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Figure 1. When performing the task “Grab the steak and use the camera to photograph it with 4 embodied agents”, collaboration among
multiple agents is required: a1 grasps the steak, a2 and a3 lift the camera, and a4 presses the shutter to take the photo. However, each
agent cannot focus solely on its own task. We introduce the concept of compositional constraints to ensure safe and efficient collaboration
among the agents. Logical constraints prevent incorrect interaction forms (e.g., a3 grabbing the camera lens, causing damage). Spatial
constraints avoid catastrophic hardware damage (e.g., collisions between a2 and a3 during trajectory execution). Temporal constraints
prevent inefficient collaboration (e.g., a1 waiting unnecessarily due to nonexistent collisions while other agents execute their tasks).

Abstract

Designing effective embodied multi-agent systems is criti-
cal for solving complex real-world tasks across domains.
Due to the complexity of multi-agent embodied systems, ex-
isting methods fail to automatically generate safe and effi-
cient training data for such systems. To this end, we pro-
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pose the concept of compositional constraints for embodied
multi-agent systems, addressing the challenges arising from
collaboration among embodied agents. We design various
interfaces tailored to different types of constraints, enabling
seamless interaction with the physical world. Leveraging
compositional constraints and specifically designed inter-
faces, we develop an automated data collection framework
for embodied multi-agent systems and introduce the first
benchmark for embodied multi-agent manipulation, Robo-
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Factory. Based on RoboFactory benchmark, we adapt and
evaluate the method of imitation learning and analyzed its
performance in different difficulty agent tasks. Further-
more, we explore the architectures and training strategies
for multi-agent imitation learning, aiming to build safe
and efficient embodied multi-agent systems. Please see
the project page at https://iranqin.github.io/
robofactory/.

1. Introduction
With the increasing diversity of robotic forms and the ad-
vancement of robotic control strategies, current robotic sys-
tems are capable of performing fixed tasks [6, 49] or execut-
ing tasks based on instructions [2, 19], offering infinite pos-
sibilities to build interactive agents in the real world. While
these robotic systems typically focus on single-agent tasks,
many real-world applications—such as manufacturing and
medical assistance—require multiple embodied agents to
collaborate on tasks. Such collaboration is vital for tack-
ling tasks that exceed the capabilities of a single agent and
enhancing task efficiency through multi-agent deployment.

To train the policies of multi-embodied agents, re-
searchers often need to collect data through simultane-
ous remote operation by multiple people, which is ex-
tremely inefficient. With the rise of large language models
(LLMs) [1, 36], many single-agent works have attempted
to leverage their powerful reasoning capabilities to auto-
mate the data generation process [28, 29], using predefined
motion primitives to carry out physical interactions with
the environment. This significantly reduces the labor and
time costs associated with data collection. However, when
it comes to the more challenging tasks of multi-agent col-
laboration, the dimensions that need to be considered be-
come far more complex: 1) Plan global tasks and allocate
agents based on task logic and agent availability, ensuring
logical consistency and maximizing efficiency. 2) Manage
shared physical space to prevent collisions between embod-
ied agents. 3) Schedule agents sharing the same space at
different timesteps or perform some low-level operations si-
multaneously to improve system efficiency. Simple adapta-
tions of single-agent embodied systems cannot meet such
requirements, and additional constraints need to be intro-
duced.

We first introduce compositional constraints based on
three specific constraint for multi-agent embodied data gen-
eration. Each constraint is specifically designed for multi-
agent collaborative tasks and restricts the behavior of em-
bodied agents in the corresponding dimension (e.g., space).
By combining these constraints, agents could conduct more
reasonable and safe behaviors that aligns with real-world
embodied agent collaboration scenarios: 1) Logical Con-
straints: Define the rules and relationships that govern

valid robot behaviors. 2) Spatial Constraints: Specify con-
straints based on physical or spatial boundaries. 3) Tempo-
ral Constraints: Impose constraints related to time to make
more efficient collaboration.

In this work, we propose a framework RoboFactory for
multi-agent embodied data generation based on composi-
tional constraints, which not only benefits from the gen-
eralization power of LLMs but also satisfies the additional
requirements of multi-agent tasks. Given the global task de-
scription, prior information, and observations, RoboBrain
generates the next sub-goals for each agent, outputs tex-
tual compositional constraints, and produces unconstrained
trajectory sequences for each agent by invoking predefined
motion primitives to achieve these sub-goals. However, the
compositional constraints generated by RoboBrain are lim-
ited to the textual modality, making them insufficient for
directly constraining real-world decision-making. To ad-
dress this limitation, we designed various interfaces tailored
to different types of constraints, enabling seamless interac-
tion with the physical world. As a result, RoboChecker can
construct corresponding constraint interfaces based on these
textual constraints and the current multi-agent state to en-
sure agents do not violate any constraints while executing
the generated trajectories.

Within this framework, RoboFactory addresses the chal-
lenges of scaling up from single-agent embodied systems
to multi-agent embodied systems by constructing a safe
and efficient data production pipeline. Using RoboFac-
tory, we designed various multi-agent collaboration scenar-
ios and evaluated the design of embodied multi-agent sys-
tems within these settings. First, we validated the necessity
of compositional constraints in multi-agent data generation.
We then deployed the diffusion policy on several multi-
agent collaborative tasks and conducted extensive testing.
Furthermore, we explored the design of multi-agent systems
based on imitation learning, investigating more effective ar-
chitectural designs. Our contributions can be summarized
as follows:

1. We propose the concept of compositional constraints
for embodied multi-agent systems, addressing the chal-
lenges arising from collaboration among embodied
agents.

2. Leveraging compositional constraints and specifically
designed interfaces, we develop an automated data col-
lection framework for embodied multi-agent systems
and introduce the first benchmark for embodied multi-
agent manipulation, RoboFactory .

3. Based on RoboFactory, we deploy imitation learning
methods and conduct evaluations, and explore the ar-
chitectures and training strategies for multi-agent imita-
tion learning, aiming to build safe and efficient embodied
multi-agent systems.

https://iranqin.github.io/robofactory/
https://iranqin.github.io/robofactory/


2. Related Work

2.1. Multi-Agent System

Multi-agent systems consist of multiple autonomous enti-
ties, each with access to distinct information and potentially
conflicting objectives. Based on their functionalities, recent
multi-agent systems can generally be categorized into two
types: tool-based agent assistants [12, 21, 27, 40, 41, 45, 48]
and simulation environments for societies or games [13, 33,
46, 52]. Different from the above work, RoboFactory fo-
cuses more on the application of multi-agent collaboration
in real-world decision-making, especially the low-level ma-
nipulation of embodied agents.

