includes familiarization with the subjective scoring
guidelines and the scoring interface. Specifically, subjective
assessments of the AHQA dataset are conducted following
the Absolute Category Rating (ACR) protocol. The software
interface used for the evaluations is depicted in Fig. 5. During
the experiment, participants are simultaneously presented with
the original image, the target pose, and the AH video. They
are instructed to rate the quality of each AH video on a scale
from 0 to 5, with increments of 0.1. The rating scale is defined
as follows:

• 0 to 1 points: The visual quality of the AH video is
extremely poor, with significant detachment from the
original image or posture.

• 1 to 2 points: The video quality of the AH is poor, with
noticeable discrepancies in the AH video compared to the
original image or posture.

• 2 to 3 points: The video quality of the AH is average,
with the AH video generally capturing the action but with
some limitations.
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• 3 to 4 points: The video quality of the AH is good, and
the AH video effectively replicates the action.

• 4 to 5 points: The AH video quality is excellent, charac-
terized by vividness and a high degree of authenticity.

This rating scale facilitates a detailed and structured evalu-
ation of the AH videos’ quality. After days, all participants
submitted their ratings, resulting in a total of 48,000 subjective
ratings. Based on previous work [8], [11], [35], z-scores are
computed from the collected subjective ratings. This process
can be represented as follows:

zij =
rij − µi

σi
, (1)

where rij represents the quality rating given by the i-th subject
for the j-th AH video, µi =

1
Ni

∑Ni

j=1 rij is the mean rating

for i-th subject, σi =
√

1
Ni−1

∑Ni

j=1 (rij − µi) is the standard
deviation of the subject, and Ni denotes the number of AHs
evaluated by i-th subject. Quality ratings from unreliable
subjects are excluded following the subject rejection procedure
recommended in [34]. The obtained z-scores are then linearly
rescaled to the range [0, 5]. Finally, the Mean Opinion Score
(MOS) for the j-th AH is calculated by averaging the rescaled
z-scores, which is employed as the j-th AH’s quality score.

E. Experimental Analysis

After obtaining the MOS for the AHQA dataset, further
analyses are conducted to assess the quality of AH videos
from a subjective perspective. First of all, in order to visualize
the visual effects corresponding to different MOSs, we select
representative AHs for visualization as Fig. 7 (a). Besides, the
overall distribution of MOSs for the AHQA dataset is visual-
ized in Fig. 7 (b). As shown in Fig. 7 (b), the majority of AH
videos fall within the lower-middle quality range, highlighting
the current limitations of existing imitators in animation gen-
eration. This finding underscores the critical need for robust
quality assessment in AH development. Subsequently, Figs. 7
(c-e) are plotted to examine quality variations across different
character images, actions, and imitators. The analysis reveals
that different characters exhibit similar quality distributions,
suggesting that the AHQA dataset is versatile and applicable
across various character types. In contrast, action type sig-
nificantly influences the quality of AH videos. Specifically,
AHs involving sitting poses generally exhibit lower quality
compared to standing poses, indicating that current imitators
struggle with the complexities of sitting movements. Another
action with poor quality outcomes is the “Over” gesture, which
involves a substantial angular movement of the character’s
head and appears to be inadequately addressed by existing
imitators. Lastly, there are notable differences in the quality of
AH videos produced by different imitators. Within the AHQA
dataset, the MIM algorithm achieves the best performance,
while MAG performs poorly.

IV. PROPOSED METHOD

Designing objective quality assessment methods for AH
presents significant challenges. One major difficulty arises
from the absence of corresponding ground truth for the gener-
ated AHs, which prevents algorithms from referencing high-
quality examples during the learning process. Additionally, the
AH videos generated by various imitators differ in frame rate,
resolution, and character size, further complicating the quality
assessment process. To address these challenges, we propose
the VIP-QA algorithm, as illustrated in Fig. 8, which is tailored
for AH quality assessment by considering three key factors:
video quality, identity consistency, and posture similarity.

