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Abstract—Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called

seeding). In many applications, due to user’s privacy concern, overwhelming network scale etc., it is hard to target any user in the

network as one wishes. Instead, only a small subset of users is initially accessible. Such access limitation would significantly impair

the influence spread, since IM often relies on seeding high degree users, which are particularly rare in such a small subset due to the

power-law structure of social networks. In this paper, we attempt to solve the limited IM in real-world scenarios by the adaptive

approach with seeding and diffusion uncertainty considered. Specifically, we consider fine-grained discounts and assume users

accept the discount probabilistically. The diffusion process is depicted by the independent cascade model. To overcome the access

limitation, we prove the set-wise friendship paradox (FP) phenomenon that neighbors have higher degree in expectation, and

propose a two-stage seeding model with the FP embedded, where neighbors are seeded. On this basis, for comparison we formulate

the non-adaptive case and adaptive case, both proven to be NP-hard. In the non-adaptive case, discounts are allocated to users all

at once. We show the monotonicity of influence spread w.r.t. discount allocation and design a two-stage coordinate descent

framework to decide the discount allocation. In the adaptive case, users are sequentially seeded based on observations of existing

seeding and diffusion results. We prove the adaptive submodularity and submodularity of the influence spread function in two stages.

Then, a series of adaptive greedy algorithms are proposed with constant approximation ratio. Extensive experiments on real-world

datasets show that our adaptive algorithms achieve larger influence spread than non-adaptive and other adaptive algorithms

(up to a maximum of 116 percent).

Index Terms—Influence maximization, access limitation, adaptive approach

Ç

1 INTRODUCTION

THE last two decades have witnessed the dramatic devel-
opment of social networks (e.g., Facebook, Twitter),

which have become an important platform for the promo-
tion of ideas, behaviors and products. For example, viral
marketing is a widely adopted strategy in the promotion of
new products. The company selects some users and pro-
vides them with some discounts within a predefined bud-
get, hoping that the product will be known by more users
via the “word-of-mouth” effect. This demand naturally
raises the influence maximization problem, which aims at
triggering the largest cascade of influence by allocating dis-
counts to users (called seeding). Since the seminal work of
Kempe et al. [1], numerous efforts have been made to
advance the research of the influence maximization prob-
lem [2], [3], [4], [5], [6], [7], [8], [9].

In most cases, the problem is solved under the implicit
assumption that the company can allocate discounts to any
user in the network. However, in the real-world commercial
campaign, the company often only has access to a small sub-
set of users. For example, an online merchant wishes to

promote a new product by providing samples to influential
users. In practice, the merchant could only mail samples to
customers who have left address information before in
ways such as buying products, applying for membership.
Similarly, in many other applications, due to privacy con-
cern, network scale etc., the seeding process is limited to a
small sample of the network (like most work, the network
structure and the diffusion probabilities are assumed pre-
known and are not of concern). Due to the power-law
degree distribution of social networks, high degree users
are particularly rare in the small subset. Since influence
maximization often relies on seeding many high degree
users (not necessarily the highest ones), the access limitation
would evidently impair the influence spread. Regarding
this concern, initial attempts [10], [11], [12], [13] seed the
subset of users to reach neighbors who are voluntary to join
in the campaign automatically with the intuition of the
friendship paradox (FP) phenomenon [14] which reveals
that the degree of your neighbor is greater than yours in
expectation. As pioneers in the access limitation problem,
[10], [11], [12], [13] have largely expanded the influence
spread but still fall short of dealing with the uncertainties in
real promotions. Such uncertainties include two aspects. (1)
Seeding uncertainty: a targeted user will not necessarily
become the seed if the discount is not satisfactory. (2) Diffu-
sion uncertainty: due to the strength of social relationships or
characteristics of users, the influence propagation between
two users is not assured to be successful. Existing works
distribute discounts to users all at once, without considering
whether the actual seeding and diffusion is successful. Such
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fixed strategy (referred to as “non-adaptive” method) is vul-
nerable to the uncertainty in the seeding and diffusion pro-
cess, resulting in unsatisfactory influence spread. Thus, we
are motivated to study an adaptive1 approach, where users
are sequentially seeded based on previous seeding and dif-
fusion results.