2.2. Robot Manipulation

Behavioral Cloning (BC) [8, 16, 17, 24, 26] trains poli-
cies using pre-recorded human demonstrations to directly
imitate expert behaviors, whereas Offline Reinforcement
Learning (ORL) [4, 18, 20] refines action selection through
reward maximization across extensive datasets. Generative
approaches have expanded methodology: Action Chunking
with Transformers (ACT) employs Transformer architec-
tures combined with conditional variational autoencoders
to model sequential decision-making [3, 37, 49]. Mean-
while, diffusion-based frameworks have gained traction in
robotic imitation learning for their superior generation per-
formance. Notable examples include Diffusion Policy [6]
and its 3D variant [47] that utilizes point cloud observa-
tions to improve geometric understanding. Demonstration
acquisition primarily relies on human-operated robotic sys-
tems across diverse tasks [9, 16, 25, 26], with simulator-
based trajectory synthesis providing supplementary data
sources [15, 29–32, 35]. Although these robotic systems
demonstrate the ability to generate data, they have rarely
explored effectively multi-agent robotic manipulation.

2.3. Visual Programming

Executing visual programming necessitates robust compre-
hension of visual concepts and spatio-temporal reasoning
capabilities. While existing approaches demonstrate broad
applicability in zero-shot scenario [7, 10, 22, 34, 38, 50]
through fusion of large language models (LLMs) with vi-
sion systems, they often sacrifice granular precision in task
execution. Contemporary methods [14, 28, 39] investigate
vision-language models (VLMs) for visual programming.
CaM [51] introduces constraint-based elements for program
synthesis. In our work, RoboFactory generates robot trajec-
tories through action primitives, further regulating the ef-
fectiveness of visual programming via compositional con-
straint interface.

3. Compositional Constraints

Constraints define practical and efficient boundaries
grounded in real-world conditions. In multi-robot collabo-
ration scenarios, the more complex decision space requires
various constraints to ensure safety and effectiveness. Be-
low, we propose three categories of common constraints
that are crucial for modeling real-world boundaries in multi-
embodied agent decision-making.

Logical Constraints. Logical Constraints define the per-
missible actions and interaction rules for agents, focus-
ing on high-level logic such as interaction objects, con-
tact points, and movement directions rather than the tim-
ing or sequence of operations. These constraints encode
structural rules within task scenarios, such as usage per-
missions for interactive objects (e.g., only specific tools can
be used for processing certain materials), contact point re-
strictions (e.g., agents must grasp objects from designated
points), and directional consistency (e.g., when multiple
agents transport an object, their applied forces must remain
aligned). By formalizing interaction relationships—such as
action compatibility, interaction constraints, and spatial co-
ordination requirements—logical constraints ensure agents
follow coherent operational procedures.

Spatial Constraints. Spatial Constraints defines where
agents can operate and how physical interactions are struc-
tured. These include geometric boundaries (e.g., no agent
may enter a 1-meter radius around active machinery), col-
laborative workspace partitioning (e.g., dividing a con-
struction site into exclusive zones to prevent collisions),
and task-specific placement requirements (e.g., components
must be positioned within 2 cm of their target coordinates
for valid assembly). They also govern adaptive spatial be-
haviors, such as dynamic rerouting around newly detected
obstacles or adjusting gripper orientations to fit narrow
apertures. By isolating physical feasibility from temporal
and logical considerations, these constraints ensure agents
operate within safe, structurally coherent environments.

Temporal Constraints. Temporal Constraints regulate
when and in what order actions must be executed, address-
ing synchronization, deadlines, and sequential dependen-
cies. These constraints ensure that agents align their be-
haviors with time-sensitive requirements, such as enforc-
ing phased workflows (e.g., Agent C must wait 5 seconds
after Agent D finishes welding to begin inspection) or co-
ordinating parallel actions with strict time windows (e.g.,
two agents must lift an object simultaneously within a 0.5-
second tolerance). They also manage dynamic adjustments,
such as extending task durations in response to environmen-
tal delays or rescheduling actions when prior steps over-
run. Unlike logical constraints, which define decision va-
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Compositional Constraints(      )

Constraint Interface 
Representations

       : { [x,x,x,x,x,x,x]
                    ...
          [x,x,x,x,x,x,x] } 

Trajectory generation

Robo
Checker

          : { [x,x,x,x,x,x,x]
                    ...
             [x,x,x,x,x,x,x] } 

        :{ [x,x,x,x,x,x,x]
                    ...
          [x,x,x,x,x,x,x] } 

       : { [x,x,x,x,x,x,x]
                    ...
          [x,x,x,x,x,x,x] } 

Constraint Violation Feedback (        )
Constraint xxx Violation Detected, analyze the reason and re-plan. Occupancy Scheduling

…

…

…
DirectionInteraction Collision Desynchronization

CoordinationPlanning

Figure 2. Overview of RoboFactory. Given the global task description, prior information, and observations, RoboBrain generates the
next sub-goals for each agent and outputs textual compositional constraints. It then generates unconstrained trajectory sequences for each
agent to achieve the corresponding sub-goals, invoking predefined motion primitives. RoboChecker constructs corresponding constraint
interfaces based on the textual compositional constraints and the current multi-agent state. It checks whether the agents violate any
constraints while executing the generated trajectories. This framework ensures the generation of safe and efficient collaborative data for
multi-embodied agents by transforming abstract textual constraints into representations that can interact with agent behaviors through the
construction of constraint interfaces.

lidity, temporal constraints focus strictly on timing feasibil-
ity—ensuring actions occur neither prematurely nor too late
to maintain safety and efficiency.

Compositional Constraints. The collaboration of multi-
embodied agents relies on the integration of logical, tem-
poral, and spatial constraints. Logical constraints define
interaction protocols and shared objectives, temporal con-
straints synchronize actions with task dependencies, and
spatial constraints encode geometric and semantic bound-
aries. Together, these constraints balance decentralized au-
tonomy with global coherence, enabling conflict resolution,
resource optimization, and adaptability. This unified frame-
work ensures that local decisions converge into robust, effi-
cient, and executable collaborative behaviors.

4. RoboFactory

We first give an overview of the proposed RoboFactory
(Sec. 4.1). Then, we elaborate on the Constraint Interface
Generation (Sec. 4.2). Finally, we present the Dataset and
Benchmark of RoboFactory (Sec. 4.3).