A. Video Quality

Since AH is delivered to users through video, the quality
of the video is a critical component of overall AH quality. To
comprehensively assess the quality of AH videos, it is essential
to consider both spatial and temporal features, as suggested by
[36]–[41]. Spatial features are particularly useful for detecting
common distortions such as blurriness and artifacts. Given
the hierarchical nature of visual perception, we employ multi-
scale features extracted from 2D convolutional neural network
(CNN) to capture quality perception information across var-
ious levels, from low to high. Keyframes for spatial feature
extraction are sampled from the AH video at a rate of one
frame per second:

SFi =
L
⊕
i=1

f i
s =

L
⊕
i=1

f i
avg ⊕

L
⊕
i=1

f i
std, (2)
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Fig. 8. Framework of proposed VIP-QA.

where ⊕ represents the feature concatenation operation, and
L denotes the total number of sampled frames for a given
AH video. Consequently, the spatial feature SFi of the i-th
keyframe Ki is obtained by concatenating the output features
from each layer of the 2D CNN. Specifically, the output
of each layer undergoes two operations: average pooling,
which yields the average feature favg , and standard deviation
pooling, which produces the standard deviation feature fstd.
To extract temporal features, we employ a pretrained 3D CNN
backbone. Specifically, we use the SlowFast [42], pretrained
on the Kinetics dataset [43], within the VIP-QA framework.
The features extracted from the Slow and Fast branches are
subjected to average pooling and adaptive average pooling,
respectively, and then concatenated to produce the temporal
feature TFi. Finally, the spatio-temporal features are fused as
Fi, and quality regression is performed to evaluate the video
quality:

Fi = SFi ⊕ TFi. (3)

Subsequently, two fully connected (FC) layers are utilized to
regress the fused features into quality scores. The final quality
score is then computed through average pooling:

V =
1

L

L∑
i=1

Vi, (4)

where V represents the overall quality score for the AH video,
and L denotes the total number of keyframes used.

B. Identity Consistency
Unlike general videos, AH is character-specific, meaning

that character identity information adds a crucial dimension to

quality assessment. Subjectively, a high-quality imitator should
preserve the character’s physical characteristics as faithfully as
possible while driving the character’s movements. To quantify
the fidelity of character appearance in the evaluation algorithm,
InsightFace [44] is employed to measure the disparity between
AI-generated images and the video frames extracted from the
AH:

Ii = SIMI(Io,Ki), (5)

where Ii denotes the identity similarity between the i-th
keyframe Ki and the original image Io and SIMI(·) denotes
the process of difference calculation using InsightFace. Ulti-
mately, the identity consistency I can be computed similarly
to Eq. 4.

C. Posture Similarity

The primary objective of an imitator is to accurately repli-
cate the poses from the input video, making pose similar-
ity between the AH and the input video a critical factor
in effective quality assessment. To address this, this paper
introduces a similarity measure, Motion-p2point, based on
skeletal keypoints. This measure is based on three fundamental
assumptions and aims to efficiently handle pose comparisons
in videos with different frame rates, resolutions and character
sizes:

• A1: The character movements in the original animation
video and the corresponding AH video are consistent in
their relative positions throughout the entire video.

• A2: Characters in videos of varying resolutions and sizes
are subject only to proportional scaling.

• A3: The center of each posture in animation is fixed
relative to the overall skeletal keypoints.
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Fig. 9. Flowchart for the visualization of Motion-p2point. the GAP is aligned
with the OAP after translation and scaling, respectively, and the error distance
is finally computed.

Based on A1, each AH video is uniformly sampled to include
five keyframes that capture the action similarity at the be-
ginning, the first half, the middle, the second half, and the
end of the video. This approach contrasts with commonly
used methods of sampling at equal time intervals or based
on a fixed number of frames, offering effective application to
AHs with varying frame rates. For each sampled frame, the
2D pose estimation method, DWPose, is employed to record
the 18-point joint coordinates. Due to transformations such
as scaling and panning applied during the imitator process,
directly calculating point-to-point distances is not feasible. To
address this, a compensation matrix C is introduced to account
for the required scaling and translation adjustments:

R =

 x̂1
i x̂2

i · · · x̂18
i

ŷ1
i ŷ2

i · · · ŷ18
i

1 1 · · · 1


=

 α 0 a
0 β b
0 0 1


︸ ︷︷ ︸

C

 x1
i x2

i · · · x18
i

y1
i y2

i · · · y18
i

1 1 · · · 1


︸ ︷︷ ︸

R

,
(6)

where (xj
i , y

j
i , 1)

T denote the coordinates of the j-th skeletal
keypoint in the i-th frame before transformation. These coor-
dinates are arranged to form the original skeletal matrix R,
while the transformed skeletal matrix R is composed of co-
ordinates (x̂j

i , ŷ
j
i , 1)

