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ABSTRACT
Collapsed forwarding has been used in cache systems to re-
duce the load on servers by aggregating requests for the same
content. This technique has made its way into design pro-
posals for the future Internet architecture through a data
structure called Pending Interest Table (PIT). A PIT keeps
track of interest packets that are received at a cache-router
until they are responded to. PITs are considered useful for
a variety of reasons e.g., communicating without the knowl-
edge of source and destination, reducing bandwidth usage,
better security, etc. Due to the high access frequency to the
PIT, it is essential to understand its behavior, and the effect
it has on cache performance. In this paper, we consider a
TTL-based cache with a Pending Interest Table, and ana-
lyze the cache hit probability, mean response time perceived
by the users, and size of the PIT, among other metrics of
interest. In our analysis, we account for the time it takes
for the cache to download a file from the server defined as a
random variable. We apply our model to analyze traditional
caching policies LRU, FIFO, and RANDOM, and verify the
accuracy of our model through numerical simulations.

1. INTRODCUTION
With the accelerating growth in data traffic, caching

has been widely acknowledged as one of the most effective
means to improve the performance of web applications (e.g.,
streaming video on-demand). Storing copies of popular con-
tent at several locations in the network can greatly reduce
network bandwidth usage, load on servers, and more impor-
tantly the service delay perceived by the end-users [5]. To
further reduce the load on the servers, cache systems (e.g.,
Squid [1]) usually employ techniques such as collapsed for-
warding, where multiple user requests for the same content
are aggregated and one request is sent out to the back-end
server. This technique has been in use in commercial caches
built at Akamai since the very early days (circa 1999) [18].

Over the past few years, the research community has been
advocating for content-centric networking (CCN), an archi-
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tecture that emphasizes directly accessible and routable con-
tent, arguing that today’s Internet is more concerned with
what a user wants rather than where it is located [15]. One
important feature of the CCN architecture is the integra-
tion of caching in network routers. Named Data Networking
(NDN) [12, 24] is one of the most popular designs following
the CCN approach. In NDN, a user puts the name of the
desired content in an Interest packet and sends it to the net-
work. Once the Interest packet reaches a network node that
has the content, a Data packet is returned to the user by
traversing the reverse path taken by the Interest packet.

One of the core components of the NDN architecture is
the Pending Interest Table (PIT) which performs collapsed
forwarding by keeping track of currently unsatisfied Interest
packets. An incoming request, at an NDN router, is for-
warded to the next hop only if the PIT finds no pending
Interest for the same content name. Once the content is re-
ceived at the router the entry for the corresponding name is
deleted from the PIT. To ensure efficient I/O operations at
line speed, a fast and scalable data structure is required for
the Pending Interest Table, and an accurate assessment of
the PIT size is key to achieving this. Despite many exper-
imental and numerical evaluations [10, 19, 21, 23], there has
been no analytic work in modeling Pending Interest Tables.
This motivates the current work.

In this paper, we analyze a cache with a Pending Interest
Table, to compute the cache hit probability, response time
perceived by the users, and the size of the Pending Interest
Table. Unlike previous works that assume a file is instan-
taneously downloaded to the cache in case of a cache miss,
we assume a non-zero download delay modeled as a random
variable. In our analysis, we consider Time-To-Live (TTL)
caches since they provide a unified framework for the analy-
sis of single and networked caches [4,7]. TTL caches decou-
ple the eviction mechanisms of different files by associating
each content with a timer. When a timer expires the cor-
responding content is evicted from the cache. TTL caches
have also proven useful in accurately modeling the behavior
of replacement-based caching policies such as LRU, FIFO,
and RANDOM among others [8, 11,13].

Our contributions in this paper can be summarized as
follows:

• We model TTL caches with Pending Interest Tables. Our
analysis is generic in the sense that it can be used to model
single or networked caches assuming the request arrivals
can be described as renewal processes. In our analysis, we
compute the cache hit probability, mean response time,



and the distribution of the size of the Pending Interest
Table.

• We use our model to analyze popular caching policies
LRU, FIFO and RANDOM with Poisson request arrivals,
and derive expressions for the cache hit probability, prob-
ability of having an entry for a content in the PIT, and
the average response time. We also compute the rate at
which the cache forwards requests towards the content
custodian.

• We perform extensive simulations that demonstrate the
accuracy of our models in predicting our metrics of inter-
est.

The remainder of this paper is organized as follows: In
the next section, we review the related work. In Section 3,
we describe the system model and explain the assumptions.
In Sections 4 and 5, we analyze two types of TTL caches,
non-reset TTL, and reset TTL, respectively. We use the
models developed in these two sections to analyze FIFO and
LRU cache in Sections 6 and 7. In Section 8, we evaluate
the accuracy of our model through numerical simulations.
Finally, we conclude the paper in Section 9.