4.1. Overview
The proposed RoboFactory framework consists of two core
modules, RoboBrain and RoboChecker. Our work focuses
on long-horizon multi-agent manipulation task instructions
Gglobal (e.g., “Grab the steak and use the camera to pho-

tograph it with 4 Embodied Agents.”), utilizing RGB ob-
servations O = {oglobal, o1, ..., on}, which consist of one
global view and multiple ego-centric views from n agents
{a1, a2, ..an} (e.g., n = 4 in this case). As illustrated
in Figure 2, the RGB images O, combined with the text
instructions Gglobal, the previous subgoal sets Gpre =
{gpre1 , ..., gpren }, and the Constraint Violation Feedback
(e.g., subgoal collaboration success or constraint violation
details) from RoboChecker, denoted as fpre, are input into
the RoboBrain FVLM (e.g., GPT-4o [1]). The model then
generates the next subgoal sets Gnext = {gnext1 , ..., gnextn }
along with the corresponding textual compositional con-
straints C = {Cl, Cs, Ct}, each type of constraint set con-
tains multiple specific constraints c (e.g., “Avoid collision
between a2 and other agents.”). Here, Cl represents the log-
ical constraint set that multi-agents must adhere to based
on prior knowledge during abstract task decomposition and
scheduling to complete sub-tasks (e.g., the action of tak-
ing a photo requires a specific agent to press the shutter
button). Cs denotes the need for multi-agents to avoid col-
lisions—both agent-object and agent-agent—when sharing
common spaces during task collaboration. Ct reflects the
temporal-spatial sharing strategy among agents. Specif-
ically, agents occupying a shared space at different time
steps can improve collaboration efficiency (e.g., a2 occu-
pies a space in the t0, while a4 can occupies the same space
in the t1, achieving temporal-spatial sharing). This process
can be expressed as follows:
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Figure 3. Different Constraint Interface. For Cl, we annotated the interactive points of objects and the interactive directions of each point.
For Cs, we modeled observations to obtain depth maps and used them, along with the robotic arm states, to construct 3D occupancy
representations. For Ct, we modeled temporal-state representations based on the trajectories of agents at each changing position and used
these representations for scheduling through analysis.

Gnext, C = FVLM(O,Gglobal,Gpre, fpre) (1)

RoboBrain RoboBrain then generates trajectory se-
quences traj1, ..., trajn for each agent to complete the cor-
responding subgoals by leveraging visual programming to
invoke predefined motion primitives; these trajectories are
unconstrained and may have potential failure risks. The de-
tailed trajectory generation process is provided in the sup-
plementary materials. Each agent executes its trajectory se-
quence along the time dimension, operating serially within
the agent and in parallel between agents. This process is
continuously monitored by RoboChecker to ensure the log-
ical, spatial, and temporal validity of the subgoal trajecto-
ries. The constraints generated by RoboBrain are confined
to the textual space, making them ineffective for directly
constraining trajectory data. Therefore, special interfaces
are required to transform the textual constraints into spe-
cific representations that can directly interact with the real
world and constrain the trajectory data.

RoboChecker In RoboChecker, we provide GPT-4o [1]
with the textual constraints C for constraint-aware visual
programming. For each constraint ci (e.g., “Avoid colli-
sion between Agent 2 and other Agents”), a correspond-
ing interface hi which is define in Sec. 4.2 is created based
on textual constraints ci, addition with generated trajectory
and other information needed (RGB images O, robot states
S = {s1, ...sn}). Evaluation protocol is then generated
(i.e., check code for trajectory), based on hi and the tex-
tual constraints C. This protocol evaluates whether the con-
straints are violated at the current time step by analyzing
the interface hi. It returns a boolean indicating whether a
constraint violation has occurred and a string describing the
reason for the violation. If the protocol returns False, tra-
jectory execution halts immediately, and the accompanying
string is used as feedback (fpre) for re-planning. Other-
wise, the subgoal is marked as completed. In either case, the
process repeats. Fully validated trajectories and observation

sequences are served as part of the RoboFactory benchmark
dataset.

4.2. Constraint Interface

To enable compositional constraints to govern decision-
making in real-world scenarios, we need to model the ab-
stract textual constraints into concrete criteria that can inter-
act with the real world called Constraint Interface. This
ensures that RoboChecker can effectively restrict the set of
generated trajectories. We have modeled the compositional
constraints using four physical representation methods.

We model the logical constraint using two interaction
logics in the physical world, namely interaction position and
interaction direction, as shown in Fig. 3(a). Interaction
Position: For each 3D asset, we annotate the interaction
positions. Different positions represent different interaction
logics. For instance, grasping a camera and using a camera
have distinct interaction positions. Interaction Direction:
Similarly, for every 3D asset, we mark the interaction direc-
tions. Different interaction behaviors between the robotic
arm and the object follow different directional logics. For
example, pressing the camera shutter requires the gripper
of the robotic arm to move in the direct-facing direction of
the shutter. In RoboChecker, based on the interaction form
between the agent and the object, it will determine whether
the current trajectory and grasping pose violate the logical
constraints of interaction position and direction.

We analyze the current scene and establish a 3D occu-
pancy interface to implement spatial constraints, as shown
in Fig. 3(b). Specifically, we conduct depth estimation of
the current 3D scene by utilizing hardware devices (such as
depth cameras) or depth estimation methods [43, 44]. Then,
based on the current states of the robotic arm, we calculate
the absolute coordinates of each joint point within the cur-
rent space. By integrating the depth information, we obtain
the occupancy information of the robotic arm and the ob-
jects. It is worth noting that we set a voxel with a size of
5cm*5cm*5cm as the basic discrete occupancy unit to re-
duce the computational cost. In RoboChecker, according
to the occupancy relationship between the agent whose po-



Align Camera: Agent 1 picks up the object. Agent 2 and 3 aligns the camera to the object.

Place Food: Agent 1 lifts the pot’s lid. Agent 2 picks up the food and places it in the pot.

Stack Cube: Agent 1 places the blue cube to the targe. Agent 2 places the red cube on it.

Figure 4. Demonstrations of the RoboFactory Benchmark.

sition is changing and other elements in the scene, it will
determine whether a collision occurs and whether the spa-
tial logic is violated.