T . The compensation matrix C(α, β, a, b)
represents an affine transformation matrix, where α and β
determine the scaling factors in the horizontal and vertical
directions, respectively, and a and b determine the translations
in the horizontal and vertical directions. According to A2,
the condition α = β is applied. Furthermore, based on A3,
the translations a and b are determined using the center of
posture. Specifically, the centers CGAP and COAP for both
Generated Animation Posture (GAP) and Original Animation
Posture (OAP) are calculated to inform these translation values
as Fig. 9:

CGAP =
1

18

18∑
j=1

(
xj

yj

)
=

(
xG

yG

)
,

COAP =
1

18

18∑
j=1

(
x̄j

ȳj

)
=

(
xO

yO

)
,

(7)

where (x̄j , ȳj)T denotes the coordinates of the j-th skeletal
keypoint in the OAP. And, all the (x̄j , ȳj , 1)T are sequentially
arranged to form the OAP skeletal matrix R̄. By calculating the
centers of GAP and OAP, the center offset ∆ can be calculated:

∆x = xO − xG.

∆y = yO − yG .
(8)

Translate the center of the GAP to the center of the OAP,
thus obtaining the translated GAP (TGAP). At the same time,
CGAP and COAP obey the transformation relations of the
compensation matrix C, so by joining Eq. 6 and Eq. 8, a
and b can be determined with respect to the α:

a(α) = (1− α)xG +∆x.

b(α) = (1− α)yG +∆y .
(9)

Thus the compensation matrix C(α, β, a, b) can be further
simplified as C(α). The whole problem of comparing GAP
and OAP similarities reduces to finding the optimal scaling
factor α that minimizes the distance between pairs of key-
points. This can be formulated as an optimization problem
using the following equation:

min Di(α) =

18∑
j=1

||φj
i , ϕ

j
i (α)||2,

s.t. φ ∈ R̄, ϕ(α) ∈ C(α)R ,

(10)

where φ is the column vector in the OAP skeletal matrix
R̄, and ϕ is the column vector of the scaled GAP (SGAP)
skeletal matrix C(α)R. The distance between the coordinates
of the key points of the bones in the two skeletal matrices
is Di. Obviously, the problem is not complicated to solve by
means of derivatives or various heuristic algorithms. It may be
assumed that the optimal solution is D∗

i , and the final Motion-
p2point metric can be computed by averaging the minimum
distances of the extracted frames:

P =
1

5

5∑
i=1

D∗
i , (11)

where P is the posture similarity computed using Motion-
p2point. Since a total of 5 frames are sampled during frame
extraction, only the average of 5 frames is computed. This
method differs from other pose similarity algorithms by plac-
ing more emphasis on pose accuracy and is an important
component of imitator performance.

D. Quality Regression & Loss Function

After extracting the three feature aspects, an FC layer is
employed to regress V , I , P features into a final predicted
AH quality score. During the training process, this predicted
AH quality is compared with the actual MOS using the Mean
Squared Error (MSE) as the loss function, enabling the algo-
rithm to be gradually optimized for improved performance:

LMSE =
1

n

n∑
(Q̂−Q)

2
, (12)

where Q̂ is the predicted quality scores, Q is the quality labels
of the AH, and n is the size of the training batch.

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2025.3572000

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on August 02,2025 at 11:14:15 UTC from IEEE Xplore.  Restrictions apply. 



8

TABLE III
PERFORMANCE RESULTS ON THE PROPOSED AHQA AND DDH-QA DATABASES, WHERE PSNR AND SSIM ARE FULL-REFERENCE QUALITY

ASSESSMENT ALGORITHMS AND ARE THEREFORE NOT APPLICABLE TO THE AHQA DATASET. THE BEST PERFORMANCE FOR EACH METRIC IS LABELED
IN RED AND THE SECOND ONE IS LABELED IN BLUE.

Type Label Models AHQA DDH-QA
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

IQA

A PSNR - - - - 0.4308 0.5458 0.3114 0.9013
B SSIM [45] - - - - 0.5408 0.6057 0.3920 0.8559
C BRISQUE [46] 0.0674 0.1836 0.0455 0.7019 0.3664 0.4011 0.2568 1.0067
D NIQE [47] 0.1086 0.1562 0.0909 0.7068 0.0923 0.2489 0.0748 1.0418
E IL-NIQE [48] 0.1523 0.1742 0.1228 0.7052 0.0604 0.1062 0.0404 1.0718

