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ABSTRACT
Content Delivery Networks (CDNs) are critical for providing good
user experience of cloud services. CDN providers typically collect
various multivariate Key Performance Indicators (KPIs) time se-
ries to monitor and diagnose system performance. State-of-the-art
anomaly detection methods mostly use deep learning to extract the
normal patterns of data, due to its superior performance. However,
KPI data usually exhibit non-additive Gaussian noise, which makes
it difficult for deep learning models to learn the normal patterns,
resulting in degraded performance in anomaly detection. In this
paper, we propose a robust and noise-resilient anomaly detection
mechanism usingmultivariate KPIs. Our key insight is that different
KPIs are constrained by certain time-invariant characteristics of the
underlying system, and that explicitly modelling such invariance
may help resist noise in the data. We thus propose a novel anomaly
detection method called SDFVAE, short for Static and Dynamic
Factorized VAE, that learns the representations of KPIs by explic-
itly factorizing the latent variables into dynamic and static parts.
Extensive experiments using real-world data show that SDFVAE
achieves a F1-score ranging from 0.92 to 0.99 on both regular and
noisy dataset, outperforming state-of-the-art methods by a large
margin.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection.

KEYWORDS
Multivariate Anomaly Detection, Content Delivery Network, Static
and Dynamic Factorization, Latent Variable Model

∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450013

ACM Reference Format:
Liang Dai, Tao Lin, Chang Liu, Bo Jiang, Yanwei Liu, Zhen Xu, and Zhi-Li
Zhang. 2021. SDFVAE: Static and Dynamic Factorized VAE for Anomaly
Detection of Multivariate CDN KPIs. In Proceedings of the Web Conference
2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3442381.3450013

1 INTRODUCTION
Content Delivery Networks (CDNs) play a critical role in today’s
content delivery ecosystem, providing good user experiences with
reduced latency for various websites and cloud services. With grow-
ing complexity and scale, performance issues are inevitable. There-
fore CDN operators measure and collect various Key Performance
Indicators (KPIs) such as traffic volume, cache hit ratio and server
response delay, to conduct service quality management. However,
due to massive volume, noise in the data and lack of ground truth,
mining such time series KPI data for effective anomaly detection is
still a challenging task, especially to rapidly respond to performance
issues before they cause critical performance degradation.

In general, unexpected instances are usually considered as anom-
alies if they show significant abnormal behaviors. Earlier studies
[5, 6, 23, 35] started with univariate KPI anomaly detection, i.e., us-
ing only a single type of KPI data. More recent studies have shifted
to multivariate KPIs anomaly detection. Utilizing multiple types
of KPI data streams not only avoids training and maintaining a
large number of individual models for each metric, but also helps
increase the effectiveness of anomaly detection, as an incident typ-
ically tends to produce anomalies in multiple KPIs [2, 21, 31, 39].
Meanwhile, deep learning based anomaly detectionmethod, or deep
anomaly detection in short, has been widely concerned in recent
years due to its huge advantages in learning expressive representa-
tions of complex and massive data. The basic idea of deep anomaly
detection is to model the normal patterns of time series, considering
an anomaly or outlier often behaves differently from the normal
data. The larger an observation deviates from the normal patterns,
the more likely it is considered as an anomaly.

However, the performance of deep anomaly detection is vulnera-
ble to noise presented in multivariate KPIs since the models are also
trained to learn the distribution of noise in addition to normal data,
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(a) Time-varying characteristics

(b) Time-invariant characteristics exemplified by correlation analysis

Figure 1: 10-day real world multivariate CDN KPIs analysis

thus usually suffer from the problem of over-fitting [25]. Unfortu-
nately, noise is not unusual in real multivariate data due to volatile
system environment and fine-granularity data. As shown in Fig. 1(a),
it is observed that the multivariate time series data of CDN often
exhibit non-additive Gaussian noises, e.g., multiplicative Gaussian1,
and thus present a complex data distribution which makes it dif-
ficult to model. Although various anomaly detection methods on
multivariate KPIs have been proposed [16, 21, 24, 31, 39, 42], how-
ever, there are few studies on anomaly detection of time series data
with noise. As shown in Section 4, the state-of-the-art approaches
[24, 31, 39, 42] do not perform well on noisy data.

In this paper, our goal is to design a robust and noise-resilient
anomaly detection method for multivariate time series data. To this
end, we start with a thorough analysis of a real-world multivariate
CDN KPI dataset to gain a deeper insight of its characteristics. We
underscore two domain-specific observations as follows.
• Observation 1: Except for obvious time-varying or dynamic
characteristics such as periodicity on individual KPI, some
KPI pairs are highly correlated with each other2 , as shown
in Fig. 1(b). More importantly, the correlations of these KPI
pairs present time-invariant characteristic, namely, they re-
main unchanged for most of the time except for the occur-
rence of anomalies.
• Observation 2: the characteristic of time-invariant exists not
only in regular KPI pairs, but also in noisy KPI pairs, e.g., the
KPI pair of Out_Rate and Hit_ttfb in Fig. 1(b). It indicates that

1The noise degree is usually related with the KPI values, i.e., the larger the value the
higher degree the noise and vice versa.
2We employ Local Correlation Score (LCS) [26] to examine how the correlations change
over time. The scores of LCS range from 0 to 1 and the higher the score, the stronger
the correlation.

noise has little impact on the time-invariant characteristic
(See Section 2.1 for more details).

To some extent, the observed time-invariant characteristic re-
flects the intrinsic stability of a real network system like CDN in
which different KPIs are constrained by certain time-invariant char-
acteristic of the underlying system. Such time-invariance, which
has not been fully utilized by previous studies, can be considered as
a hidden representation of the normal patterns in multivariate KPIs.
Exploiting the time-invariant characteristic of multivariate data
to build a noisy-resilient anomaly detection system can not only
capture more expressive representations of normal data pattern,
but also help resist noise in the data.