We perform dynamic occupancy modeling for all intel-
ligent agents that need to move under a sub-goal set Gnext to
account for temporal constraints, as shown in Fig. 3(c). In
cooperative tasks involving multiple embodied intelligent
agents, the behaviors of robotic arms often occur simulta-
neously. Consequently, relying solely on spatial occupancy
constraints can result in irrational scheduling, which signif-
icantly reduces task completion efficiency. To address this,
RoboChecker utilizes the temporal occupancy information
of these intelligent agents to detect and prevent irrational
scheduling as well as violations of temporal logic.

By establishing various interfaces required for composi-
tional constraints, RoboChecker can convert abstract text-
based constraints into representational forms that can inter-
act with real-world decision-making. This enables the con-
straint of unrestricted trajectories, thereby generating safe
and efficient multi-agent collaborative data.

4.3. Benchmark
Based on the methods described above, we propose the
RoboFactory Benchmark, which is built on the ManiSkill
simulator [35], an open-source platform for robot simula-
tion. Tab. 1 demonstrates the comparison between other
embodied benchmarks and the RoboFactory benchmark.
Our RoboFactory benchmark features multi-agent tasks and
the integration of high-level planning and low-level control-
ling. It includes 11 tasks across environments with vary-
ing numbers of agents, built based on the Franka Emika
Panda Arm, a 7-DoF robotic manipulator equipped with an
end-effector that enables flexible manipulation tasks, as de-
picted in Fig. 4. We utilize publicly available 3D assets from
sources such as the PartNet-Mobility Dataset [42]. For each
task scenario, we configured an ego-centric camera for each
agent and a global camera for all agents.

Table 1. Comparisons between RoboFactory and other embodied
benchmarks. It features multi-agent tasks and the integration of
high-level planning and low-level controlling.

Benchmark Single-agent Multi-agent Task Level
EgoPlan-Bench [5] ✓ ✗ Plan

MMWorld [11] ✓ ✗ Plan
VAB [23] ✓ ✗ Plan

RoboCasa [31] ✓ ✗ Plan
RoboTwin [29] ✓ ✗ Plan & Control

RoboFactory(Ours) ✓ ✓ Plan & Control

Our benchmark emphasizes efficient collaboration and
coordination among agents in multi-agent environments.
Agents must work together to complete specific tasks. For
instance, in the task of Place Food, one agent must open the
pot lid before another can place the food inside. The tasks
involve diverse asset types, and the initial settings (e.g., as-
set placement) are randomly assigned using random seeds
and can be easily replayed using the same seed. This do-
main randomization approach can effectively increase the
diversity of training scenarios. In RoboFactory benchmark,
150 sets of data have been pre-collected for each task in
form of camera RGB image observations, joint action of
the robotic arms. More details can be found in the supple-
mentary materials.

5. Experiment
Our experiments consist of following three parts: (1) the
evaluation of Diffusion Policy on RoboFactory Benchmark
(Sec. 5.1); (2) comparison of different architectural de-
sign of multi-agent systems based on imitation learning
(Sec. 5.2); (3) ablation studies on different constraints in
RoboFactory data generation (Sec. 5.3).

5.1. Evaluation of RoboFactory Benchmark
We evaluate Diffusion Policy (DP) [6], a generative method
based on imitation learning, across 11 tasks in the RoboFac-
tory benchmark to justify the effectiveness of our method.
For each agent, an individual policy is trained by taking ego-
centric observations in RGB as input, without considering
the states and actions of other agents. We train the poli-
cies using 50, 100, and 150 expert demonstration data per
task. More details for training strategies can be found in the
supplementary materials.

Tab. 2 demonstrates the main performance on RoboFac-
tory benchmark. First, the increase in success rates with ad-
ditional training data emphasizes the necessity of RoboFac-
tory in efficiently generating high-quality datasets. Specifi-
cally, tasks involving one, three, and four agents achieve op-
timal performance with 150 training demonstrations. These
findings highlight the critical role of ample data, particu-
larly in complex multi-agent environments. At the same
time, tasks involving two agents achieve optimal perfor-



Table 2. DP baseline performance results. We report the success rate across benchmark tasks with different amounts of demonstration data.

Task Level Task Name Success Rate
50 Demo 100 Demo 150 Demo

1-Agent

Pick Meat 32% 61% 58%
Stack Cube 17% 38% 44%
Strike Cube 26% 42% 45%

Average 25% 47% 49%

2-Agent

Pass Shoe 9% 20% 12%
Place Food 5% 23% 20%
Lift Barrier 24% 60% 58%

Two Robots Stack Cube 14% 27% 20%
Average 13% 32.5% 27.5%

3-Agent
Camera Alignment 7% 10% 19%

Three Robots Stack Cube 8% 2% 22%
Average 7.5% 6% 20.5%

4-Agent
Take Photo 5% 8% 20%

Long Pipeline Delivery 0% 0% 0%
Average 2.5% 4% 10%

OBS1

OBS2

Global View + Shared Policy

OBS1

OBS2

Local View + Shared Policy

Global View + Separate Policy Local View + Separate Policy

OBS1

OBS2

OBS3

OBS1

OBS2

OBS3

ACT1

ACT2

ACT1

ACT2
Shared 

Weights

ACT1

ACT2

ACT3

ACT1

ACT2

ACT3

Figure 5. We design four multi-embodied agent imitation learning
architectures. The Global View in the image input represents the
observation containing all agents, and the Local View represents
the ego-view observation of each agent. In policy training, Shared
Policy indicates that all agents share a policy, and Separate Policy
indicates that each agent trains an independent policy.

mance with only 100 demonstrations, which can be at-
tributed to the relative simplicity of individual agent actions
in these scenarios. Training with 150 demonstrations may
have introduced overfitting, causing the model to learn un-
necessary patterns that do not generalize well to testing en-
vironments. Besides, the decline in success rates with an
increasing number of agents highlights the limitations of
current methodologies. Specifically, tasks involving one,
two, three, and four agents achieve average success rates of
49%, 27.5%, 20.5%, and 10%, respectively. This signifi-
cant performance degradation in multi-agent tasks indicates

Table 3. Results of four multi-embodied agent imitation learning
architectures. We report the success rate on two tasks.

Policy View Scope Lift Barrier Place Food
Shared Global 49% 5%
Shared Local 4% 0%

Separate Global 26% 17%
Separate Local 58% 20%

the challenges in facilitating effective collaboration among
multiple agents. Moreover, the 0% success rate in the task
of Long Pipeline Delivery task highlights the shortcomings
of diffusion policies in learning long-term temporal depen-
dencies. These findings underscore significant opportuni-
ties for advancing imitation learning techniques in multi-
agent systems to enhance performance.