Specifically, the problem is investigated under the fol-
lowing settings. Suppose a company wants to promote a
new product through a social network by providing dis-
counts for users. Due to the difficulty in collecting user’s
information, only a small subset of users is initially accessi-
ble, denoted as X. We consider a fine-grained discount set-
ting, i.e., discounts take value from [0,1] instead of only 0 or
1 in previous works on this problem. Accordingly, a user
probabilistically accepts the discount and becomes a seed,
from which the diffusion starts. The diffusion process is
depicted by the widely acknowledged independent cascade
model. Since social networks leave traces of behavioral data
which allow observing and tracking, the spread of influence
could be easily observed. For example, from one’s social
account, we can see whether the user adopts the product.
On this basis, we make the first attempt to solve the limited
influence maximization problem by the adaptive approach.
Moreover, we investigate the non-adaptive method under
this setting for comparison. When undertaking this study,
we find it is challenging in the following three aspects.

Access Limitation. Under our setting, the influence spread
may suffer more from the access limitation due to user’s
uncertain nature. Thus, there is an increasing demand on a
new seeding model to address the access limitation with
user’s probabilistic behavior considered. We attempt to
design an effective model with natural intuition and theo-
retical support.

Fine-Grained Discount. With a larger discount space, the
scale of possible discount allocations accordingly becomes
greater in order sense. Thus, it is much harder to find an
effective discount allocation. Meanwhile, the corresponding
seeding uncertainty imposes additional difficulties on influ-
ence analysis and algorithm design.

Algorithm Design. In our seeding model, initially accessi-
ble users are seeded to reach their neighbors for further dis-
count allocation. It is easy to see that the two seeding
processes are inter-related. This interdependency requires
our algorithm to collectively consider the two seeding pro-
cesses. Not only seeding results of initial users should be
considered but also possible seeding results of neighbors.

To overcome the access limitation, we intend to leverage
the FP phenomenon that neighbors have higher degree in
expectation. A new seeding model is proposed with the FP
embedded. We first seed users in X (stage 1) to reach their
neighbors for further discount allocation (stage 2). Whether
a user u accepts the discount cu is depicted by the seed prob-
ability function puðcuÞ. Accordingly, we formulate non-
adaptive and adaptive cases, both proven to be NP-hard. (1)
Non-adaptive case: discounts are allocated to users in X all at
once and then neighbors of those who accept the discount.

(2) Adaptive case: we sequentially seed users in X by adopt-
ing actions, defined as user-discount pairs, based on previ-
ous seeding and diffusion results. Each time, if the user
accepts the discount, we further seed his/her neighbors.
The main contributions of this paper are highlighted as
follows.

� We first formulate the limited IM problem under
fine-grained discounts and uncertain user nature.
Then, we look into the FP phenomenon in the set of
users X and prove it to hold set-wisely in any net-
work. With this theoretical support, we are inspired
to design a two-stage seeding model where neigh-
bors of X are seeded, and thus we get access to more
influential users and the influence spread is also
expanded.

� In the non-adaptive case, we first show themonotonic-
ity of influence spread w.r.t. the discount allocation.
Then, a two-stage coordinate descent framework is
designed to decide the fine-grained discount in
two stages. We collectively consider the seeding pro-
cess in stage 2 when designing the discount allocation
of stage 1.

