Pumping, With or Without Choice
Speaker
Elaine Li,Runtime Verification, IL
Time
2019-11-27 14:30:00 ~ 2019-11-27 16:00:00
Location
Room 1319, Software Expert Building
Host
Qinxiang Cao, Assistant Professor, John Hopcroft Center for Computer Science
Abstract
We present the first machine-checked formalization of Jaffe and Ehrenfeucht, Parikh and Rozenberg’s (EPR) pumping lemmas in the Coq proof assistant. We formulate regularity in terms of finite derivatives, and prove that both Jaffe’s pumping property and EPR’s block pumping property precisely characterize regularity. We illuminate EPR’s classical proof that the block cancellation property implies regularity, and discover that—as best we can tell—their proof relies on the Axiom of Choice. We provide a new proof which eliminates the use of Choice. We explicitly construct a function which computes block cancelable languages from well-formed short languages.
Bio
Elaine Li received her B.S. with Honours from Yale-NUS College, Singapore, where she studied the liberal arts, philosophy and computer science. She is currently a proof engineer at Runtime Verification, IL, where she works with the Ethereum Foundation on the concurrent development and formal verification of correct-by-construction consensus protocols. Elaine’s research interests include formal logic, proof theory and analytic philosophy.