5.2. Multi-agent Imitation Learning
In Sec. 5.1, we adapt the single-agent imitation learning
framework to a multi-agent system, where each agent trains
an independent policy based on its egocentric view. As
illustrated in Figure 5, the architecture of multi-embodied
agent imitation learning can be categorized into four types
based on the observation space and policy sharing strategy:

Global View and Shared Policy (Arch1): All agents
share the same global observation and use a single shared
policy to produce a joint action sequence, which is then as-
signed to the corresponding agents.

Local View and Shared Policy (Arch2): Each agent has
its own independent egoview observation, which is fed into
the same shared policy (with shared parameters) to generate
respective action sequences.

Global View and Separate Policy (Arch3): All agents



Table 4. Ablation study for different constraints. We report the
success rate(%↑) of effective data generation.

Components Task Name

Logical Spatial Temporal Lift Three Robots Take
Barrier Stack Cube Photo

✓ ✗ ✗ 80.2 62.5 37.1
✓ ✗ ✓ 85.4 84.2 62.2
✓ ✓ ✗ 95.2 92.7 53.8
✓ ✓ ✓ 97.5 98.9 88.2

share the same global observation, while each agent has its
own separate policy (with unshared parameters) to generate
individualized action sequences.

Local View and Separate Policy (Arch4): Each agent
has its own independent egoview observation, and each
agent uses its own separate policy (with unshared param-
eters) to generate individualized action sequences.

We employ Arch4 as the pipeline to test all tasks in the
RoboFactory benchmark. Additionally, we select two rep-
resentative two-agent collaborative tasks—Lift Barrier and
Food Place—to compare and analyze the four architectures.
The experimental results are summarized in Table 1. By
comparing the first and second rows of Table 1, we observe
that when a single shared policy needs to learn strategies
for multiple agents from different ego-views, it must in-
fer the agent ID currently executing an action and gener-
ate the corresponding action. This challenging setup causes
the shared policy to struggle and leads to degraded perfor-
mance (49%-5%, 5%-0%). By comparing the first two rows
(shared policy) with the third and fourth rows (separate pol-
icy), we find that Separate Policy achieves better perfor-
mance in the Food Place task (5%-17%, 0%-20%). This
improvement may be attributed to the Food Place task re-
quiring distinct skills for the two robotic arms, where sepa-
rate policies can specialize in learning the respective skills,
thereby enhancing collaborative performance. Finally, by
comparing the third and fourth rows, we observe that us-
ing Local View under the Separate Policy setup improves
task success rates (26%-58%, 17%-20%). We hypothesize
that this is because the egoview provides richer and more
detailed information, enabling the policy to better handle
fine-grained manipulations.

In summary, we design multiple multi-agent imitation
learning architectures and conducted extensive experiments
and analyses. We hope these findings can provide valuable
insights for the future design of multi-agent imitation learn-
ing frameworks or multi-agent vision-language-action mod-
els, ultimately advancing the field of multi-embodied agent
manipulation systems.

Table 5. Ablation study for different constraints. We report the
average episode length(↓) of the generated effective data.

Components Task Name

Logical Spatial Temporal Lift Three Robots Take
Barrier Stack Cube Photo

✓ ✗ ✗ 123 685 407
✓ ✗ ✓ 92.8 452 238
✓ ✓ ✗ 115 652 325
✓ ✓ ✓ 80.7 424 204

5.3. Ablation Study
Our ablation study aims to address two key questions: (1)
Can the proposed constraints, particularly the composi-
tional constraints, effectively improve the success rate of
data generation (where higher success rates indicate faster
data production)? (2) Do the proposed constraints lead to
higher-quality data? We used the average episode length
of the data as a metric to evaluate the quality. For tasks
that are successfully executed, shorter data lengths suggest
that agents can cooperate more effectively. In addition,
shorter data lengths contribute to faster training and infer-
ence times. Tab. 4 and Tab. 5 demonstrate the ablation stud-
ies on benchmark.

Spatial and temporal constraints significantly improve
task success rates. The absence of spatial constraints
leads to frequent robotic arm collisions during task exe-
cution, drastically reducing the success rate. Additionally,
without spatial constraints, the robotic arms lack corrective
spatial feedback, failing to adjust their positions properly.
For temporal constraints, the decline in success rate mainly
stems from two factors. First, tasks requiring simultaneous
execution (e.g., Lift Barrier) fail due to improper synchro-
nization. Second, errors in the execution order of robotic
actions occur, such as incorrect stacking sequences in the
Three Robot Stack Cube task.

Temporal constraints play an important role in en-
hancing data quality. Temporal constraints streamline
task execution by identifying opportunities for simultane-
ous robotic arm operations, facilitating parallel execution,
and reducing episode length in the dataset. Moreover, by
analyzing and scheduling the sequence of robotic actions,
they contribute to generating more structured and efficient
data. When incorporated with occupancy grids, tempo-
ral constraints make fine-grained spatial awareness at each
timestep, reducing erroneous failure feedback and fostering
greater data diversity.

6. Conclusion
We propose compositional constraints to tackle scalability
challenges in transitioning from single-agent to multi-agent



embodied systems and leverage compositional constraints
to develop an automated data collection framework Robo-
Factory. We introduce the first benchmark for embodied
multi-agent manipulation. By deploying imitation learning
and evaluating policy architectures on this benchmark, we
systematically explore training strategies to advance safe
and efficient multi-agent systems.
Limitation While RoboFactory shows notable effec-
tiveness, the constraints may struggle to accurately
model intricate physical phenomena, potentially limit-
ing their applicability in tasks requiring precise interac-
tions.
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RoboFactory: Exploring Embodied Agent Collaboration
with Compositional Constraints

Supplementary Material

A. Data Generation
In this section, we provide a detailed description of the process for effectively generating expert data. First, we elaborate
on the details of RoboBrain, explaining how it generates the next subgoal and constraints. Next, we introduce the method
for generating agent trajectories based on subgoals and constraints. Then, we describe the implementation of RoboChecker,
an interface to integrate various constraints with data generation pipeline. Finally, we present tasks in the RoboFactory
benchmark along with its corresponding descriptions.

RoboBrain In RoboBrain, we structure the following prompts for GPT-4o [1] to generate new subgoals based on the given
information, such as task instructions, previous subgoals, and constraint violation feedback. Along with each subgoal, a set
of constraints is generated, which can be categorized into three levels: logical, temporal, and spatial. These constraints are
formulated as structured text to ensure that RoboChecker can accurately recognize the corresponding functions and verify
whether the constraints are satisfied. The detailed description of prompts is as follows.