Motivated by above observations, we propose a novel anomaly
detection method for multivariate KPIs, named Static and Dynamic
Factorized Variational AutoEncoder (SDFVAE). The major chal-
lenge is how to explicitly learn the representations of both time-
varying and time-invariant characteristics hidden in the multivari-
ate KPIs. To this end, a novel representation model is proposed to
factorize the latent space into two separate latent variables, namely
static and dynamic, which corresponds to time-varying and time-
invariant characteristics of multivariate KPIs respectively. Specifi-
cally, we utilize a Bi-directional Long Short-TermMemory (BiLSTM)
based inference network to capture the static latent representations,
and a recurrent Variational AutoEncoder (VAE) inference network
to learn the dynamic latent representations. The main contributions
of our work are summarized as follows:

• Through a careful analysis of a real-world CDN KPI dataset,
we find that multivariate KPIs exhibit hidden time-invariant
characteristics and modeling such time-invariance may help
resist the noise in the data.
• We propose a noisy-resilient anomaly detection method
based on static and dynamic factorized VAE named SDF-
VAE, which is capable of explicitly learning the representa-
tions of time-invariant characteristics of multivariate KPIs,
in addition to the time-varying characteristics.
• We conduct extensive experiments employing both real-
world dataset collected from a top CDN provider in China
and a public dataset. The results demonstrate that SDFVAE
achieves a F1-score ranging from 0.92 to 0.99, which signifi-
cantly outperforms state-of-the-art baselines. For the conve-
nience of reproduction, we have released our source codes
at https://github.com/dlagul/SDFVAE.

2 PRELIMINARY
2.1 Understanding Time-invariance: an

Example Analysis
To further understand the characteristic of time-invariance, we
will first briefly introduce the infrastructure of CDN. Then we will
illustrate the rationality behind time-invariant characteristic.

As shown in Fig. 2, a typical CDN works as follows. Internet
users will first query the scheduling center for the most suitable
CDN edge node. Then HTTP requests of the Internet user will
be routed to the edge node via the front-haul network, such as
cellular network and residential network. Once a cache hit occurs,
the edge node will return the requested content object directly; else

https://github.com/dlagul/SDFVAE
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Figure 2: CDN Infrastructure

it needs to retrieve the content from upper-layer content depository
or neighboring nodes via back-haul network. In order to detect and
diagnose the performance problem of CDN services, a common
practice for CDN operators is to monitor multivariate KPIs data
collected from CDN edge nodes.

As mentioned earlier, it is observed that CDN multivariate KPIs
exhibit both time-varying and time-invariant characteristics. Ob-
viously, time-varying characteristic comes from dynamic exter-
nal environment, e.g., the variation of Internet user requests and
volatile condition of network. However, time-invariant character-
istic mainly attributes to intrinsic stability of a network system,
which is determined by the limited capacity of servers (network
bandwidth, I/O throughput, etc.) and the well-defined internal inter-
faces between different components. For instance, due to capacity
limitation of CDN edge server, the increase of Out_Flow or out-
bound traffic will lead to a higher load of the server, resulting in the
increase of average TTFB (Time To First Byte)3 of "Hit" requests, or
Hit_TTFB. Thus it further reduces the average out-bound download
bitrates of Http sessions (Out_Rate) and vice versa. As a result, as
shown in Fig. 1(b), some KPI pairs such as (Out_Flow, Out_Rate)
and (Out_Rate, Hit_ttfb) are highly correlated and such correlation
remains unchanged for most of time. Meanwhile, thanks to the
stable but strong correlation between different KPIs, when one KPI
such as Hit_ttfb tends to be turbulent, it will lead to the same turbu-
lence in its highly related KPI, e.g., Out_Rate. Therefore, although
each KPI is noisy, the correlation of KPI pair (Out_Rate, Hit_ttfb)
seems to be stable and smooth as shown in Fig. 1(b).

However, once a system anomaly occurs, the intrinsic stability of
the system is violated and thus the time-invariant characteristic will
not be respected. For instance, for the second anomaly highlighted
in red in Fig. 1(b), it is observed that the correlation between the
KPIs of Out_Flow and Out_Rate becomes weak.

In summary, this example illustrates that time-invariance reflects
the intrinsic stability of a complex system, and thus is a critical
factor to capture normal patterns of multivariate KPIs. Therefore,
except for the well-known time-varying characteristic, leveraging
the time-invariance has the potential to learn robust representations
of multivariate noisy data and restrain the impact of noise.

3TTFB is a measure to indicate the processing delay between receiving an Http request
and sending the first byte of the reply at a CDN server.

Figure 3: The framework of SDFVAE

2.2 Variational AutoEncoder
Since SDFVAE works on VAE, here we give a brief introduction.
VAE is a deep generative model aiming to model the relationship
between latent variable z and observed variable x [20, 28]. Consid-
ering the joint probability distribution pθ (x ,z), it specifies a latent
variable model parameterized by θ over a set of observed variables
x and latent variables z, with the goal of maximizing the marginal
log-likelihood of logpθ (x) = log

∫
pθ (x |z)pθ (z)dz. However, it is

often intractable for complex generative models. VAE provides a
solution via introducing an inference model qϕ (z |x) parameterized
by ϕ to approximate the true posterior pθ (z |x). Thus, the problem
is transformed to an optimization problem with maximizing the
ELBO (Evidence Lower BOund) as follows.

logpθ (x) ≥ Eqϕ (z |x ) [logpθ (x |z)] − KL(qϕ (z |x)| |pθ (z))
= LVAE (x ;θ ,ϕ) (1)

where KL denotes the Kullback-Leibler divergence. Both generative
modelpθ (x |z) and inference modelqϕ (z |x) are constructed by deep
neural networks and trained jointly by applying backpropagation
based on the reparameterization trick [20].

3 PROPOSED METHOD
In this section, we first present the problem statement and then
the framework of SDFVAE, followed by the details of our design
including data preprocessing, representation model and anomaly
detection.

3.1 Problem Statement
We define themultivariate CDNKPIs ask = {k1,k2, ...,kN }, where
N is the durations of k , and each observation kτ ∈ Rn is a n-
dimensional vector at time τ (τ ≤ N ), and k ∈ Rn×N , where n
denotes the number of KPIs. The problem of anomaly detection on
multivariate KPIs can be defined as decidingwhether an observation
at certain time step τ (kτ ) is anomalous or not.