2. RELATED WORK

2.1 Pending Interest Table
The Pending Interest Table is one of the three fundamen-

tal data structures maintained at each router in the NDN
architecture. The PIT keeps track of all the Interests that
a router has forwarded but are not yet satisfied [24]. Each
PIT entry stores the content name, together with the in-
coming and outgoing interfaces. The names are similar to
URLs and are typically tens of bytes long. The URLs for
pictures and videos on social networking websites, for ex-
ample, require more than 80 bytes of storage [23]. A PIT
is expected to store on the order of 107 entries on average,
which makes performing operations at line speed a daunting
task [22]. Over the past few years, researchers have made a
great effort in design and implementation of fast and scalable
Pending Interest Tables [10,17,19,21,23]. However, despite
all the experimental efforts in understanding the dynamics
of the PIT size [2, 20], we are unaware of any analytic work
in modeling PITs. That is the problem we tackle in this
paper.

2.2 Time-To-Live Caches
TTL caches, in which content eviction occurs upon the ex-

piration of a timer, have been employed since the early days
of the Internet with the Domain Name System (DNS) being
an important application [13]. More recently, TTL caches
have regained popularity, mostly due to admitting a gen-
eral approach in the analysis of caches that can also be used
to model replacement-based caching policies such as LRU.
The connection between TTL caches and replacement-based
(capacity-driven) policies was first established for the LRU
policy by Che et al. [6] through the notion of cache character-
istic time, described in Section 3.3. The characteristic time
was theoretically justified and extended to other caching
policies such as FIFO and RANDOM [11]. This connec-
tion was further confirmed to hold for more general arrival
models than Poisson processes [16]. Over the past years,
several exact and approximate analyses have been proposed

for modeling single caches in isolation as well as cache net-
works using the TTL framework [4, 7–9]. However, there is
little work that accounts for the delay in downloading files
to the cache from content servers [3].

In this paper, we focus on analytic models for a single
cache with a Pending Interest Table where content is fetched
from the back-end server incurring some download delay.
However, our model can be applied to a network of caches
when request arrivals at all caches can be modeled as renewal
processes.

3. MODEL DESCRIPTION
In this section, we introduce our model for a cache

with requests arriving for a set of K unique files
F = {f1, f2, . . . , fK} of unit size. Throughout this pa-
per, we will use the terms content and file interchangeably.
We assume that each file resides permanently at a content
custodian.

Once a request arrives for a file that is in the cache, the
request is served instantly. However, if the content is not
found in the cache, the request will be forwarded to the
content custodian. Unlike previous work that assume zero
download delay, we consider the case where downloading
content f ∈ F from the custodian incurs a non-zero delay
denoted by the random variable Df . With a misuse of nota-
tion, we will use Df (·) to denote the CDF of Df . Note that
since we can analyze different files individually, we can have
different download delay distributions for different files.

It is assumed that the cache employs a Pending Interest
Table (PIT) to aggregate requests arriving while the content
is being downloaded to the cache. With the arrival of the
first request to a file that is not in cache, an entry is cre-
ated in the PIT. All successive requests during time Df are
aggregated at the PIT and not forwarded to the custodian.
Once the content is downloaded, the PIT entry is deleted.

We consider a Time-To-Live (TTL) cache where the cache
maintains a timer for each item which indicates the dura-
tion of validity for that content. The timer values could be
decided by the cache or be imposed by external factors (e.g.,
content owners). With TTL caches, the caching behaviors
of different files are decoupled and thus we can consider files
independently. We define Tf to denote the random variable
for the TTL of content f and assume the sequence of timers
are independent and identically distributed with CDF Tf (·).

TTL-based caching policies generally divide into two
classes depending on the behavior of the TTL resets:

• Non-reset TTL: The timer is set once the content is down-
loaded to the cache, and the content leaves the cache after
the timer expires.

• Reset TTL: The timer is set when the content is down-
loaded to the cache, and is reset each time a request arrives
while the content is still in the cache.

Both of these policies have been properly formalized in the
literature [8, 11].

3.1 Metrics of Interest
In our analysis, we are interested in computing the cache

hit probability and the response time for individual files as
well as the overall expected value. We will also compute
the rate at which the cache forwards requests to the content



custodians. Since estimating the size of the Pending Inter-
est Table is important in the design of an appropriate data
structure, we will capture the distribution of the PIT size.
With TTL caches, it is also important to estimate the num-
ber of files in the cache. In order to compute the statistics
of the cache and PIT size, we first compute the occupancy
probability of file f in the cache and in the PIT denoted by
of and pf , respectively. We then define Bernoulli random
variables Of and Pf to indicate whether file f resides in
cache or PIT. The random variables Of and Pf take value
one with probability of and pf , and zero with probability
1− of and 1− pf , respectively. We then define C =

∑
f Of

and S =
∑
f Pf to denote the number of files in the cache

and PIT respectively; they follow Poisson Binomial distri-
butions with means µC =

∑
f of and µS =

∑
f pf , and

variances σ2
C =

∑
f of (1− of ) and σ2

S =
∑
f pf (1− pf ), re-

spectively. Assuming a reasonably large number of files, we
can approximate the cache and PIT sizes with the Gaussian
distribution with means µC and µS , and variances σ2

C and
σ2
S , respectively.