� In each round of the adaptive case, we calculate the
benefit of each action (user-discount pair) by estimat-
ing the increase of the influence spread when neigh-
bors of the user are seeded. Then, we adopt the
action with the largest benefit-to-discount ratio.
With this idea, two algorithms pgreedy and p

greedy
discrete are

devised with performance guarantee, where dis-
counts of neighbors are determined by the coordi-
nate descent and greedy algorithm respectively.
Furthermore, pgreedy

enum is proposed with the enumera-
tion idea, achieving an approximation ratio of ð1�
e
�B1�1

B1
ð1�1eÞÞ � 0:469 better than previous work2 [10],

[12], [13].
� Besides theoretical guarantees, our algorithms also

exhibit favorable performances in experiments. Spe-
cifically, extensive experiments are conducted on
real-world social networks to evaluate the proposed
algorithms. The results show that our adaptive algo-
rithms achieve much larger influence spread than
non-adaptive and other adaptive algorithms (up to a
maximum of 116 percent), and meanwhile are scal-
able to large networks.

The rest of the paper is organized as follows. Important
milestones are reviewed in Section 2. We describe the
model in Section 3. The non-adaptive and adaptive cases
are formulated in Section 4. In Section 5, we analyze the
non-adaptive case. And the adaptive case is studied in Sec-
tion 6. Numerous experiments are conducted in Section 7.
And we conclude the paper in Section 8. Due to space limi-
tation, some technical proofs and experimental results are
deferred to the supplemental file, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2020.3015387.

1. We mean “adaptive” in the sense that users are sequentially
seeded based on previous seeding and diffusion results, while the con-
cept in [10], [11], [12], [13] means that the allocation in neighbors is
related to the set of seeds in initially accessible users.

2. Although [11] achieves an approximation ratio of 1� 1
e , its diffu-

sion model, called the voter model, is much simpler where the influ-
ence of each user is simply additive and could be anticipated in
advance.
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2 RELATED WORK

Domingos and Richardson [4] took the head in exploring the
peer influence among customers by modeling markets as
social networks. They attempted to maximize the cascade of
purchasing behavior by targeting a subset of users. Kempe
et al. [1] further formulated thewell-known influencemaximi-
zation problem. The greedy algorithm is proposed with
proven performance guarantee ð1� e�1Þ [15]. No polynomial
time algorithm could have a better performance, unless P ¼
NP [16]. Since then, extensive works have been done in differ-
ent perspectives [3], [5], [17], [18], [19].

Bharathi et al. analyzed the game of competing information
diffusions in one social network [2]. Li et al. considered location
information in influence maximization [20]. Tang et al. pre-
sented the near-optimal time algorithm to solve the influence
maximization problem for triggering models without hurting
the approximation ratio [21]. Estimation techniques are
applied in [7] to improve the empirical efficiency. Yang et al.
[8] assumed that the discount can be fractional instead of only
0 or 1. Chen et al. [22] improved the influence maximization in
both running time and cascade size. Budgeted influence maxi-
mization was studied in [6] where each user is associatedwith
a cost for selection. A synthetic survey is provided in [23].

However, the access limitation is ignored by all the above
works. Seeman et al. [13] studied the seed selection based on
the intuition of FP, which is first discovered by Feld [14]
and further investigated point-wisely by numerous works
[24], [25], [26]. Badanidiyuru et al. considered monotone
submodular objective functions and achieve a ð1� e�1Þ2
approximation ratio [10]. In [11], by relaxing the diffusion
model and discount setting, Horel et al. made impressive
progress on algorithm design and experimental validation.

Adaptive seeding is an emerging topic in influence maxi-
mization. Users are seeded one after another based on the
existing seeding and diffusion results. Golovin et al. [27]
studied the adaptive submodularity and showed that a
greedy policy obtains a ð1� e�1Þ approximation ratio. Yuan
and Tang proposed the adaptive algorithm based on the
greedy policy [9]. In [28], only partial feedback is observed
before seeding the next user.

Our work is distinct from existing works [10], [11], [12],
[13] mainly in two aspects. First, the problem is comprehen-
sively studied under practical settings, where users accept
the fine-grained discounts probabilistically and the diffusion
process is depicted by the well-received independent cascade
model. On this basis, algorithms are proposed with theoreti-
cal guarantee and evaluated on real-world datasets. Second,
all existing solutions to the access limitation can be classified
as non-adaptive category. However, not only non-adaptive
solution but also adaptive solution is presented in our paper
to maximize the influence spread under access limitation.