3.2 Overview of the Framework
As shown in Fig. 3, here we briefly introduce the overall frame-
work of SDFVAE. First, in order to obtain time-invariant and time-
varying related information, the original multivariate KPIs data is
normalized and then pre-processed via introducing sliding windows
(Section 3.3). Second, a novel VAE based representation model is
proposed to factorize the latent space into static latent variables and
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dynamic latent variables in order to represent both time-varying
and time-invariant characteristics of multivariate KPIs (Section 3.4).
Finally, anomaly detection is conducted based on the reconstruction
probability (Section 3.5).

The detailed neural network architecture of the representation
model is illustrated in the bottom of Fig. 3. First, we use a CNN
(Convolutional Neural Network) based encoder to capture complex
information of correlations hidden in multivariate time series data.
Second, a BiLSTM based inference network is employed to learn
the static latent representations. Third, we propose a recurrent VAE
inference network to learn the dynamic latent variables. Forth, the
sampled latent variables (static and dynamic) as well as the hidden
state variable of recurrent VAE are concatenated and fed into a
DCNN (DeConvolutional Neural Network) based decoder to obtain
the mean and standard deviation of generated variables.

3.3 Data Preprocessing
Motivated from previous studies on video processing [10, 22, 34]
where the sequence of video frames contains not only time-varying
(e.g., motion) but also time-invariant (e.g., object) information, we
pre-process the normalized KPIs data k as shown in Fig. 4. Sim-
ilar with a video frame, each xt denotes an observed variable. A
sequence containing T observed variables is denoted as x (τ )1:T =

[x (τ )1 , . . . ,x
(τ )
t , ...,x

(τ )
T ], where x (τ )T = [kτ−w+1, . . . ,kτ−1,kτ ], τ

corresponds to the time step of the observation k ,w is the length
of observed variable, l denotes the strides between two consec-
utive observed variables, thus x (τ )1:T ∈ Rn×w×T . Then we obtain
a pre-processed multivariate KPIs dataset denoted as D(x1:T ) =
{x (τ )1:T }

N
τ=w+(T−1)×l which consists of N −w + (T − 1) × l + 1 pre-

processed sequences of observed variables through sliding window.
The data distribution of these sequences can be denoted aspD (x1:T ).
For simplicity, we drop the index τ , and the input of our model
is a sequence of observed variables which can be denoted as x1:T
or x≤T . In the following of this paper, the term of sequence of
observed variables is interchangeable with observed sequence.

3.4 Representation Model
In order to explicitly model the observed sequence x1:T with both
time-invariant and time-varying features, we present a latent vari-
able model with two separated latent spaces: static and dynamic.
In this section, we mainly introduce the generative model and the
inference model involved, followed by the objective function used
for learning.

3.4.1 Generation. We formulate a generative process [15] for the
observed sequence by assuming it can be generated from both
the static and dynamic latent variables s and d as follows. First,
the static latent variables s representing the factors remaining un-
changed over time are sampled from a time-independent prior
distribution pθ (s). Then the dynamic latent variables dt at each
time step are sampled from the time-dependent prior distribution
pθ (dt |d<t ) as illustrated in Fig. 5(a) and represent the factors indi-
cating how the current observed variable changes over the previous
observed variables x<t ; Last, xt are generated from the conditional
distribution pθ (xt |x<t ,d≤t , s).

Figure 4: Multivariate-KPI data preprocessing

We implement the above generative process in the following way.
We first place time-dependent prior on dynamic latent variables by
employing a RNN (Recurrent Neural Network). As illustrated in
Fig. 5(a), dt is conditioned on the hidden state variable hpt−1, which
is updated using the recurrence equation

h
p
t = rp (h

p
t−1,dt ) (2)

where rp (.) is the deterministic non-linear transition function of
RNN. Different from [31] which utilizes time-independent prior of
dynamic latent variables, in our design each dt is conditioned on
d<t to introduce time-dependent prior of dynamic latent variables ,
which helps improve the performance of representation model [8].
Next, inspired by [8, 12], we introduce the hidden state variables of
an RNN. A series of VAEs are stacked at each time step and linked
by these state variables to construct the generative model of the
sequence. In this way, each VAE at time step t is conditioned on the
state variable ht−1. This kind of structure is denoted as recurrent
VAE. As shown in Fig. 5(b), except for latent variables dt and s , xt
is also conditioned on ht−1. Besides, the recurrence equation to
update state variables is illustrated in Fig. 5(c) and formulated by

ht = r (ht−1,dt ,xt ) (3)

where r (.) is the deterministic non-linear transition function. There-
fore, each generated variable xt is conditioned on x<t , d≤t and s .
In this way, our generative model results in the factorization:

pθ (x1:T , s,d1:T ) = pθ (s)
T∏
t=1

pθ (xt |x<t ,d≤t , s)pθ (dt |d<t ) (4)

Specifically, each of the RHS (Right-Hand Side) term is formulated
as follows:

pθ (s) = N(s |0, I ) (5)

pθ (dt |d<t ) = N(dt |дµd (h
p
t−1),diaд(дσ 2

d
(h
p
t−1)) (6)

pθ (xt |x<t ,d≤t , s) = N(xt | fµx (ht−1,dt , s),diaд(fσ 2
x
(ht−1,dt , s)))

(7)

where the prior over the static latent variables s is a standard multi-
variate Gaussian distribution and the prior over the dynamic latent
variables dt is a diagonal multivariate Gaussian, whose mean and
variance are parameterized by neural networks дµd (.) and дσ 2

d
(.)
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(a) Prior of latent variables d (b) Generative model (c) Recurrent structure (d) Inference model

Figure 5: Graphical models of each component of SDFVAE: Circles denote stochastic variables while diamond-shaped units
are used for deterministic variables, shaded nodes denote observed variables. Solid arrows in purple represent the recurrence
equation and time-dependent prior of dynamic latent variables while the red denote the recurrence equation of state variables
in recurrent VAE. Green solid arrows represent generative model while blue dashed arrows denote the inference network.

with input hpt−1. Moreover, the generative distribution of the ob-
served variable xt is also a diagonal multivariate Gaussian, whose
mean and variance are parameterized by neural networks fµx (.)
and fσ 2

x
(.)with inputht−1,dt and s . Specifically, considering LSTM

(Long Short-term Memory) is a special gated RNN which is able
to learn the long-term dependence in a sequence, we first employ
a LSTM as rp (.), followed by two MLPs (Multi-Layer Perceptrons)
to construct дµd (.) and дσ 2

d
(.) respectively. Besides, since DCNN

performs well in spatial data restoration [36], e.g., image, here two
DCNNs are used to approximate fµx (.) and fσ 2

x
(.) respectively as

shown in Fig. 6. Note that all parameters in generative models are
denoted as θ .