3.2 Renewal Arrivals
Let Xi be the time interval between the (i−1)st and the i-

th requests for a given file. Inter-request times are assumed
to be i.i.d and have distribution function F (x) = P(Xi ≤ x).
Let λ = 1/E[Xi] denote the arrival rate for the given file.
Without loss of generality, we assume that a request for a
file that is not in the cache occurs at t = 0, i.e., X0 = 0. Let
Mt denote the number of requests for the given file in the
interval (0, t]. Mt is called the renewal (counting) process.
Note that the request at t = 0 is excluded, i.e., M0 = 0.
Also, let

τn = X1 +X2 + . . .+Xn, n ≥ 1 (τ0 = 0),

denote the time until the arrival of the nth request. We have

P(τn ≤ t) = P(X1 +X2 + . . .+Xn ≤ t) = F (n)(t),

where F (n)(t) denotes the n-fold convolution of the distri-
bution function F (x) with itself.

The expected number of renewals for the time duration
(0, t] is the renewal function m(t) = E[Mt], and can be ex-
pressed as

m(t) =

∞∑
n=1

F (n)(t), t ≥ 0.

Poisson Arrivals
A Poisson process is a renewal process with parameter λ
whose inter-arrival times have the exponential distribution
F (x) = 1 − e−λx. For a Poisson process, the renewal func-
tion simplifies to m(t) = λt. We will use Poisson arrivals in
analyzing LRU, FIFO and RANDOM caches in later sec-
tions.

3.3 Cache Characteristic Time
Che et al. [6] introduced the notion of cache characteristic

time, and used it to evaluate the hit probability of a cache
under the LRU policy with Poisson arrivals. Based on their
work, the probability that a request for file f results in a hit
can be approximated by

hf = 1− e−λfT ,

0 τ1 τMD

D D + T

τ1+MD τMD+T τ1+MD+T

ΓD+T

Z

Figure 1: An entry is created in PIT for the file at time t = 0.
Content enters the cache at time t = D, and PIT entry is deleted.
Content stays in cache until time t = D + T . Only requests
marked as red are forwarded to the content custodian.

where λf is the request rate for file f , and T is a constant de-
noting the characteristic time of the cache and is computed
as the unique solution to the equation

K∑
f=1

(1− e−λfT ) = C,

where C is the capacity of the LRU cache. The notion of
cache characteristic time has been theoretically justified and
generalized to a wider range of caching policies and more
general arrival processes [16]. The idea is to compute the
probability that file f occupies the cache as a function of
the characteristic time of (T ), and solve for T in the fixed-
point equation ∑

f

of (T ) = C.

Cache characteristic time maps replacement-based caching
policies to TTL-based caching policies. By using this notion,
we will apply the analysis we develop in this paper for TTL
caches to model LRU, FIFO and RANDOM caches.

4. NON-RESET TTL CACHES
In this section, we model a non-reset TTL cache with a

Pending Interest Table with requests arriving according to
a renewal process. In this section and the next, we model
the dynamics of a single file only, as we are considering a
TTL cache with no capacity constraints. We can have dif-
ferent distributions for download delays and TTL timers for
different files, but we will use D and T without subscripts
here since we are considering a specific file. In Sections 6
and 7, however, we will use subscripts to refer to the metrics
of individual files, and explain how they are computed for
different replacement policies subject to the cache capacity
constraint.

Figure 1 shows the cache dynamics for a given file. It is
assumed that initially the requested content is neither in the
cache nor the PIT. The first request for the file creates an
entry in PIT. It takes some time D for the file to be down-
loaded to the cache from a content custodian. Requests
arriving for the file during D will be aggregated at the PIT,
and only the first request is forwarded to the content cus-
todian. Once the file is downloaded to the cache, the PIT
entry is deleted and the TTL set to T . The content stays
in the cache for T units of time until the TTL expires and
the content is evicted from the cache at time t = D + T .
This process repeats with the arrival of the next request for
the file. Here, we are using generic terms D and T without
subscripts for a given file, bearing in mind that different files



can have different distributions for the download delay, and
different values for TTL timers.