3 MODEL

A social network is denoted as the graph GðV;EÞ, where V
is the set of users and E records the relationships between
users. Initially accessible users are denoted as X � V . For
any user u 2 V , let NðuÞ denote the neighborhood of u. For
any subset of users T � V , NðT Þ represents the neighbor-
hood of T , defined as NðT Þ � S

u2TNðuÞ n T . For more
notations, please refer to Table 1.

We start the influence diffusion by allocating discounts
to users, which is described by the two-stage seeding model.
If a user accepts the discount allocated, we say it becomes a
seed. A set of seeds forms a seed set. Especially, we call the
seed in stage 1 an agent. The diffusion process is described
by the independent cascade model.

The two-stage seeding model contains the recruitment stage
(stage 1) and the trigger stage (stage 2). The predefined bud-
get is B1 in stage 1 and B2 in stage 2,3 with the total budget
being B ¼ B1 þB2. The seeding process in the two-stage
model is shown as follows, with an illustration in Fig. 1.

� the recruitment stage: We seed users in X with given
budget B1, to recruit agents whose friends are possi-
bly more influential. Some users become the agent
and bring their friends (newly reachable users) into
this campaign in the meantime by forwarding the
promotion link, providing address information for
mail, even helping hand over the sample, etc.

TABLE 1
Frequently Used Notations

3. It is tempting to study our problem under variable B1 and B2,
which however makes our problem even more challenging. It is also
worth noting that our current solution could provide valuable hints to
the case of unfixed B1 and B2. Specifically, we allow an error of c when
optimizing B1 (B2 ¼ B� B1) by requiring B1 to take discrete values
fc; 2c; 3c; . . . ; ½B=c�� cg. Then, the problem is reduced to the current one
where B1 and B2 are pre-known. Thus we could derive the optimal
combination of B1 and B2 by invoking our solutions ½B=c� times.
Besides, we would also like to provide a heuristic method with user’s
degree as the proxy of its influence like [11]. To explain, we figure out
the average degree of X and NðXÞ, and then determine B1, B2 accord-
ing to the proportion of their average degrees.
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� the trigger stage: We seed newly reachable users with
budget B2 to trigger the largest influence cascade.

The discount allocated to user u is denoted as cu.
Whether user u accepts the discount is depicted by the seed
probability function puðcuÞ. We assume puð�Þ satisfies the
four properties: (1) puð0Þ ¼ 0; (2) puð1Þ ¼ 1; (3) puð�Þ is mono-
tonically nondecreasing; (4) puð�Þ is continuously
differentiable.

In both stages, we allocate the budget to seed users, but
the intention is different. In the recruitment stage, users are
seeded to recruit agents such that we can access their influ-
ential neighbors. In the trigger stage, where the influence dif-
fusion really begins, we seed the newly reached neighbors
to maximize the influence diffusion. In classical influence
maximization, we are restricted to seed users only in X
without the privilege to reach more influential users, result-
ing in limited cascade size.

The diffusion modelwe adopt is the independent cascade model,
which has been one of themost popular models since formally
proposed in [1]. In the independent cascade model, each edge
ðu; vÞ in the graph GðV;EÞ is associated with a propagation
probability puv, indicating the probability that u influences v
after u gets influenced first. Note that, no matter u succeeds or
not, it cannot attempt to influence v again. The influence of dif-
ferent edges is independent of each other. Once user v gets
influenced, it will not change its state. On this basis, starting
from a seed set T , the diffusion expands in discrete steps as fol-
lows. In each step, the newly influenced user, u, tries to influ-
ence its neighbors, e.g., v, along the edge ðu; vÞ, and succeeds
with corresponding probability puv. The process goes on in
this way, until no user is further influenced. The influence of
the seed set T is denoted as IðT Þ, which is the expected num-
ber of users totally influenced, where Ið�Þ is the influence func-
tion I : 2V ! R. As can be seen, the influence spread is closely
related to the graph andpropagation probabilities along edges.
Thus, in computation of IðSÞ, we need full knowledge of the
influence graph, i.e.,GðV;EÞ and puv (8ðu; vÞ 2 E).