You are an AI system responsible for generating subgoals and constraints for a multi-agent robotic task.
Your goal is to ensure that each agent receives a clearly defined subgoal while adhering to
well-structured constraints. Constraints must be formatted correctly to enable validation and enforce
coordination and collaboration among agents.

Key Requirements
- Generate at least one subgoal per agent based on the given task description.
- Define explicit constraints for each agent, ensuring every constraint involves at least one agent.
- Follow specific formatting rules to categorize constraints accurately.
- Ensure all constraints are clear, actionable, and unambiguous to guide robotic agents effectively.

Input Structure
- Task Instruction: "{General description of the task}"
- Global Observation: <image_global>
- Agents Observation: [<image_1>,<image_2>....,<image_n>]
- Previous Subgoals: "{Subgoals executed by each agent}"
- Constraint Violation Feedback: "{List of feedback from violated constraints, if any}"

Output Content
- A set of subgoals and constraints based on the task requirements. Each constraint should follow these
formatting rules according to its category:
1. Logical Constraints:

- Agent-specific condition: Agent-Specific Condition: Specifies a requirement for the behavior of a
single agent.

Example: "The gripper of Agent_1 must be perpendicular to {Object}."
- Multi-agent condition: Defines a coordination rule between multiple agents.

Example: "Agent_1 and Agent_2 must maintain a consistent gripper height.".
2. Temporal Constraints:

- Synchronization: Specifies whether agents can perform tasks simultaneously or share the same space.
Example: "Agent_1 and Agent_3 perform tasks simultaneously without interference.".

- Sequence: Defines the required order of actions between agents.
Example: "Agent_2 must complete the task before Agent_4 can begin their action.".

3. Spatial Constraints:
- Collision avoidance: Ensures agents do not interfere with each other or the environment.

Example: "Agents must avoid colliding with each other when moving in close proximity.".
- Space occupancy: Specifies spatial positioning rules to prevent conflicts.

Example: "Agent_1 should not occupy the same space as Agent_3 in the designated area.".

Output Example
{
"Subgoals": {

"Agent_1": "{Clear and structured subgoals for Agent_1}",
"Agent_2": "{Clear and structured subgoals for Agent_2}",
...

},
"Constraints": {

"Logical": [
{



"Agent": "Agent_1",
"Constraint": "The gripper of Agent_1 is perpendicular to {Object}."

},
{
"Agents": ["Agent_2", "Agent_3"],
"Constraint": "Keep the gripper height consistent between Agent_2 and Agent_3 to make the camera

remain horizontal."
}

],
"Temporal": [

{
"Agents": ["Agent_2", "Agent_4"],
"Constraint": Agent_2 and Agent_4 could share the same space chronologically."

}
],
"Spatial": [

{
"Agent": "Agent_2",
"Constraint": "Avoid collision between Agent_2 and other Agents."

},
{
"Agent": "Agent_4",
"Constraint": "Avoid collision between Agent_4 and other Agents."

}
]

}
}

Trajectory Generation Effectively converting these conceptual subgoals into precise robotic motion trajectories remains
a significant challenge for large language models. Inspired by RoboTwin [29], we define a set of motion primitives, each
represented as a Python function interface. By providing specific input parameters, these primitives generate corresponding
motion trajectories. For instance, the MOVE primitive inputs an agent ID and a target position. Then, it computes a trajectory
based on the current position of the robotic arm to generate the appropriate motion sequence. This approach allows large
language models to focus on understanding the high-level logic of action interactions while avoiding direct involvement in
low-level control signal computations.

RoboChecker RoboChecker is designed to evaluate the validity and efficiency of generated motion trajectories, ensuring
smooth execution while preventing collisions and inconsistencies. To achieve this, we define four key validation functions
as optional interface type, each addressing a specific aspect of trajectory assessment: agent movement direction, interaction
at contact points, spatial occupancy of trajectories, and the correctness of trajectory scheduling. The definitions of these
functions are as follows:
• Movement Direction Validation: Ensures that the movement of each agent aligns with logical constraints. For instance,

a robotic gripper should maintain an appropriate angle when grasping an object or adhere to a specific orientation during
task execution to guarantee stable and effective interactions.

• Contact Point Interaction Validation: Verifies whether an interaction with object or other agents meets expected con-
ditions. In collaborative manipulation tasks, for example, multiple agents should grasp objects at appropriate positions to
maintain stability during joint handling.

• Spatial Occupancy Validation: Analyzes the spatial feasibility of an agent’s trajectory, ensuring that it does not enter
restricted zones or cause spatial conflicts. For instance, in confined environments, different agents’ paths should remain
non-overlapping to avoid collisions.

• Trajectory Scheduling Validation: Assesses whether the execution order of motion trajectories adheres to temporal con-
straints. This includes ensuring that actions requiring synchronization occur simultaneously and that tasks with sequential
dependencies are executed in the correct order. It will also analyze whether these operations can be executed simulta-
neously or follow a predefined sequence along the trajectory. For example, in a task where a lid must be opened before
placing an object inside, the action of “open lid” should precede the action of “place object” in the trajectory plan.

These functions take two types of inputs: the current agent’s trajectory and the constraints generated by RoboBrain. The
constraints produced by RoboBrain are represented in textual form. To process these constraints effectively, we construct the
following prompt to match each constraint with its corresponding function, extract the relevant parameters from the constraint
text, and integrate them with the agent’s trajectory for validation. In Fig 6, we present the constraints of the Take Photo task
along with the CheckCode generated through visual programming based on these constraint, which serves as the evaluation



protocol, bridging textual constraints with the corresponding trajectory.

You are an expert in robotic motion validation, responsible for ensuring that a given set of motion
trajectories adheres to logical, spatial, and temporal constraints. Your task is to validate these
trajectories based on predefined requirements, ensuring compliance with movement logic, spatial
integrity, and execution order.
To achieve accurate validation, you must:
- Match each constraint to the appropriate validation function.
- Extract relevant parameters from the constraint description.
- Apply the corresponding validation rule to assess compliance.

Validation Functions and Parameter Extraction
Each constraint is assigned to a specific validation function, which extracts relevant parameters and
applies the appropriate validation rule.
1. Movement Direction Validation: Ensures that an agent maintains the required orientation during
interactions.