VQA

F VIIDEO [49] 0.1663 0.1787 0.1273 0.7053 0.1219 0.1829 0.0732 1.0740
G TLVQM [50] 0.3716 0.4394 0.2647 0.6225 0.2515 0.2824 0.1729 1.0480
H VIDEVAL [51] 0.3866 0.4317 0.2717 0.6204 0.2218 0.3470 0.1622 1.0246
I V-BLIINDS [52] 0.3110 0.4121 0.2187 0.6245 0.4807 0.4936 0.3424 0.9564
J RAPIQUE [53] 0.4390 0.4733 0.3153 0.6013 0.1815 0.2368 0.1246 1.0614
K SimpVQA [36] 0.7566 0.7584 0.5748 0.5017 0.7444 0.7498 0.5452 0.7228
L VSFA [54] 0.6866 0.6840 0.5107 0.5973 0.5406 0.5708 0.3858 0.9657
M FAST-VQA [55] 0.7515 0.7315 0.5710 0.5610 0.5262 0.5382 0.3657 1.0499
N BVQA [56] 0.7164 0.7161 0.5366 0.5709 0.6304 0.6396 0.4510 0.7663
O VIP-QA (Proposed) 0.8063 0.8056 0.6216 0.4649 0.8090 0.8053 0.6298 0.6169

V. EXPERIMENTS

A. Experiment Setups

A series of experiments are conducted to evaluate the effec-
tiveness of the proposed VIP-QA algorithm. Several typical
image quality assessment (IQA) and video quality assess-
ment (VQA) methods are selected as benchmarks. These in-
clude RAPIQUE, SimpVQA, VSFA, FAST-VQA, and BVQA,
which are based on deep learning, while other methods rely on
manual feature extraction. All algorithms are trained and tested
on the proposed AHQA dataset and the DDH-QA dataset,
following a consistent experimental protocol. Between the
selected datasets, The DDH-QA dataset comprises 800 3D
dynamic digital human videos, featuring ten distinct actions
performed by two characters (one male and one female). For
dataset partitioning, both AHQA and DDH-QA datasets are
cross-validated using five-fold cross-validation, ensuring no
content overlap between the folds. The key difference is that
for the AHQA dataset, data division is based on character
images, whereas for the DDH-QA dataset, it is based on
actions. The performance of each algorithm is recorded as the
average across the five test folds. It is important to note that
all competing algorithms are implemented using the original
source code provided by their respective authors. For the VIP-
QA, ResNet50 [57] is used as a 2D CNN, and the Adam
optimizer is used [58]. Through careful debugging, we set the
learning rate to 3e-5 and the batch size to 8. The experiments
are conducted on a server equipped with an RTX 3090 GPU.

B. Experiment Criteria

To quantify the performance of each algorithm, four widely
recognized metrics are selected: Spearman Rank Correlation
Coefficient (SRCC), Pearson Linear Correlation Coefficient
(PLCC), Kendall Rank Correlation Coefficient (KRCC), and
Root Mean Square Error (RMSE). The first three metrics yield
values between 0 and 1, with values closer to 1 indicating

superior algorithm performance. Conversely, RMSE measures
prediction accuracy, where values closer to 0 reflect more
accurate predictions by the algorithm.

C. Performance Analysis

The experimental results, presented in Table III, yield
several key insights. 1) The existing Image Quality Assess-
ment (IQA) and Video Quality Assessment (VQA) algorithms
demonstrate limited effectiveness when applied to the quality
assessment of AH videos. This limitation is primarily because
most of these algorithms were designed for general images
and videos rather than human-centered media like AH. 2)
Among all the algorithms evaluated in the experiments, the
proposed VIP-QA algorithm consistently outperforms others
on both the AHQA and DDH-QA datasets. The VIP-QA shows
a significant lead over several representative VQA methods,
underscoring its effectiveness. This superior performance can
be attributed to the incorporation of identity information
and pose similarity measures. 3) Since the proposed AHQA
dataset focuses on AI-generated 2D AHs while the DDH-QA
dataset focuses on hand-modeled 3D AH videos, the excellent
performance of VIP-QA on both datasets suggests that the
proposed VIP-QA method is applicable to different types of
AHs and is expected to provide a unified evaluation scheme
for quality assessment of all types of AHs.