The process explained above can be divided into cycles
Z1, Z2, . . . separated by consecutive requests sent from the
cache to the custodian. These requests are marked red in
Figure 1. Note that these cycles are statistically the same.
Without loss of generality, consider the cycle starting at
t = 0. The expected number of requests within this cycle
equals 1 +E[m(D+T )], where the expectation is computed
with respect to the distribution of download delay D and
time T . From these requests, 1 +E[m(D)] on average result
in cache misses, and will have to wait for the content to be
downloaded to the cache.

Based on the above discussion, the cache hit probability
of the file is

h =
E[m(D + T )]− E[m(D)]

1 + E[m(D + T )]
. (1)

Moreover, the cache and PIT occupancy probabilities for
the given content can be expressed as

o =
E[T ]

E[Z]
and p =

E[D]

E[Z]
,

where E[Z] denotes the average cycle length. Note that o
and p (defined in Section 3.1) can be used to obtain the size
of the cache and PIT. To compute E[Z], we define Γt as

Γt := τ1+Mt − t, (2)

to denote the time between t and the arrival of the next
request. Γt is known as the excess life of the renewal process
at time t, for which the complementary distribution function
is expressed as (see Eq. (6.1) of Chapter 5 in [14])

Aγ(t) = P(Γt > γ) (3)

= 1− F (t+ γ) +

∫ t

0

(
1− F (t+ γ − x)

)
dm(x).

We can now write the length of a cycle as

Z = D + T + ΓD+T ,

and hence

E[Z] = E[D] + E[T ] + E[ΓD+T ] (4)

= E[D] + E[T ] +

∫ ∞
0

∫ ∞
0

∫ ∞
0

Ax(d+ t)dxdD(d)dT (t).

We can also compute the distribution of the cycle length
as in (5). Note that P(Z ≤ z) also defines the distribution
of the inter-arrival times of the requests forwarded to the
content custodian, referred to as the miss stream. The rate
of the miss stream for the file then equals ζ = 1/E[Z].

As mentioned earlier, requests arriving before time D can-
not be immediately served, and will experience a delayed
service since the content has to be downloaded to the cache
first. Let w(t) denote the expected total waiting time of the
requests up to time t. It is characterized by the following
recursive equation

w(t) = t+

∫ t

0

w(t− x)dF (x)

= t+

∫ t

0

(t− x)dm(x), (6)

where the last equality follows from Theorem 4.1 of Chap-
ter 5 in [14]. Dividing the expected total waiting time until
time D, i.e., E[w(D)], by the expected number of the re-
quests in the cycle yields the following expression for the
expected response time of the file

r =
E[w(D)]

1 + E[m(D + T )]
.

5. RESET TTL CACHES
In this section, we analyze a TTL cache where the TTL

is reset every time a request arrives for a file that is in the
cache. Figure 2 illustrates the cache dynamics with requests
arriving for a given content.

With the arrival of the first missed request an entry is
created for the file in PIT, and consecutive requests for the
file are aggregated until content is downloaded to the cache
at time D. When the content enters the cache, the TTL
is set to T0. If the next request arrives after the TTL ex-
pires, i.e., ΓD > T0, the content will be evicted from cache
at time t = D+T0, similar to the non-reset TTL case. How-
ever, if a request arrives before the TTL expires, the TTL
will be reset to time T1. For notational simplicity, we de-
fine Yn to denote the inter-arrival time for the request after
the nth hit. Note that Yn follows the same distribution as
Xi and has CDF F (·). The file will remain in the cache
as long as successive requests arrive no later than the TTL
expires, i.e., Yn ≤ Tn. We assume that the sequence of the
TTL timers T0, T1, . . . are independent and identically dis-
tributed according to T (·), and independent of the request
inter-arrival times, Yn.

For ΓD we can use (3) to get

P(ΓD ≤ γ | D = d) = 1−Aγ(d) (7)

= F (d+ γ)−
∫ d

0

(
1− F (d+ γ − x)

)
dm(x).

Note that if ΓD > T0, the cycle Z ends at τ1+MD

with no cache hits. With ΓD ≤ T0 we observe the first
cache hit. The second hit occurs if Y1 ≤ T1. Assuming
that exactly N requests result in cache hits, we must have
Yn ≤ Tn, n = 1, 2, . . . , N − 1, and YN > TN . The distri-
bution of the number of cache hits, hence, resembles a geo-
metric distribution. We have

P(N = n | D = d) =

{
qΓ n = 0,

(1− qΓ)(1− qT )n−1qT n ≥ 1,

where

qΓ = 1−
∫ ∞

0

P(Γd ≤ t)dT (t),

denotes the probability of no cache hits, and

qT = 1−
∫ ∞

0

F (t)dT (t),

is the probability P(Yi > Ti), i = 1, 2, . . . , n− 1. This yields

E[N | D = d] = (1− qΓ)/qT .