Extracted Parameters:
Agent ID: The agent executing the movement.
Target Object: The object involved in the interaction.
Required Orientation: The necessary orientation for the gripper of the agent.

Formal Representation:
(Agent_ID, Target_Object, Required_Orientation) -> Validate_Direction()

Example Constraint:
"The gripper of Agent_1 must be perpendicular to Object_A when grasping."
(Agent_1, Object_A, perpendicular) -> Validate_Direction()

2. Contact Point Interaction Validation: Ensures that agents interact with objects or other agents at the
designated contact points.

Extracted Parameters:
Agent ID: The agent performing the interaction.
Target Object: The Object involved in the interaction.
Contact Point: The designated interaction point (\eg, left side of the object).

Formal Representation:
(Agent_ID, Target_Object, Contact_Point) -> Validate_Interaction()

Example Constraint:
"Agent_3 must grasp Object_B at its left point."
(Agent_3, Object_B, left) -> Validate_Interaction()

3. Spatial Occupancy Validation: Ensures that the movement of an agent does not result in spatial
conflicts, such as entering restricted zones or colliding with other agents.

Extracted Parameters:
Agent IDs: The agents whose trajectories require validation.

Formal Representation:
(Agent_IDs) -> Validate_Spatial_Occupancy()

Example Constraints and its parameters:
"Agent_2 must not intersect with the trajectories of other agents."
(Agent_2) -> Validate_Spatial_Occupancy()

4. Trajectory Scheduling Validation: Ensures that the execution order of actions adheres to temporal
constraints, including:

- Sequential dependencies, where one action must precede another.
- Synchronized execution, where multiple agents must act simultaneously.
Extracted Parameters:

Agent IDs: The agents involved in the scheduling constraint.
Task Dependency Type:

- Sequential: Specifies an ordered execution sequence.
- Simultaneous: Requires two agents to perform actions at the same time.

Formal Representation:
(Agent_IDs, Task_Dependency_Type) -> Validate_Scheduling()

Example Constraints and its parameters:
"Agent_4 must place Object_C only after Agent_5 opens the container."
([Agent_5, Agent_4], "Sequential") -> Validate_Scheduling()

Tasks Our benchmark dataset includes 11 tasks. Table 6 presents the number of agents for each task, the task description,
and the corresponding target condition. While single-agent tasks can assess the robotic arm’s interaction capabilities, our
primary focus is on multi-agent tasks, which evaluate the coordination and cooperation abilities between agents.

B. Experimental Setup
B.1. Training Details
We adopt the CNN-based Diffusion Policy as our base model, with a prediction horizon of 8, observation steps are set to 3,
and action steps are set to 6. For the dataloader, we use a batch size of 128. The optimizer is set to torch.optim.AdamW
with a learning rate of 1.0× 10−4, betas in the range of [0.95, 0.999], and ϵ set to 1.0× 10−8. The learning rate warmup lasts



500 steps, and we train for 300 epochs for all tasks in the benchmark. The training process is conducted on a single Nvidia
RTX 4090 GPU. For 150 demonstration samples with average episode length of 205, the training time is around 5 hours.

Different Training Strategies Each Franka Emika Panda robotic arm consists of seven rotational joints, with an additional
one-dimensional action for the gripper (as both left and right grippers maintain the same width), resulting in an action space
of dimension 8 per agent. We design four different multi-agent DP strategy modes:
• Global View and Shared Policy: All agents share a global observation that includes every agent in the environment. For a

task with N agents, their actions are concatenated to form a joint action of dimension 8N . A single model is trained using
the global view and the 8N -dimensional joint action.

• Local View and Shared Policy: Each agent has an individual local observation centered on its own action. To prevent
catastrophic forgetting during training, we randomly shuffle the training data of all agents before inputting them into a
shared model. A single model is trained with multiple local observations and the corresponding agent’s 8-dimensional
action.

• Global View and Separate Policy: All agents share a global observation, ensuring that all agents are included within it.
However, each agent trains its own model to determine actions independently. The training input consists of the global
view and an individual agent’s 8-dimensional action.

• Local View and Separate Policy: Each agent has an individual local observation centered on its own action, with its own
perspective prioritized while incorporating surrounding environmental information. Each agent trains a separate model
using its local view and corresponding 8-dimensional action.

All global and local views used for training are RGB images with a resolution of 320×240. We select the fourth training
strategies as the baselines for the benchmark experiments.

B.2. Evaluation Details
To ensure smooth robotic arm movements during simulations, we employ interpolating operation for action trajectories
generated by the Diffusion Policy. For each task, we conduct evaluations across 100 distinct scene configurations, varying
initial object placements and environmental conditions. We introduce a maximum action step limit for each task for evaluation
of success rates. A failure is determined if the task is not completed within this limit. To set a reasonable threshold, we
perform a warm-up test among 20 samples to estimate the average number of steps required to complete the task. The
maximum action step limit is set twice this average. The success criteria for each task, including the target conditions, are
detailed in Table 6.

C. Demonstrations of Benchmark
Fig. 7 demonstrates several tasks in the RoboFactory benchmark. We visualize the observation of key timestamps with the
corresponding subgoals generated from RoboBrain across 4 tasks (Camera Alignment, Place Food, Two Robot Stack Cube,
Lift Barrier).



 Grab the steak and use the camera to photograph it with 4 Embodied Agent.

Logical: 
1. Agent1’s gripper is perpendicular to 
the steak.
2. Agent2 and Agent3 should interact 
with the camera left and right handle 
point
Spatial: 
1. Avoid collision between Agent2 and 
other Agents.
2. Avoid collision between Agent3 and 
other Agents.
Temporal: 
1. Agent1, Agent2 and Agent3 should 
move at the same time
2. Agent4 should move after Agent1, 
Agent2 and Agent3.

Agent1: Grasp the steak.
Agent2: Grasp the camera handle1.
Agent3: Grasp the camera handle2.
Agent4: Press the camera shutter.

VI(Agent2, camera, “handle1”)
VI(Agent3, camera, “handle2”)
VD(Agent1, steak, “perpendicular”)
VSO(Agent2)
VSO(Agent3)
VS([Agent1, Agent4], “Sequential”)
VS([Agent2, Agent4], “Sequential”)
VS([Agent3, Agent4], “Sequential”)
VS([Agent1, Agent2, Agent3], 
“Simultaneous”)

Logical: None.
Spatial: 
1. Avoid collision between Agent1 and 
other Agents.
2. Avoid collision between Agent2 and 
other Agents.
3. Avoid collision between Agent3 and 
other Agents.
Temporal: 
1. Agent1, Agent2 and Agent3 should 
move at the same time
2. Agent4 should move after Agent1, 
Agent2 and Agent3.