The key difference between SDFVAE and the models with only
dynamic latent space [8, 31] is that these models only consider the
factors that indicate how the current changes over the former while
ignores the factors that remain unchanged over time. Accordingly,
our separated latent variable model helps learn richer represen-
tations to capture the normal patterns of multivariate KPIs and
provides more information to reconstruct them.

3.4.2 Inference. The goal of inference here is to get the full pos-
terior over the static and dynamic latent variables pθ (s,d1:T |x1:T )
, however, this full posterior is always intractable. Thus, we ap-
ply variational inference method to get an approximate one. To
this end, as shown in Fig. 5(d), the static latent variables s are
time-independent and conditioned on the entire observed sequence
which implies that its approximate posterior will be a function of
x1:T . Further, as demonstrated in section 3.4.1, since each VAE at
time step t is conditioned on the state variable ht−1, except for
observed variable xt , each dynamic latent variable dt is also con-
ditioned on ht−1. Accordingly, dt is conditioned on d<t and x≤t
due to ht = r (ht−1,dt ,xt ). In this way, we observe that it results
in a fully-factorized variational distribution:

qϕ (s,d1:T |x1:T ) = qϕ (s |x≤T )
T∏
t=1

qϕ (dt |d<t ,x≤t ) (8)

We formulate each of the RHS term as follows:

qϕ (s |x≤T ) =N(s |φµs (x1:T ),diaд(φσ 2
s
(x1:T ))) (9)

qϕ (dt |d<t ,x≤t ) =N(dt |ψµd (ht−1,xt ),diaд(ψσ 2
d
(ht−1,xt ))) (10)

where the posteriors over s and each dt are all diagonal multivari-
ate Gaussian distributions. As shown in Fig. 6, since CNN is able

to extract spatial features, e.g., correlations, from data with convo-
lution structures, we employ a CNN to extract the information of
correlations and get a summarized fixed-dimension vector which
is denoted as x̂1:T . Then, consider that the latent variables s is con-
ditioned on the entire observed sequence x1:T and that BiLSTM
[13] helps capture context information of a sequence. Thus, similar
with [22], we utilize a BiLSTM, followed by two MLPs taking the
forward and backward hidden states of BiLSTM as input to approx-
imate φµs (.), φσ 2

s
(.). Last, a LSTM is employed as r (.) and we use

another two MLPs to constructψµd (.) andψσ 2
d
(.) respectively. The

parameters of these neural networks are denoted as ϕ.

3.4.3 Learning. As the usual strategy of variational inference, the
optimization of our model can be achieved by maximizing the
corresponding ELBO, which can be expressed as

L(x1:T ;ϕ,θ ) = Eqϕ (s,d≤T |x≤T )
[ T∑
t=1

[
logpθ (xt |x<t , s,d≤t )−

KL(qϕ (dt |d<t ,x≤t )| |pθ (dt |d≤t ))
]
− KL(qϕ (s |x≤T )| |pθ (s))

]
(11)

where KL denotes the Kullback-Leibler divergence. Therefore, we
train the generative and inference models jointly with

argmax
θ,ϕ

EpD (x1:T ) [L(x1:T ;ϕ,θ )] (12)

We employ Adam optimizer [19] during the training and utilise the
reparameterization trick [20] in our model. The complete procedure
is given in Algorithm 1.

3.5 Anomaly Detection
We apply the likelihood to determine whether an observed variable
is anomalous or not [1, 27, 35]. The log-likelihood logpθ (xt |x<t , s,d≤t )
denotes the reconstruction probability of each observed variable
xt , consequently, logpθ (x

(τ )
T |x

(τ )
<T , s,d≤T ) is employed to evaluate

the reconstruction probability of x (τ )T = [kτ−w+1, ...,kτ−1,kτ ] ∈
Rn×w . However, considering the real-time requirement for anom-
aly detection, we only focus on the reconstruction probability of
kτ ∈ Rn . Since the generative distribution (or known as likeli-
hood) is a diagonal Gaussian, the log-likelihood can be factorized as∑τ
i=τ−w+1

[
logpθ (ki |x

(τ )
<T , s,d≤T )

]
. Therefore, anomaly score of

kτ is denoted as Sτ = logpθ (kτ |x
(τ )
<T , s,d≤T ). Note that the lower
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Figure 6: Detailed neural network architecture of SDFVAE. Blue dash arrows denote the inference network, solid arrows in
green represent generative model while the red indicate the recurrence equation of state variables in recurrent VAE and black
dotted arrows represent the sampling process using the reparameterization trick. Rectangles in purple and blue denote the
fully connected layers predicting the mean and log variance of dynamic and static latent variables respectively.

Algorithm 1: SDFVAE training
input :The pre-processed KPIs training dataset D(x1:T )
output :The trained networks rp , r , f , д, φ andψ

1 Initialize the state variables hp0 , h0 and the network
parameters θ ,ϕ

2 repeat
/* Sample minibatch samples from the training dataset */

3 x1:T ∼ pD (x1:T )
/* KL over s using Eq. 9 and Eq. 5 */

4 Lkl_s ← KL(N(φµs (x1:T ),diaд(φσ 2
s
(x1:T ))) | | N(0, I ))

/* Reparameterization trick based on Eq. 9 */

5 Obtain ϵ ∼ N(0, I ), set
s ← ϵ ⊙ diaд(φσ 2

s
(x1:T )) + φµs (x1:T )

6 Lkl_d ← 0,Ll lh ← 0
7 for t = 1 to T do

/* KL over dt using Eq. 10 and Eq. 6 */

8 Lkl_d ← Lkl_d +
KL(N(ψµd (ht−1,xt ),diaд(ψσ 2

d
(ht−1,xt ))) | |

N(дµd (h
p
t−1),diaд(дσ 2

d
(h
p
t−1))))