The expected number of cache hits then equals

E[N ] =

∫∞
0

∫∞
0

P(Γd ≤ t)dT (t)dD(d)

1−
∫∞

0
F (t)dT (t)

. (8)



We can now write the cache hit probability for the given
content as the expected number of hit requests divided by
the expected total number of requests,

h =
E[N ]

1 + E[m(D)] + E[N ]
. (9)

Also, assuming N cache hits occur in a cycle, the cycle
duration Z can be expressed as

Z =

1+MD∑
i=1

Xi +

N∑
n=1

Yn.

Note that N is a stopping time with respect to the se-
quence {Tn − Yn}, corresponding to the rule “stop as soon
as Tn − Yn ≤ 0.” By applying Wald’s equation we get

E

[
N∑
n=1

Yn

]
= E[Y1]E[N ] = E[X]E[N ] = E[N ]/λ,

and therefore

E[Z] =
(

1 + E[m(D)] + E[N ]
)
/λ. (10)

The rate of the miss stream then is

ζ =
1

E[Z]
=

λ

1 + E[m(D)] + E[N ]
.

We can also write the cache occupancy probability for the
content as the expected time spent in cache, colored green
in Figure 2, divided by the expected cycle length as

o =
E[ΓD] + E[N ]/λ− E[ΓtE ]

E[Z]
,

where tE denotes the eviction time of the content. It is easy
to see, by comparing the above equation with (9), that h = o
if the request arrival process is Poisson, since with exponen-
tial inter-arrival times we have E[ΓD] = E[ΓtE ] = E[Γt],∀t.

We can also write the probability of having an entry in
the PIT for the file as

p =
E[D]

E[Z]
=

λE[D]

1 + E[m(D)] + E[N ]
. (11)

As explained in Section 3.1, we can use o and p to compute
statistics regarding the number of items in the cache and
PIT.

Computing the distribution of the cycle length requires
some care. Note that making an assumption on the number
of hits affects the distribution of ΓD. Specifically, let Hd

0 (·)
denote the distribution of Γd (assuming D = d) when we do
not get any hits in a cycle. We have

Hd
0 (γ) =

∫ ∞
0

P(Γd ≤ γ | Γd > T0, T0 = t)dT (t)

=
(

1−Aγ(d)
)∫ γ

0

dT (t)

At(d)
.

0 τ1 τMD D tE

X1 X1+MD

ΓD

Z

(a) ΓD > T0

0 τ1 τMD D τ1+MD τN+MD tE τN+1+MD

X1 X1+MD

ΓD

Y1 YN

TN

Z

(b) ΓD ≤ T0

Figure 2: An entry is created in PIT for the file at time t = 0.
Content enters the cache at time t = D, and PIT entry is deleted.
(a) The content will be evicted from cache at time tE = D + T0

if ΓD > T0. (b) The TTL will be reset if ΓD ≤ T0, and the
content will continue to stay in the cache as long as Yn ≤ Tn.
Here, tE = τN+MD

+ TN denotes the time that the content is
evicted from cache.

Similarly, let Hd
1 (·) denote the distribution of Γd when there

is at least one hit in a cycle. We have

Hd
1 (γ) =

∫ ∞
0

P(Γd ≤ γ | Γd ≤ T0, T0 = t)dT (t)

=
(

1−Aγ(d)
)∫ ∞

γ

dT (t)

1−At(d)
.

Moreover, assuming we get N hits in a cycle translates
into Y1, Y2, . . . , YN−1 having the distribution

L1(y) =

∫ ∞
0

P(Yn ≤ y | Yn ≤ Tn, Tn = t)dT (t)

= F (y)

∫ ∞
y

dT (t)

F (t)
,

and for YN we have

L2(y) =

∫ ∞
0

P(YN ≤ y | YN > TN , TN = t)dT (t)

= F (y)

∫ y

0

dT (t)

1− F (t)
.

The cycle length can be expressed as

Z = D + ΓD +

N∑
n=1

Yn,

and since ΓD and Yn, n = 1, . . . , N are conditionally in-
dependent given N and D, we can write the distribution

P(Z ≤ z) =

∫ z

0

∫ z−t

0

P(D + T + ΓD+T ≤ z | D = d, T = t)dD(d)dT (t)

=

∫ z

0

∫ z−t

0

(
1−Az−d−t(d+ t)

)
dD(d)dT (t). (5)



function of Z as

P(Z ≤ z) =

∫ z

0

[
Hd

0 (z)P(N = 0 | D = d) (12)

+

∞∑
n=1

(
Hd

1 ∗ L2 ∗ L(n−1)
1

)
(z)P(N = n | D = d)

]
dD(d),

where (f ∗g)(·) denotes the convolution of f and g, and L
(n)
1

denotes the n-fold convolution of L1 with itself.
The service delay experienced by requests arriving before

time D will be the same as the non-reset TTL case, and we
have

w(t) = t+

∫ t

0

(t− x)dm(x).