To provide theoretical support for our model, by Lemma
1 we prove that the neighbors NðXÞ have higher degree
than the small set of users X in expectation. To the best of
our knowledge, this is the first time that the FP phenome-
non is proven to hold set-wisely in any large network. It is
easy to see that the traditional point-wise FP is a special
case of Lemma 1 by lettingX contain only one user.

Lemma 1. Given any connected network GðV;EÞ, consider a set
of users X where each user is selected from V with probability
p! 0, then the friendship paradox phenomenon exists between
X and NðXÞ, i.e., the average degree of X is no larger than
that of NðXÞ in expectation.

Proof. Please refer to Section 2.1 of the supplemental file,
available online. tu

4 PROBLEM FORMULATION

From the model, we can see that the influence maximization
in the two-stage model consists of three sequential pro-
cesses: seeding in stage 1, seeding in stage 2 and influence
diffusion from stage 2. In this section, we will study two
ways of seeding: the non-adaptive case and the adaptive
case. In the first case, a process goes on after the previ-
ous process is finished. In the second case, the three
processes iteratively go on in a circle. In each round,
only part of the process is done and users are seeded
based on the result of previous seeding and diffusion
processes.

4.1 Non-adaptive Case

We first seed users in X to recruit agents. The discount
allocation is denoted as the m-dimensional vector C1 ¼
ðc1; c2; . . . ; cmÞ, where m ¼ jXj. Let S denote users who
become agents in X. Then, NðSÞ denotes friends newly
reached in NðXÞ. We next allocate discounts to newly
reachable users NðSÞ. Similarly, the discount allocation
in NðSÞ is denoted as C2 ¼ ðc1; c2; . . . ; ckÞ, where k ¼
jNðSÞj. 8ci in C1 or C2, ci 2 ½0; 1�, i.e. the discounts are
fractional. It is easy to see that the seed set in each stage
is probabilistic, since users accept discounts with proba-
bility function puðcuÞ.

Let us consider stage 1, given the allocation C1 in X, the
probability that the subset of users S � X accepts the dis-
counts is

PrðS;C1; XÞ ¼
Y
u2S

puðcuÞ
Y

v2XnS
ð1� pvðcvÞÞ: (1)

Following the same technique, given allocationC2 inNðSÞ, the
probability that T � NðSÞ becomes the seed set in stage 2 is

PrðT ;C2;NðSÞÞ ¼
Y
u2T

puðcuÞ
Y

v2NðSÞnT
ð1� pvðcvÞÞ: (2)

Then, the influence diffusion starts from the seed set T and
IðT Þ users get influenced in expectation. In stage 2, given
newly reachable users NðSÞ and the discount allocation C2,
we can obtain the expected number of users influenced, for-
mally expressed in

QðC2;NðSÞÞ ¼
X

T�NðSÞ
PrðT ;C2;NðSÞÞIðT Þ: (3)

Under a fixedNðSÞ, we only need to find the optimal alloca-
tion C2 to maximize QðC2;NðSÞÞ with budget constraint B2.
Note that NðSÞ is probabilistically determined by the dis-
count allocation C1 in stage 1. To maximize the influence
spread, we have to first optimize the influence spread over
C1 with stage 2 collectively considered. Given initially

Fig. 1. An example of the two-stage seeding model. We first seed users
inX and then reach their neighborsNðXÞ for further seeding.
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accessible users X, the expected influence spread with
regard to C1 is

fðC1;XÞ ¼
X
S�X

PrðS;C1; XÞmaxQðC2;NðSÞÞ: (4)

In summary, we optimize the influence spread over C1 with
possible seeding optimization in stage 2 considered. With
the allocation C1, we obtain newly reachable users NðSÞ
and further derive the optimal allocation C2 to maximize
the influence spread.