/* Reparameterization trick based on Eq. 10 */

9 Obtain ε ∼ N(0, I ), set
dt ← ε ⊙ diaд(ψσ 2

d
(ht−1,xt )) +ψµd (ht−1,xt )

/* Obtain the log-likelihood using Eq. 7 */

10 Ll lh ← Ll lh +

log[N(xt | fµx (ht−1,dt , s),diaд(fσ 2
x
(ht−1,dt , s)))]

/* Update state variables using Eq. 2 and Eq. 3 */

11 Obtain ι ∼ N(0, I ), set
h
p
t ← rp (h

p
t−1, ι ⊙ diaд(дσ 2

d
(h
p
t−1)) + дµd (h

p
t−1))

12 ht ← r (ht−1,dt ,xt )

13 end
14 L(x1:T ;θ ,ϕ) ← Ll lh − Lkl_s − Lkl_d // Eq. 11

/* Update parameters according to gradients, Eq. 12 */

15 θ ,ϕ ← Adam(−▽θ,ϕL(x1:T ;θ ,ϕ))
16 until convergence

the score, the higher the degree of anomaly. There are various para-
metric [24] or nonparametric [16, 31] thresholding techniques to

conduct anomaly detection based on anomaly score. In this paper,
we do not take thresholding technique as our major work and leave
it as a future work.

4 EVALUATION
4.1 Datasets
Extensive experiments are conducted on the basis of two categories
of real-world datasets to evaluate the effectiveness of SDFVAE. The
first consists of three CDN multivariate KPI datasets collected from
a top ISP-operated CDN in China, while the other comes from a
public dataset named SMD (Server Machine Dataset) [31].

For CDN multivariate KPI datasets, the three datesets are quite
different from each other since they are collected from different
provincial-level edge sites of the CDN provider. Besides, the first
and the second datasets correspond to two popular VoD (Video on
Demand) websites respectively, while the other is of a live streaming
website. In addition, each dataset contains different levels of noise.
The basic statistics of our datasets are summarized in Table 1. It
should be noted that there are 7, 5 and 6 ground-truth anomaly
segments in the test set of the three datasets, which have been
confirmed by human operators.

For the public SMD dataset 4, it contains 28 entity-level datasets
each of which was collected from a server machine to indicate the
measures like CPU load and network usage, etc.. Among them, we
observe that some datasets show a higher degree of noise, while
the other exhibit a lower noise level5. In order to evaluate the
performance of different algorithms on both regular data and noisy
data, we manually divide them into two groups, namely, SMD-H
with high-level noisy data and SMD-L with regular data. SMD-H
consists of the datasets of ’machine-1-5’, ’machine-3-5’, ’machine-
3-8’ and ’machine-3-10’, while others are included in SMD-L.

4.2 Evaluation Metrics
We employ four metrics including Precision, Recall, F1-score and
PR_AUC (Area Under Curve) for performance evaluation. Since
no specific threshold selecting method is provided in SDFVAE (we

4See https://github.com/NetManAIOps/OmniAnomaly for details.
5The noise degree can be quantified by SNR (Signal-to-Noise Ratio), however, we make
a rough judgment for simplicity.

https://github.com/NetManAIOps/OmniAnomaly
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Table 1: Basic statistics and settings of all datasets

Statistics KPIs of VoD1 KPIs of VoD2 KPIs of Live
# KPIs 24 16 48

durations (day) 78 64 54
granularity (min) 5 1 5

# points 22,356 91,507 15,617
# anomaly segments 7 5 6
anomaly ratio (%) 1.6 0.434 1.24

train period 1 ∼ 10,656 1 ∼ 51,336 1 ∼ 7,808
test period 10,657 ∼ 22,356 51,337 ∼ 91,507 7,809 ∼ 15,617

leave it as the future work), we obtain all F1-score by enumerating
all thresholds and use the best F1-score as the final score which is
also denoted as F1-best [31, 35]. In general, ROC_AUC can also be
employed as the evaluationmetrics especially when no thresholding
technique is specified. However, considering the highly skewed
datasets, e.g., 0.43% of anomaly ratio for the CDN VoD2 dataset,
even a large change in the number of false positives may lead to an
insignificant change of the false positive rate used in ROC (Receiver
Operator Characteristic) analysis. In this case, the performance of
algorithms tends to exhibit no significant difference in ROC space,
however, such difference can be clearly captured in PR (Precision-
Recall) space [9]. Therefore, we prefer to use F1-best and PR_AUC
as our evaluation metrics.

From a practical point of view, we mainly focus on contiguous
anomalies or anomaly segment, instead of single-point anomaly.
However, considering the number of anomaly segments is too small
in our datasets, we calculate aforementioned metrics based on point
anomaly as follows. If any point in a ground-truth anomaly segment
is correctly detected, all points in the ground-truth anomaly seg-
ment will be identified as true positive, while the points outside the
ground-truth anomaly segment will be considered as normal [31].

4.3 Baseline Methods
We compare SDFVAE with four state-of-the-art unsupervised meth-
ods for multivariate data as follows.
• MSCRED [39]. The signature matrix is introduced to cap-
ture the correlations of different KPI pairs and resist noise.
Then a hierarchical AutoEncoder is proposed to model the
spatial and temporal information hidden in the signature
matrices. Anomaly score can be achieved based on the re-
construction error of signature matrix.
• LSTMED [24]. A Seq2seq based deterministic model to cap-
ture the patterns of multivariate time series by learning the
temporal dependency.
• DAGMM [42]. A deep Autoencoder based stochastic model
for multivariate data. However, no temporal information is
taken into account.
• OmniAnomaly [31]. A stochastic recurrent neural net-
work based model to learn robust representation of mul-
tivariate data, and perform anomaly detection based recon-
struction probability.

These baselines are carefully selected with respect to different
properties as summarized in Table 2. It is worth noting that all base-
line methods do not consider time-invariant characteristic hidden
in multivariate time series data.