The expected response time of the file then equals

r =
E[w(D)]

1 + E[m(D)] + E[N ]
. (13)

6. FIFO WITH POISSON ARRIVALS
In this section, we consider a FIFO cache of size C with

requests arriving to the cache according to a Poisson process.
We assume that requests for file f arrive with rate λf . It
was shown in [7] that a FIFO cache can be modeled as a
TTL cache with constant non-reset timers Tf = T,∀f .
The constant T is the characteristic time of the FIFO cache;
we will explain how to compute T in the remainder of the
section.

6.1 Cache Hit Probability
With a Poisson process, the renewal function for file f is

mf (t) = λf t, and hence using (1) we can write the cache hit
probability as

hf =
E[λf (Df + T )]− E[λfDf ]

1 + E[λf (Df + T )]

=
λfT

1 + λf (E[Df ] + T )
. (14)

Note that when E[Df ] = 0, we obtain

hf = λfT/(1 + λfT ),

which is the expression obtained in [7] for the hit probabil-
ity of a FIFO cache under the zero download delay assump-
tion. With Poisson arrivals, the cache occupancy probability
equals the cache hit probability, i.e., of = hf , and hence as
explained in Section 3.3, the value of T can be computed by
solving the fixed-point equation

K∑
f=1

λfT

1 + λf (E[Df ] + T )
= C.

6.2 Size of Pending Interest Table
The expected cycle length can be computed from (4), and

for Poisson processes is

E[Zf ] = E[Df ] + T + 1/λf .

The probability of having an entry for file f in the PIT then
is

pf =
λfE[Df ]

1 + λf (E[Df ] + T )
. (15)

As explained in Section 3.1, the size of the Pending In-
terest Table, S, can be approximated as a Gaussian ran-
dom variable with mean µS =

∑
f pf and variance σ2

S =∑
f pf (1− pf ).

6.3 Cache Response Time
Using mf (t) = λf t for Poisson processes in (6), the to-

tal waiting time of requests until time t can be written as
wf (t) = t + 0.5λf t

2. Therefore, the expected response time
for file f equals

rf =
E[Df + 0.5λfD

2
f ]

1 + λf (E[Df ] + T )
.

For the cases of deterministic and exponentially dis-
tributed download delays, we can simplify the response time
as follows:

• If the delay to download a content to the cache is deter-
ministic, the average response time equals

rf =
Df + 0.5λfD

2
f

1 + λf (Df + T )
.

• If the download delay follows an exponential distribution,
for the expected response time of file f we obtain

rf =
E[Df ] + λfE2[Df ]

1 + λf (E[Df ] + T )
.

6.4 Miss Process
The expected cycle length can be computed from (4) and

equals

E[Zf ] =
(

1 + λf (E[Df ] + T )
)
/λf .

The rate at which the cache forwards requests for file f to
the custodian then is

ζf = 1/E[Zf ] = λf/
(

1 + λf (E[Df ] + T )
)
.

We can also compute the distribution of the cycle lengths.
First note that for Poisson processes we have

Aγ(t) = e−λfγ .

Therefore, from (5) we obtain

P(Zf ≤ z) =

∫ z−T

0

(
1− e−λf (z−d−T )

)
dDf (d),

which for deterministic and exponentially distributed down-
load delays can be simplified as follows:

• For deterministic download delays

P(Zf ≤ z) =

{
0, z < Df + T,

1− e−λf (z−Df−T ), z ≥ Df + T.

• For exponentially distributed download delays

P(Zf ≤ z) =



0, z < T,

1− e−(z−T )/E[Df ]

− e−(z−T )/E[Df ] − e−λf (z−T )

λfE[Df ]− 1
,
z ≥ T.



6.5 RANDOM with Poisson Arrivals
It was shown in [7] that a RANDOM cache can be mod-

eled as a TTL cache with exponentially distributed non-reset
timers. Repeating the analysis we did in this section for ex-
ponentially distributed T with mean E[T ] reveals that all
the expressions derived for a FIFO cache can be used for a
RANDOM cache by replacing T with E[T ]. The only ex-
pression that is different is the distribution function for the
cycle length P(Zf ≤ z). For deterministic and exponentially
distributed download delays we have

• For deterministic download delays

P(Zf ≤ z) =



0, z < Df ,

1− e−(z−Df )/E[T ]

− e−(z−Df )/E[T ] − e−λf (z−Df )

λfE[T ]− 1
,
z ≥ Df .

• For exponentially distributed download delays, note that
Df , T and ΓDf+T follow independent exponential distri-
butions. Note that with Poisson arrivals, ΓDf+T has the
same distribution as the inter-arrival times for file f , and
hence has CDF Ff (·). Therefore, the distribution of the
cycle length follows as

P(Zf ≤ z) = (Df ∗ T ∗ Ff )(z), z ≥ 0.