D. Ablation Experiments

To further evaluate the individual contributions of each
feature component, as well as to analyze the parameter count
and computational complexity of different model variants, we
conduct ablation studies on both the AHQA and DDH-QA
datasets. These experiments specifically examine the three
types of features integrated within the proposed VIP-QA
framework. The results of these experiments are detailed in
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TABLE IV
ABLATION STUDY RESULTS IN AHQA AND DDH-QA DATABASES, WHERE V , I , P DENOTE VIDEO QUALITY, IDENTITY CONSISTENCY AND POSTURE

SIMILARITY, RESPECTIVELY. THE PARAMETER COUNT AND THE COMPUTATIONAL COMPLEXITY OF THE DIFFERENT MODELS ARE RECORDED. THE BEST
PERFORMANCE FOR EACH METRIC IS LABELED IN RED AND THE SECOND ONE IS LABELED IN BLUE.

Model Params FLOPs AHQA DDH-QA
SRCC↑ PLCC↑ KRCC↑ RMSE↓ SRCC↑ PLCC↑ KRCC↑ RMSE↓

V 24.72M 526.13G 0.7506 0.7526 0.5745 0.5258 0.7304 0.7311 0.5430 0.6606
I 43.80M 6.32G 0.3447 0.4060 0.2373 0.7076 0.3368 0.3463 0.2356 0.7283
P 54.17M 80.77G 0.3816 0.3943 0.2716 0.7080 0.3576 0.4028 0.2438 0.6953

V + I 68.52M 532.45G 0.7686 0.7655 0.5868 0.5136 0.7496 0.7465 0.5585 0.6429
V + P 78.89M 606.90G 0.7753 0.7737 0.5948 0.5056 0.7838 0.7774 0.5889 0.6351
I + P 97.97M 87.09G 0.4391 0.4587 0.3109 0.6868 0.4335 0.4529 0.3045 0.6867

V + I + P 122.69M 613.22G 0.8063 0.8056 0.6216 0.4649 0.8090 0.8053 0.6298 0.6169

TABLE V
CROSS-DATABASE EVALUATION, WHERE AHQA→DDH-QA INDICATES

THE MODEL IS TRAINED ON THE AHQA DATABASE AND VALIDATED WITH
THE DEFAULT TESTING SETUP OF THE DDH-QA DATABASE. THE BEST

PERFORMANCE FOR EACH METRIC IS LABELED IN RED AND THE SECOND
ONE IS LABELED IN BLUE.

Model AHQA→DDH-QA DDH-QA→AHQA
SRCC↑ PLCC↑ SRCC↑ PLCC↑

BVQA 0.0765 0.0729 0.3054 0.3317
SimpVQA 0.1991 0.2564 0.2028 0.2320
FAST-VQA 0.2240 0.2165 0.2632 0.2772

VIP-QA 0.2844 0.3222 0.3836 0.4052

Table IV. From the analysis of Table IV, the following conclu-
sions can be drawn. 1) Each of the three feature types within
VIP-QA contributes positively to the overall performance of
the algorithm. 2) A comparison between Table III and Table
IV shows that the identity consistency and pose similarity
metrics proposed in this study outperform existing feature-
extraction based assessment schemes. This indicates that these
two types of features are a more accurate reflection of AH
quality. 3) Among the three feature types, video quality is
the most critical, followed by gesture similarity, with identity
consistency being the least influential. This aligns with human
visual perception, as video-level distortions are more apparent
and easily perceived. Gesture information, while more de-
tailed, is also crucial for assessing AH video quality. Lastly,
in dynamic videos, the tolerance for variations in character
identity is higher. 4) Despite the differences between the
AHQA and DDH-QA datasets in terms of the data structure
of the AH, the results of the ablation experiments show a
similar trend on both datasets, which once again validates the
robustness and generalizability of the VIP-QA algorithm.

E. Cross-database Evaluation

To assess the universality and generalizability of the pro-
posed VIP-QA method, we conduct cross-database experi-
ments using the established AHQA and DDH-QA datasets.
The results of these experiments are presented in Table V.
Upon reviewing Table V, several key observations can be
made. 1) In all cross-database experiments, the VIP-QA
method consistently outperforms the other methods by a
significant margin (+6% SRCC), suggesting that it outperforms
the other methods in terms of generalization. 2) However, it
is noteworthy that all participating methods exhibit relatively
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Fig. 10. Statistical test results of the proposed VIP-QA method and com-
pared methods on the AHQA and DDH-QA databases. A black/white block
means the row method is statistically worse/better than the column one. A
gray block means the row method and the column method are statistically
indistinguishable. For missing values, the mark ✕ is used. The methods are
denoted by the same index as in Table III.

poor performance in the cross-database context. This can be
attributed to the differing characteristics of the datasets: the
AHQA dataset primarily focuses on AI-Generated distortions,
while the DDH-QA dataset emphasizes computer-simulated
distortions. Therefore, the results presented in Table V sug-
gest a significant variation in the visual effects produced by
AH when subjected to generative versus computer-simulated
distortions. 3) Interestingly, nearly all objective quality as-
sessment algorithms perform better on the AHQA dataset
when trained using the DDH-QA dataset, as opposed to being
trained on AHQA dataset and tested on the DDH-QA dataset.
Given the 3D AHs in the DDH-QA dataset and the 2D
AHs in the AHQA dataset, this result implies that quality
assessment algorithms designed for higher-dimensional AH
data may still be applicable to lower-dimensional AH data,
offering valuable insights for quality assessment in the context
of low-dimensional AHs.