Under budget constraints B1 and B2, the non-adaptive
influence maximization problem (NIM) can be formally for-
mulated as follows.

NIM :

max fðC1;XÞ max QðC2;NðSÞÞ
s.t. 8u 2 X; cu2½0; 1� s.t. 8u 2 NðSÞ; cu2½0; 1�X

u2X
cu 	 B1

X
u2NðSÞ

cu 	 B2:

(5)

To help the reader comprehend the idea of the non-adap-
tive case, we provide an example in Section 1.1 of the sup-
plemental file, available online.

4.2 Adaptive Case

In the adaptive case, users in stage 1 are seeded sequen-
tially, instead of computing a discount allocation of X all at
once. The seeding process is defined on an action space Y :¼
X 
D, where D ¼ fd1; d2; . . . ; dlg is the set of l discrete dis-
count rates that can be adopted. 8di 2 D; di 2 ½0; 1� and
maxfdi 2 Dg ¼ 1. Selecting the action y ¼ ðvðyÞ; dðyÞÞ 2 Y
means seeding user vðyÞ with discount dðyÞ. Once vðyÞ takes
the discount, we reach its neighbors and carry out an alloca-
tion therein. Note that, the seeding processes in two stages
are both based on previous diffusion results. We next intro-
duce three basic concepts of our study.

Definition 1 (Seeding Process cc). c sequentially records the
actions adopted in stage 1 which aim at reaching influential
users in NðXÞ. Let domðcÞ denote the set of actions without
sequence.

Definition 2 (Seeding Realization ��). In stage 2, for each
user v in NðXÞ, v will either accept the given discount cv 2
½0; 1� (denoted as “1”) with probability pvðcvÞ, or reject it
(denoted as “0”) with probability 1� pvðcvÞ. The decisions of
users after being seeded in stage 2 are denoted by the function
� : ðNðXÞ; ½0; 1�jNðXÞjÞ ! f0; 1g.

Definition 3 (Diffusion Realization ff). For each edge
ðu; vÞ 2 E, it is either in “live” state (denoted as “1”) or in
“dead” state (denoted as “0”), indicating the influence through
ðu; vÞ is successful or not. The states of edges are denoted by the
function f : E ! f0; 1g.
With the above preliminaries, we are ready to elaborate

the sequential seeding process. Each time, we start from
stage 1 and push the partial seeding process cp one step for-
ward by adopting an action y� ¼ ðvðy�Þ; dðy�ÞÞ from Y (i.e.,
probing user vðy�Þ with discount dðy�Þ). If the user refuses

the discount dðy�Þ, we delete y� from action space Y and
move to the next round. Note that the budget is not wasted
in this case, “refuse” means “reuse”. For example, we
instantiate discounts as vouchers. The discount will not be
used (i.e., “reuse”) if the user does not accept and apply the
voucher to become a seed (i.e., “refuse”). For the case of pro-
viding samples, we can forward information of the sample
to inquire users’ will. If the user is not satisfied (i.e.,
“refuse”), we will not mail the sample to him/her and the
budget is not wasted (i.e., “reuse”).

On the contrary, if the user vðy�Þ accepts dðy�Þ and
becomes a seed, we can reach its neighbors in stage 2. Mean-
while, actions about vðy�Þ are abandoned and dðy�Þ is sub-
tracted from B1. Next we allocate discounts in newly
reachable users R with some budgets from B2. Specifically,
the budget drawn from B2 only depends on the intrinsic
property of vðy�Þ, say the discount the user expects or the
number of its neighbors. It is assumed that neighbors
brought by each user in X are non-overlapping, since users
in X are usually random. Otherwise, for a common neigh-
bor, we can designate it as one user’s neighbor. Some neigh-
bors will accept the discounts and become seeds, forming
the seed set. Then, a partial diffusion starts from the seed
set and explores the state of edges exiting influenced users.