7. LRU WITH POISSON ARRIVALS
In this section, we model an LRU cache of capacity C with

requests arriving to the cache according to a Poisson process.
We assume that requests for file f arrive with rate λf . It
was shown in [7] that an LRU cache can be modeled as a
TTL reset cache with constant timers Tf = T,∀f .

7.1 Cache Hit Probability
First, we note that with Poisson arrivals we have

P(Γd ≤ γ) = 1− e−λfγ ,

which is independent of d. The above equation suggests that
the expected number of cache hits in a cycle is independent
of the distribution of the download delay. Using (8), we
obtain

E[Nf ] =
1− e−λfT

e−λfT
= eλfT − 1.

Based on (9), the hit probability of content f can then be
written as

hf =
eλfT − 1

λfE[D] + eλfT
.

Note that E[Df ] = 0 yields hf = 1 − e−λfT which is the
expression obtained by Che et al. [6] for the hit probability
of an LRU cache under the assumption of zero download
delay.

For Poisson arrivals the cache occupancy probability
equals the cache hit probability, i.e., of = hf , and hence
the value of T is obtained by solving the fixed-point equa-
tion

K∑
f=1

eλfT − 1

λfE[Df ] + eλfT
= C.

7.2 Size of Pending Interest Table
Based on (10), the expected cycle length equals

E[Zf ] = E[Df ] + eλfT /λf ,

and hence using (11), the probability of having an entry for
file f in the PIT is given by

pf =
λfE[Df ]

λfE[Df ] + eλfT
.

As explained in Section 3.1, the size of the Pending Interest
Table, S, can be approximated as a Gaussian with mean
µS =

∑
f pf and variance σ2

S =
∑
f pf (1− pf ).

7.3 Cache Response Time
Considering Poisson processes, the total waiting time of

requests until time t (for t ≤ Df ) is wf (t) = t + 0.5λf t
2,

and using (13) the average response time for file f is

rf =
E[Df + 0.5λfD

2
f ]

λfE[Df ] + eλfT
.

For deterministic and exponentially distributed download
delays, we can simplify the response time as follows:

• For deterministic download delays, we can simply write
the expected response time for file f as

rf =
Df + 0.5λfD

2
f

λfDf + eλfT
.

• If the download delay is exponentially distributed, the ex-
pected delay simplifies to

rf =
E[Df ] + λfE2[Df ]

λfE[Df ] + eλfT
.

7.4 Miss Process
The rate at which requests get forwarded to the custodian

equals

ζf =
1

E[Zf ]
=

λf

λfE[Df ] + eλfT
.

8. PERFORMANCE EVALUATION
In this section, we evaluate the accuracy of our models by

comparing against numerical simulations. We simulate LRU
and FIFO caches of size C = 1000, where requests arrive for
N = 10, 000 files. File popularities follow a Zipf distribution
with parameter α = 0.8, i.e., λf ∝ 1/fα, and the aggregate
request rate is assumed to be λ = 105 requests per second.
In evaluating the accuracy of the models for individual files,
the download delay is set to 100ms. We also compute the
average values for different metrics by varying the download
delay from zero to 250ms.

8.1 Cache Hit Probability
Figure 3 shows the hit probability of the individual files

for LRU and FIFO caches. The hit probability computed
by the original characteristic time approximation assuming
zero download delay (ZDD) [6] is also shown for comparison.
While our models accurately estimate the hit probabilities
of the individual files for the LRU and FIFO caches, it is
clear that with ZDD assumption the behavior of the system
cannot be captured.
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Figure 3: Cache hit probability for individual files.
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Figure 4: Overall cache hit probability.

Figure 4 shows the overall cache hit probability computed,
from simulations and our models, for different values of the
download delay. This figure suggests that increasing the
download delay drastically affects the hit probability of the
FIFO cache, while it has minor impact on the hit probability
of the LRU cache.

8.2 Size of Pending Interest Table
Figure 5 shows the probability of having an entry for each

file in the Pending Interest Table. Note that for Poisson
arrivals this also equals the probability that a request will
be aggregated in the PIT and not forwarded to the server.
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Figure 5: Request aggregation probability in PIT.

In Section 3.1, we advocated the use of the Gaussian dis-
tribution to approximate the size of the Pending Interest
Table. Figure 6 shows the distribution of the PIT size com-
puted from simulations, as well as a Gaussian distributions
with moments computed based on the discussion in Sec-
tion 3.1. It is clear that the Gaussian distribution accu-
rately represents the distribution of the PIT size for both
LRU and FIFO caches. Figure 6 also suggests that a FIFO
cache yields a larger Pending Interest Table compared to an
LRU cache of the same size.