In our experiments, we implement SDFVAE based on Pytorch.
Both CNN encoder and DCNN decoder are with 3 convolutional

Table 2: Comparison of baselines and SDFVAE

Methods Deterministic
/ Stochastic

Consider
Temporal

Dependency
(time-variant)

Consider
time-invariance

MSCRED deterministic ✓ ×

LSTMED deterministic ✓ ×

DAGMM stochastic × ×

OmniAnomaly stochastic ✓ ×

SDFVAE stochastic ✓ ✓

layers, whose filters and strides are set according to the number
of KPIs. For instance, for the VoD1 dataset with 24 KPIs, the filters
of CNN encoder and the corresponding strides are (2,2), (2,2), (2,3)
successively. The size of vector x̂t is fixed to 100, and the dimen-
sions of the hidden states of LSTMCell and BiLSTM are 40. The
parameters w , l and T of data preprocessing is set to 36, 10 and
20, respectively. Besides, we set s-space and d-space dimensions to
8 and 10 empirically. Adam optimizer is employed with learning
rate of 0.0002, the batch size is set to 64. The other four baselines
are reproduced based on open-source codes 6. For each baseline,
we adjust its hype-parameters, for instance, training epochs and
dimensions of latent space, to obtain optimized performance. Our
experiments are conducted on a server with Intel(R) Xeon(R) CPU
E5-2620 v2@ 2.10GHz accelerated by a NVIDIA TITANXp graphics
card with 12GB VRAM.

4.4 Results and Analysis
4.4.1 SDFVAE vs. Baselines. Table 3 reports the precision, recall
and F1-best of the four state-of-the-art baselines and SDFVAE on
both the CDN datasets and the SMD datasets, where the best F1-
scores for all methods are highlighted in bold-face and the second
best are indicated by underline. As for SMD-L and SMD-H datasets,
it illustrates the overall performance of each method via unionizing
the datasets belonging to them. Compared with other baselines,
SDFVAE consistently achieves the best performance on all datasets.
Specifically, SDFVAE achieves the F1-best of 0.965, 0.919 and 0.992
on datasets of VoD1, VoD2 and Live, as well as 0.984 and 0.973 on the
lower and higher degree noise of the public datasets, respectively.
The case studies of SDFVAE are shown in Fig. 7(a) and 7(b), where
it is observed that the anomaly score of SDFVAE is relatively stable
at most of the time, while presents serious spikes in the anomaly
regions. It further demonstrates the capability of SDFVAE to learn
normal patterns of noisy KPIs.

OmniAnomaly builds on a stochastic model being capable of
learning robust representation of multivariate time series data and
achieves the second best overall performance. However, Omni-
Anomaly introduces only the dynamic latent variables and can
be trained to learn the posterior distribution of both normal data
and noises, so it suffers from the problem of over-fitting. In this
case, some anomalies may not be detected, since the distribution
of them may be similar to that of noise. The case studies shown
in Fig. 7 validate our conjecture. As shown in Fig. 7(c), we notice
the anomaly score of the fifth anomaly on VoD1 dataset is much
lower than that shown in Fig. 7(a), thus this anomaly has the risk

6https://github.com/7fantasysz/MSCRED,
https://github.com/KDD-OpenSource/DeepADoTS,
https://github.com/NetManAIOps/OmniAnomaly

https://github.com/7fantasysz/MSCRED
https://github.com/KDD-OpenSource/DeepADoTS
https://github.com/NetManAIOps/OmniAnomaly
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Table 3: Comparison of Anomaly Detection Performance based on Precision, Recall and F1-best

Methods
Noisy Data Regular Data

KPIs of VoD1 KPIs of VoD2 KPIs of Live SMD-H SMD-L
Pre Rec Fbest Pre Rec Fbest Pre Rec Fbest Pre Rec Fbest Pre Rec Fbest

MSCRED 0.772 0.777 0.775 0.849 0.783 0.815 0.893 0.861 0.877 0.636 0.851 0.727 0.916 0.860 0.887
LSTMED 0.881 0.67 0.758 0.792 0.854 0.821 0.819 0.861 0.839 0.593 0.832 0.692 0.812 0.896 0.852
DAGMM 0.785 0.67 0.723 0.925 0.627 0.747 0.972 0.706 0.818 0.513 0.731 0.603 0.694 0.864 0.770

OmniAnomaly 0.97 0.67 0.793 0.753 0.854 0.80 0.928 0.861 0.893 0.540 0.787 0.641 0.976 0.975 0.976
SDFVAE 0.933 1.0 0.965 0.994 0.854 0.919 0.985 1.0 0.992 0.984 0.963 0.973 0.982 0.987 0.984

(a) SDFVAE on VoD1 (b) SDFVAE on Machine-1-5

(c) OmniAnomaly on VoD1 (d) OmniAnomaly on Machine-1-5

(e) MSCRED on VoD1 (f) MSCRED on Machine-1-5

Figure 7: Case study of anomaly score on VoD1 and SMD
machine-1-5 datasets. Regions highlighted in red represent
the ground-truth anomaly segments

Figure 8: PR_AUC over different datasets

to be missed. The reason behind it is that OmniAnomaly assigns a
higher log-likelihood to it due to the over-fitting. We also observe
similar cases when we compare Fig. 7(d) with Fig. 7(b). Besides,
the more turbulent anomaly score further demonstrates that Omni-
Anomaly is inferior to SDFVAE in capturing the normal patterns of
noisy KPIs, especially as shown in 7(d). Consequently, it achieves
an inferior performance compared with SDFVAE.

MSCRED is designed to be robust to noisy data via introducing
the signature matrix which utilizes the correlations between differ-
ent KPI pairs. As shown in our experiments, it presents a decent
performance, especially on noisy data like SMD-H. However, it per-
forms much less compared with SDFVAE. Specifically, the F1-best

of MSCRED on SMD-H is 0.727 while SDFVAE reaches to 0.973. One
reason behind that is the signature matrix is not sensitive to some
real anomalies, especially for anomalies with small degree or short
duration. Thus, it fails to detect these anomalies. Another possible
reason lies in that MSCRED is a deterministic model and is not
capable of learning the robust representations of varying charac-
teristics in multivariate time series data. Therefore, there are some
characteristics that MSCRED may have never seen before, which
often leads to higher reconstruction errors. The case study shown
in Fig. 7 also verifies our conjectures. Compared with SDFVAE and
OmniAnomaly, MSCRED tends to achieve a higher anomaly score
in some normal regions since it fails to learn the robust represen-
tations. In addition, MSCRED derives a lower anomaly score with
respect to some anomaly regions, e.g., the fifth anomaly region in
Fig. 7(e) and the sixth region in Fig. 7(f) , because the signature
matrix is insensitive to some anomalies with small degree or short
duration. LSTMED belongs to a deterministic model whose hidden
layer is composed of LSTM units. Therefore, it fails to handle sto-
chastic information and learn robust representations, which lead to
a lower performance. Since DAGMM is designed for multivariate
data rather than time series, it shows a plain performance, however,
it illustrates that employing the spatial characteristics of multi-
variate data also works for anomaly detection. Meanwhile, it also
validates the importance of temporal characteristics. Accordingly,
just as presented by the performance of SDFVAE, considering both
temporal and spatial characteristics of multivariate time series is
critical for anomaly detection.