Definition 4 (Adaptive Seeding Policy pp). The adaptive
policy is the function p : sðcp; ð�p;fpÞÞ ! Y . Given observa-
tion sðcp; ð�p;fpÞÞ, the policy p will select an action from Y .

After each round of seeding, cp observes a partial realiza-
tion ð�p;fpÞ. The set of users influenced under cp is denoted
as sðcp; ð�p;fpÞÞ, and the number of users influenced is
ŝðcp; ð�p;fpÞÞ. Due to the probability in users and edges, real-
izations � and f are both probabilistic. The prior joint probabil-
ity distribution of seeding realization and diffusion realization
is assumed to be pðð�;fÞÞ :¼ P ððL;FÞ ¼ ð�;fÞÞ, where L is a
random seeding realization andF is a random diffusion reali-
zation. Under realizations � and f, the seeding process deter-
mined by p is denoted as cðpjð�;fÞÞ. The expected number of
users influenced by p is ŝðpÞ ¼ E½ŝðcðpjðL;FÞÞ; ðL;FÞÞ�,
where the expectation is calculated with respect to pðð�;fÞÞ.
We denote the discount allocated to user u 2 X under p is
cðujpÞ. The influencemaximization in the adaptive case (AIM)
is a constrained optimization problem formulated as follows.

AIM :

max ŝðpÞ
s.t. 8u 2 X; cðujpÞ 2 D; 8ð�;fÞ

8v 2 NðXÞ; cv 2 ½0; 1�; 8ð�;fÞX
u2X

cðujpÞ 	 B1; 8ð�;fÞ
X

v2NðXÞ
cv 	 B2; 8ð�;fÞ:

(6)

For the reader’s comprehension, we provide an illustrative
example in Section 1.2 of the supplemental file, available online.

5 NON-ADAPTIVE INFLUENCE MAXIMIZATION

Based on the non-adaptive problem formulated, in this sec-
tion we look into the problem and present its solution. We
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first analyze the properties of NIM and transform the
inequality constraints in Formula (5) into equality con-
straints. Then, we present the two-stage coordinate descent
algorithm to solve the problem.

5.1 Properties of NIM

We find that the optimization problem in NIM is NP-hard
by Lemma 2. Therefore, NIM can not be solved in polyno-
mial time unless P ¼ NP .

Lemma 2. Finding the optimal discount allocation in two stages
in NIM is NP-hard.

Lemma 3 shows that under the same budget B2, if we
reach more users in stage 2, the maximal influence spread
will be larger, since we have more seeding options.

Lemma 3. With the same budget B2, if T1 � T2, then
maxQðC2;T1Þ 	 maxQðC2;T2Þ.
The proofs of Lemmas 2 and 3 are provided in Sections

2.2 and 2.3 of the supplemental file, available online, respec-
tively. Recall that C1 ¼ ðc1; c2; . . . ; cmÞ and C2 ¼ ðc1; c2; . . . ;
ckÞ. Let us write C01 ¼ ðc01; . . . ; c0mÞ and C02 ¼ ðc01; . . . ; c0kÞ. For
C1 and C01 (resp. C2 and C02), if 8i, ci � c0i, we denote C1 � C01
(resp. C2 � C02). On this basis, we have the following
theorem.

Theorem 1.Monotonicity property holds in both stages, i.e.,

(1) If C2 � C02, then QðC2;NðSÞÞ � QðC02;NðSÞÞ;
(2) If C1 � C01, then fðC1;XÞ � fðC01;XÞ:

Proof. Please refer to Section 2.4 in the supplemental file,
available online. tu
Theorem 1 indicates that the more discount we allocate to

users in each stage, the larger the influence spread is. Thus,
we can draw the conclusion that the budget allocated to both
stages will be used up. By contradiction, if there is remaining
budget in stage 1 (resp. stage 2) while f (resp. Q) is maxi-
mized, we can add it to current discount allocation C1 (resp.
C2). Then, f (resp. Q) is further increased, a contradiction.
Thus, theNIM is equivalent to the following problem.