Figure 7 shows the average PIT size for different values of
the cache download delay. As one might expect, as down-
load delay increases, the size of the Pending Interest Table
increases, and our model accurately predicts the expected
PIT size.

8.3 Cache Response Time
Figure 8 shows the average response time for individual

files when the cache download delay is D = 100ms. With
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Figure 6: PIT size distribution.
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Figure 7: Average PIT size.

the LRU policy, the average response times for the most pop-
ular files are zero, which suggests that these files are almost
always in the cache. With the FIFO cache, however, even
the most popular file has a non-zero average response time.
This is due to the non-reset TTL nature of the FIFO pol-
icy, i.e., even the most popular file gets evicted from cache
TFIFO time after the insertion into the cache, where TFIFO

denotes the characteristic time of the FIFO cache.
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Figure 8: Response time per file.

Figure 9 shows how average response time depends on
download delay. Comparing the two plots in Figure 9 we
conclude that the LRU cache yields lower average response
times compared to the FIFO cache. In fact, for large down-
load delay, LRU achieves a 30% lower average response time.

8.4 Miss Request Forwarding
Figure 10 shows the probability of forwarding a request

to other network nodes for each file, and Figure 11 shows
the rate at which requests are forwarded. While with an
LRU cache, requests for the most popular file are almost
never forwarded, with a FIFO cache, the most popular file
has the highest request forwarding rate. Figure 11 looks like
Figure 5 because the expressions for PIT hit probability and
request forwarding rate are related through pf = ζfE[Df ].

Figure 12 shows the overall request forwarding rate as a
function of download delay. As download delay increases,
more requests are aggregated at the PIT and hence fewer
requests are forwarded.

8.5 A Larger System
Convinced of the accuracy of our models, we use them

to analyze properties of a larger system. We consider a
system with N = 107 files, where file popularities follow
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Figure 9: Average response time.
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Figure 10: Request forwarding probability for individual files.

a Zipf distribution with parameter α = 0.8. The aggregate
request rate at the cache is λ = 105 requests per second. We
compute the average cache hit probability, average response
time, average PIT size, and the average request forwarding
rate for various cache sizes and download delays. When
studying the effect of the cache size we set the download
delay to D = 100ms, and when exploring the effect of the
download delay we set the cache size equal to C = 104.
Here, we only present results from the models as it takes
a significantly long time to simulate the system explained
above.

Figure 13 shows the average hit probability for the LRU
and FIFO caches for various values of cache size and down-
load delay. Although the plots seem to be very close for
LRU and FIFO caches, the LRU cache achieves up to 60%
higher hit probability for some cache sizes. Moreover, this
difference increases as download delay increases.

Figure 14 demonstrates the effect of the cache size and
download delay on the average response time of the LRU and
FIFO caches. For small and very large cache sizes LRU and
FIFO caches exhibit similar performance. However, for mid-
sized caches, LRU yields up to 20% lower response time. For
a given cache size, the response times of the LRU and FIFO
caches show linear increase as download delay increases, and
the two caches exhibit similar performance.

Figure 15 shows how the average PIT size changes with
cache size and download delay. For small and very large
cache sizes, the average PIT size is almost the same for LRU
and FIFO caches, while for mid-sized caches, the LRU cache
saves up to 20% on the PIT size. With a given cache size,
the PIT size shows a linear increase with the download delay,
and the difference in the PIT sizes of the LRU and FIFO
caches is less than 1% for the values of the download delays
explored here.

Figure 16 shows the effect of cache size and download de-
lay on the overall request forwarding rate. The average re-
quest forwarding rate behaves very similar to response time
with respect to the cache size. For small and very large
cache sizes the LRU and FIFO policies yield almost the same
forwarding rates but for some mid-sized caches up to 18%
reduction in forwarding rate can be achieved by using an
LRU cache. As one might expect, the request forwarding
rate decreases, as the download delay is increased.
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Figure 11: Request forwarding rate for individual files.
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Figure 12: Overall request forwarding rate.

9. CONCLUSION
In this paper, we consider the problem of modeling a cache

with a Pending Interest Table. It is assumed that in case of
a cache miss, it would take some time to download the con-
tent to the cache, where the download delay is modeled as a
random variable. While the content is being downloaded to
the cache, requests arriving for the content are aggregate at
the Pending Interest Table, and not forwarded to the con-
tent custodian in order to reduce the load on the server.
We derive expressions for the cache hit probability, response
time perceived by the users, and the size of the Pending In-
terest Table. We analyze two classes of TTL-based caching
policies, where the timer could be set only once, or be reset
with every request for the content. Our analysis enables us
to model the traditional replacement-based caching policies
LRU, FIFO and RANDOM. We perform numerical simu-
lations that demonstrate the accuracy of our approach in
modeling caches with Pending Interest Tables.
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