F. Statistical Test

In this section, statistical analyses are conducted to further
assess the performance of the proposed method. Following the
approach outlined in [59], the evaluation involves comparing
the differences between the model-predicted quality scores and
the subjective human evaluation scores. The null hypothesis
posits that the residuals from one quality assessment model
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Fig. 11. Illustration of failure cases. From top to bottom are the first and
second representative failure cases.

follow the same distribution and, at a 95% confidence level,
are statistically indistinguishable from the residuals of another
quality assessment model. The analysis includes testing all
possible pairs of methods, with the results presented in Fig.
10. Notably, the proposed method demonstrates superior per-
formance relative to all other methods evaluated using both
the AHQA and DDH-QA datasets. This observed superiority
is statistically significant, highlighting the robustness and
reliability of the VIP-QA method in this context.

VI. DISCUSSION

A. Failure Cases

Although Section V presents extensive experimental results
that validate the effectiveness, robustness, and generalizability
of the proposed VIP-QA framework, certain limitations re-
main evident in the prediction outcomes. Specifically, while
the majority of predicted quality scores demonstrate strong
alignment with the Mean Opinion Scores (MOS) derived
from subjective evaluations, a small number of cases exhibit
significant discrepancies. To provide further insight into these
inconsistencies, two representative failure cases are illustrated
in Fig. 11. The first example suggests that the VIP-QA
model may still encounter difficulties in effectively captur-
ing and interpreting depth-related features, which are critical
for accurate quality assessment. The second example, when
analyzed in conjunction with the MOS distribution shown in
Fig. 7 (b), indicates that the relatively limited representation of
high-quality samples within the AHQA dataset may constrain
the model’s capacity to assign appropriately high scores to
genuinely high-quality AH videos.

B. Potential Improvements

In this study, we have conducted a comprehensive subjective
and objective quality assessment of animated human (AH)
videos for the first time. While the proposed framework
demonstrates promising results, several limitations remain. To
further advance research in AH quality assessment and its
related domains, we outline potential directions for improve-
ment: 1) Given that the visual quality of AH videos is influ-
enced by a complex interplay of multiple perceptual factors, it
remains valuable to explore more effective multidimensional
subjective evaluation strategies. Developing such protocols not
only facilitates the design of more accurate objective quality
assessment methods but also enhances our understanding of
the perceptual mechanisms underlying human evaluation of
AH content from the perspective of the human visual system;
2) Although the proposed VIP-QA framework achieves state-
of-the-art performance on current datasets, its posture [31] and
facial feature [44] extraction components are still based on
classical algorithms, which leaves considerable room for en-
hancement. Furthermore, the integration of advanced attention
mechanisms [60] and adaptive spatio-temporal feature fusion
strategies may offer significant opportunities to improve the
performance and generalizability of VIP-QA in future work.

VII. CONCLUSIONS

Given the increasing prominence of AI animation generation
techniques and their potential to supplant manual animation
design, this paper addresses the critical need for quality as-
sessment of AI-generated animated human videos. Initially, we
introduce the AHQA dataset, the first of its kind for evaluating
AI-generated animated human content. This dataset is created
by collecting 20 character images and designing 10 common
actions to ensure its diversity and comprehensiveness, resulting
in a total of 1,200 AH videos produced by six representative
animation generation methods. Subjective evaluations of these
AH videos revealed that the quality of animations generated
by current AI methods remains suboptimal. To address this,
we propose VIP-QA, an objective evaluation framework that
integrates three key dimensions: video quality, pose similarity,
and identity consistency. VIP-QA demonstrates state-of-the-
art performance on both the AHQA dataset and the DDH-
QA dataset, which assesses hand-designed 3D animated digital
humans, underscoring its validity and applicability. This work
is intended to serve as a valuable reference and guide for
advancing AI animation generation technologies.
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