Agent1: Lift the steak align the camera.
Agent2: Lift the camera handle1.
Agent3: Lift the camera handle2.
Agent4: Press the camera shutter.

VSO(Agent1)
VSO(Agent2)
VSO(Agent3)
VS([Agent1, Agent4], “Sequential”)
VS([Agent2, Agent4], “Sequential”)
VS([Agent3, Agent4], “Sequential”)
VS([Agent1, Agent2, Agent3], 
“Simultaneous”)

Logical: 
1. Agent4 should interact with the 
camera's shutter contact point.
2. Agent4’s gripper is perpendicular to 
the camera.
Spatial: 
1. Avoid collision between Agent4 and 
other Agents.
Temporal: None.

Agent1: Stay still.
Agent2: Stay still.
Agent3: Stay still.
Agent4: Press the camera shutter.

VI(Agent4 , camera, “shutter”)
VD(Agent4, camera, “perpendicular”)
VSO(Agent4)

Figure 6. Demonstration of RoboChecker is showcased in the complete execution of the Take Photo task. By analyzing constraints,
RoboChecker generates CheckCode, a composition of multiple interfaces. Specifically, VI stands for Validate Interaction, VD for
Validate Direction, VSO for Validate Spatial Occupancy, and VS for Validate Scheduling. The CheckCode returns true only when all
interfaces pass validation, indicating that the generated motion trajectory adheres to the compositional constraints. Otherwise, CheckCode
identifies the failed interfaces and sends the feedback to RoboBrain.



Initial State
A1: Grasp the steak.
A2 & A3: Grasp both 
sides of the camera.

A1: Lift the steak.
A2 & A3: Lift the 
camera.

A1: Stay still.
A2 & A3: Align the 
camera with the steak.

Initial State
A1: Grasp the steak.
A2: Grasp the handle 
of the lid.

A1: Move the 
steak in the pot.
A2: Lift the lid.

A1: Lay down the 
steak.
A2: Stay still.

Camera 
Alignment

Place
Food

Initial State A1: Lift the blue cube.
A2: Lift the green cube.

A1: Place the blue 
cube to the target.
A2: Stay still.

A1: Stay still.
A2 : Place the green 
cube on the blue one.

Two Robot 
Stack Cube

Initial State
A1 & A2: Move to 
both ends of the 
barrier.

A1 & A2: Grasp 
both sides of the 
barrier.

A1 & A2: Lift both 
ends of the barrier 
simultaneously.

Lift
Barrier

Figure 7. Demonstrations of tasks in the RoboFactory Benchmark. For each task, the subgoals in each timestamp are displayed in the top
row, and the observation is shown in the bottom row.



Task Agent
Number Description Target Condition

Pick Meat 1
There is a piece of meat placed on the ta-
ble. A robotic arm picks up the meat and
lifts it to a specified height.

The height of the meat reaches a prede-
fined threshold.

Stack Cube 1
A blue cube and a red cube are placed on
the table. A robotic arm picks up the blue
cube and places it on top of the red cube.

The distance between the blue and red
cubes is within a threshold, with the
blue cube positioned at a greater height
than the red cube.

Strike Cube 1

A hammer and a cube are placed on the ta-
ble. A robotic arm first identifies an opti-
mal grasping position to pick up the ham-
mer, then moves it to a suitable position to
strike the cube.

The hammerhead is positioned directly
above the cube within a predefined dis-
tance threshold.

Lift Barrier 2

A long barrier is placed on the table. Two
robotic arms simultaneously grasp both
ends of the barrier and lift it to a speci-
fied height.

The barrier is elevated to the specified
height while maintaining stability.

Pass Shoe 2

A shoe is placed on the table. One robotic
arm grasps the shoe and passes it to the
other one, which then places it at the tar-
get location.

The distance between the shoe and the
target location is within a predefined
threshold.

Place Food 2

A pot and a kind of food are placed on
the table. One robotic arm lifts the pot’s
lid, while the other picks up the food and
places it inside the pot.

The food is placed inside the pot, with
the distance between the food and the
center of the pot being within a prede-
fined threshold.

Two Robots
Stack Cube 2

A blue cube and a red cube are placed
on the table. A robotic arm picks up the
blue cube to a specified position, while the
other places the red cube on top of it.

The blue cube is within the specified
threshold distance from the target po-
sition. The distance between the blue
and red cubes remains within a defined
threshold, with the red cube positioned
at a greater height than the blue cube.

Camera
Alignment 3

A camera and an object are placed on the
table. One robotic arm picks up the ob-
ject to a specified position. The other two
robotic arms grasp both sides of the cam-
era and align it to the object.

The camera reaches a specified height,
and the object is placed at the desig-
nated position that aligns with the cam-
era.

Three
Robots

Stack Cube
3

A blue cube, a red cube and a green cube
are placed on the table. One robotic arm
picks up the blue cube to a specified posi-
tion. Another arm places the red cube on
top of the blue one. The last arm places
the green cube on top of the red one.

The blue cube is positioned within the
specified target range. Additionally, the
red cube is successfully placed on top
of the blue cube, and the green cube is
positioned atop the red cube.

Take Photo 4

A camera and an object are placed on the
table. One robotic arm picks up the object
and places it to a specified position. An-
other two robotic arms grasp both sides of
the camera and align it to the object. The
last robotic arm clicks the shutter.

The camera reaches a specified height,
and the object is placed at the desig-
nated position that aligns with the cam-
era. Additionally, the distance between
the end effector of the last robotic arm
and the camera’s shutter is within a cer-
tain threshold.

Long
Pipeline
Delivery

4

A shoe is placed on the table. Three
robotic arms grasp the shoe and pass it to
the next robotic arm. The last robotic arm
places the shoe to a specified position.

The distance between the shoe and the
target location is within a predefined
threshold.

Table 6. Task Descriptions for the RoboFactory Benchmark


	Introduction
	Related Work
	Multi-Agent System
	Robot Manipulation
	Visual Programming

	Compositional Constraints
	RoboFactory
	Overview
	Constraint Interface
	Benchmark

	Experiment
	Evaluation of RoboFactory Benchmark
	Multi-agent Imitation Learning
	Ablation Study

	Conclusion
	Data Generation
	Experimental Setup
	Training Details
	Evaluation Details

	Demonstrations of Benchmark