We also illustrate the corresponding PR_AUC in Fig. 8. It is
observed that PR_AUC is mostly consistent with F1-best except for
slight differences. Besides, since it is more important to have an
excellent F-score at a certain threshold than to have just high but
not so excellent F-scores at most thresholds [35], here we prefer to
use F1-best to demonstrate the performance.

The above results validate that SDFVAE has significant advan-
tages of performance on both regular and noisy data. The reason
behind the performance is that SDFVAE is elaborately designed to
explicitly take both time-varying and time-invariant characteristics
into account. Thanks to the time-invariance which is not sensitive
to noise (even the none-additive Gaussian noise), SDFVAE is ca-
pable of alleviating the over-fitting to some extent and learning
robust and expressive representations of multivariate KPIs.

4.4.2 SDFVAE vs. Variants. Except for the four baselines, we also
compare the performance of SDFVAE with its two variants, namely
SDFVAE-v1 and SDFVAE-v2. Among them, SDFVAE-v1 leaves the
dynamic latent space alone, while removing the static latent space s .
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Figure 9: Comparison of SDFVAE with its variants

(a) SDFVAE-v1 (b) SDFVAE-v2

Figure 10: Case study of SDFVAE variants on VoD1 dataset

The other variant SDFVAE-v2 is to replace the conditional prior dis-
tribution of dynamic latent variablesd at each time step pθ (dt |d<t )
with time-independent standard diagonal multivariate Gaussian
pθ (dt ) = N(0, I ).

As shown in Fig. 9, SDFVAE-v1 achieves the lowest F1-best on
all datasets due to removing the static latent space s . The reason
probably lies in that, without static latent variables, SDFVAE-v1
cannot learn the representations of time-invariant characteristics
of multivariate KPIs, thus is not capable of resisting noise. Mean-
while, it is observed that the F1-best of SDFVAE-v2 on all datasets
is also lower than that of standard SDFVAE. The reason for this is
that SDFVAE-v2 replaces the time-dependent (conditional) prior of
dynamic latent variables d with time-independent prior, thus fails
to capture the feature of temporal dependency effectively. Com-
pared with SDFVAE and SDFVAE-v2, the lowest performance of
SDFVAE-v1 further emphasizes the importance of time-invariant
characteristics for anomaly detection of multivariate KPIs. In addi-
tion, we also show the case studies of SDFVAE-v1 and SDFVAE-v2
in Fig. 10. Compared the anomaly score shown in Fig. 10(a) with
that in Fig. 7(a), we notice that the anomaly score of SDFVAE-v1
is more turbulent than that of SDFVAE. Thus there is relatively
higher log-likehilood of the fifth anomaly due to the over-fitting of
SDFVAE-v1 which results in its inferior perfromance.

To sum up, our experimental results validate that the key designs
of SDFVAE, including factorizing the latent space into two separate
parts and time-dependent prior of dynamic latent variables, are
sensitive to the performance and thus are beneficial for multivariate
anomaly detection.

4.5 Parameter Sensitivity
We first study the sensitivity of the hyper-parameters w , l and T
set used for data preprocessing. For simplicity, we pick the rep-
resentative dataset VoD1 to conduct our experiments. We show
the results in Fig. 11. To study the impact ofw , we set l = 10 and
T = 20, and then we increase w from 1 to 144. It is observed that
lower values of w tend to result in poor performance, since the

Figure 11: The sensitivity ofw , l and T on VoD1 dataset

Figure 12: The sensitivity of dimensions of latent variables
on VoD1 dataset

shorter the length of the observed variable, the less correlation
information it contains in each pair of KPIs. Thus SDFVAE may not
be able to capture the normal patterns effectively via time-invariant
characteristics, especially whenw = 1. Meanwhile, we observe that
the performance tends to be relatively stable whenw reaches to 18.

Similarly, we conduct additional experiments to analyze the ef-
fect of l andT . We increase l from 1 to 100 and notice that a smaller
value of l makes higher performance. It is because the longer strides
between two consecutive variables l may increase the difficulty of
learning the temporal dependency. Thus it leads to inferior per-
formance. After that, we increase T from 2 to 35 and observe that
SDFVAE exhibits inferior performance before T reaches to 5. The
reason is that one sequence with less observed variables may con-
tains less time-varying and time-invariant information, which is
not enough to capture the normal patterns. It validates that SDF-
VAE can achieve a relatively stable performance in a wide range
ofw , T and l , except for some very small values ofw , T and large
values of l .

Next we analysis the impact of the dimensions of latent vari-
ables s and d . This experiment is also conducted based on VoD1
dataset. Fig. 12 shows F-best and PR_AUC of SDFVAE by varying
dimensions of static and dynamic latent variables. It is observed
that the F-best do not change significantly when the dimensions
vary between 8 and 32. This demonstrates there is a large room for
us to choose the latent variable dimension.

4.6 Algorithm Efficiency
In order to examine the feasibility of SDFVAE in real system, we
study its efficiency in terms of training time and testing time, with
the same parameter setting and hardware configuration as described
in subsection 4.3. Since SDFVAE tends to converge within 30 epochs
on all datasets we use, we record the training time of SDFVAE
by running 30 epochs. As shown in Table 4, the training time of
SDFVAE increases linearly with the number of training samples
and ranges from 10 minutes to 61 minutes, based on our experiment
server equipped with a single TITAN GPU. The maximum training
time reaches to 61 minutes when training the dataset of VoD2which
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Table 4: Training and testing time of SDFVAE

Datasets # Training
samples

Training
times (min)

Testing times per
sample (sec)

VoD1 10,430 14.25 0.045
VoD2 51,112 61 0.045
Live 7,582 10.25 0.044

has around 51000 samples and spans over 35 days. Given a testing
sample, the average time to obtain the anomaly score is around
0.045 seconds on these three CDN datasets. These results further
demonstrate that SDFVAE can be easily deployed in real-world
CDN in the manner of offline training and online detection.

4.7 Visualization of Latent Variables
To further demonstrate the capability of our model to extract static
and dynamic representations, we conduct an additional experiment
to visualize the learned latent variables.

Specifically, we start with selecting some labeled normal ob-
served sequences (x (τ )1:T , y) from the dataset of VoD1, where y de-
notes the certain hour that an observed sequence belongs to. Then
we obtain the static variables s and dynamic variables d1:T of
these observed sequences with the trained SDFVAE, and employ t-
Distributed t-SNE (Stochastic Neighbor Embedding) [33] to project
them separately to a two-dimensional space. We color-code both
projected s and d of each observed sequence according to the hour
it belongs to, that is, the hour of time step kτ shown in Fig. 4. In-
tuitively, due to the multivariate KPIs show periodic properties,
the observe sequences belong to the same hour tend to exhibit the
similar time-varying characteristic, even though some of them do
not belong to the same day. Hence, the dynamic latent variables
tend to form clusters in the projectedd space according to the hours
they belong to. Meanwhile, since the time-invariant characteristic
remains unchanged over time, the static latent variables should
scatter randomly in the projected s space, despite some of them
belong to the same hour.

As shown in Fig. 13(a) and 13(b), each point indicates the latent
variables of an observed sequence and the corresponding color
represents the certain hour it belongs to. We notice that in the pro-
jected d space, the dynamic latent variables of observed sequences
in the same hour tend to form a cluster, e.g., as shown in Fig. 13(b),
the cluster in yellow highlighted by a red circle is formed by sam-
ples belong to 23:00. It should be noted that we only show the
dynamic latent variables dT which represent the factors indicating
how x (τ )T changes over the previous observed variables x (τ )1:T−1. In
contrast, there is no such clustering phenomenon in the projected
s space, which implies that s tends to contain information about
time-invariant factors instead of time-varying factors. As a result,
this experiment demonstrates that SDFVAE can explicitly learn
the representations of both the time-invariant and time-varying
characteristics.

5 RELATEDWORK
5.1 Multivariate Anomaly Detection
There are a growing number of literature on multivariate anomaly
detection. Since supervised methods [23, 29, 37] usually suffer from
labor-intensive data labelling and thus become impractical in most

(a) Latent variables s by hour (b) Latent variables dT by hour

Figure 13: Latent variables visualized via t-SNE

scenarios of anomaly detection, here we mainly summarize deep
learning based unsupervised methods [16, 21, 24, 31, 39, 42].

Telemanom [16] is a prediction based method to detect anomaly
for telemetry channels of spacecrafts via modeling the temporal
dependency of time series data through LSTM. It determines an
anomaly depending on the residual error between the predicted
and the observed value. LSTMED [24] is a seq2seq [7, 32] based
anomaly detection method where a LSTM based encoder-decoder
is employed to learn the temporal dependency of multivariate time
series and anomaly detection is determined based on reconstruc-
tion errors. It belongs to a deterministic anomaly detection method
due to its design of deterministic latent space. Compared with
the above deterministic models, some recent studies [3, 21, 31, 42]
show stochastic approach has the potential to learn robust rep-
resentations of multivariate time series since it helps capture the
probability distributions of them. DAGMM [42] utilises an Autoen-
coder to learn representations and a Gaussian Mixture Model to
perform density estimation, however, it ignores the temporal in-
formation. [21] proposes a Generative Adversarial Network (GAN)
based multivariate anomaly detection method, employing the Long-
Short-Term-Memory Recurrent Neural Networks (LSTM-RNN) as
the base model of the GAN framework to capture the temporal
and spatial information of time series. OmniAnomaly [31] is also a
stochastic recurrent neural network based method for multivariate
time series. It aims to learn the robust normal patterns of multivari-
ate data.

5.2 Anomaly Detection on Noisy Data
Since deep learning-based models tend to suffer from the problem
of over-fitting due to noisy data [25, 38], various noise-robust mod-
els have been studied in image classification[11, 40] and generation
[4, 18]. [41] proposes a robust detection model on image by apply-
ing the idea of RPCA (Robust Principal Components Analysis) into
AutoEncoders. However, there are few studies on anomaly detec-
tion of noisy time series data. [5] utilizes the adversarial training
technique to capture the complex patterns in univariate KPI with
non-Gaussian noises and complex data distribution. As suggested
in previous study [14, 17, 30], the correlations between different
pairs of multivariate time series are critical to characterize the
system, thus may contribute to the performance of anomaly de-
tection. MSCRED [39] introduces a signature matrix and utilizes
the correlation of KPI pairs to resist noise, where a hierarchical
encoder-decoder based deterministic models is used to capture the
spatial and temporal patterns. However, the signature matrix is
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not sensitive to some anomalies, especially for these with lower
degree and short duration anomalous. Additionally, MSCRED be-
longs to a deterministic model, thus may fail to learn the robust
representations of multivariate with different characteristics.

Similar with some of existing studies, SDFVAE also targets to
learn both temporal and spatial representations of multivariate
data. However, instead of resorting directly to the correlations be-
tween KPIs, we take a step forward and reveal a more general time-
invariant characteristics in multivariate data. Further we utilize
the time-invariance to build a robust and noise-resilient anomaly
detection approach.

6 CONCLUSION
Through an in-depth analysis of real-world multivariate CDN KPI
dataset, for the first time we reveal that multivariate KPIs exhibit
time-invariant characteristics and that explicitly modelling such
invariance may help resist noise in the data. Further, we propose
a novel multivariate anomaly detection method called SDFVAE to
learn the representation of KPIs via explicitly factorizing the latent
variables into dynamic and static parts. Our experiments based
on real-world data show that SDFVAE significantly outperforms
state-of-the-art baselines.
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