max fðC1;XÞ max QðC2;NðSÞÞ
s.t. 8u 2 X; cu2½0; 1� s.t. 8u 2 NðSÞ; cu2½0; 1�X

u2X
cu ¼ B1

X
u2NðSÞ

cu ¼ B2:
(7)

5.2 Coordinate Descent Allocation

We attempt to decide the discount allocation in each stage by
the coordinate descent algorithm. Since the design of C1

should collectively consider the allocation in stage 2, for read-
ability, we first explain how to decide the allocation in stage 2.
Following a similar idea, we design the allocation in stage 1.

5.2.1 Coordinate Descent in Stage 2

Given the seed set S in stage 1 and the budget constraint B2,
the coordinate descent algorithm iteratively optimizes
QðC2;NðSÞÞ from an initial allocation in NðSÞ, e.g., uniform
allocation. In each iteration, we randomly pick two users u
and v, whose discounts are cu and cv respectively. Then, we

adjust the discounts between u and v to optimize
QðC2;NðSÞÞ, with other users’ discounts fixed.

Let B02 ¼ cu þ cv, B
0
2 is a constant during the rearrange-

ment. Similar to the expansion of the objective function in
[8], we could rewrite QðC2;NðSÞÞw.r.t. cu as follows

QðC2;NðSÞÞ ¼
X

T�NðSÞnfu;vg
PrðT ;C2; NðSÞ n fu; vgÞ�

n
½1� puðcuÞ�½1� pvðB02 � cuÞ�IðT Þ
þ ½1� puðcuÞ�pvðB02 � cuÞIðT [ fvgÞ
þ puðcuÞ½1� pvðB02 � cuÞ�IðT [ fugÞ
þ puðcuÞpvðB02 � cuÞIðT [ fu; vgÞ

o
:

(8)

Thus, QðC2;NðSÞÞ is a function w.r.t. cu. Then, we can write
it as QðcuÞ. Due to 0 	 cu; cv 	 1 and cu þ cv ¼ B02, we have
the constraintmaxð0; B02 � 1Þ 	 cu 	 minðB02; 1Þ.

In each iteration, we obtain the new discount of u by
solving the following optimization problem. In the mean
time, cv is determined by cv ¼ B02 � cu.

max QðcuÞ
s.t. maxð0; B02 � 1Þ 	 ci 	 minðB02; 1Þ:

(9)

It is an optimization over a single variable in a closed
interval. Since puð�Þ and pvð�Þ are continuously differentia-
ble, QðcuÞ is differentiable as well. Therefore, the discount
cu that maximizes QðcuÞ must be in one of the three cases:
(1) the stationary points of QðcuÞ in interval ðmaxð0; B02 �
1Þ;minðB02; 1ÞÞ; (2) maxð0; B02 � 1Þ; (3) minðB02; 1Þ. We check
the value of QðcuÞ in the three cases and choose the optimal
one as the new discount allocated to user u.

Algorithm1.The Coordinate Descent Algorithm CD(Q,B,T)

Input: Objective function Qð�Þ, budget B, accessible users T
Output: Allocation C
1: Initialize C
2: while not converge do
3: Randomly pick users u and v 2 T
4: B0  cu þ cv
5: Find all stationary points x of QðcuÞ in ðmaxð0; B0 � 1Þ;

minðB0; 1ÞÞ
6: cu  argmaxfx;maxð0;B0�1Þ;minðB0 ;1ÞgQðcuÞ
7: cv  B0 � cu
8: end while
9: Return C

The coordinate descent algorithm is described in Algo-
rithm 1. Its convergence is guaranteed, since QðcuÞ is upper
bounded by the size of the network, and QðcuÞ is monotoni-
cally increasing as the iteration goes on. Thus, the algorithm
will finally converge to a limit allocation. However, we can
not ensure the limit to be locally optimal, which depends on
the property of QðcuÞ. Even if the limit is locally optimal, it
may not be the global optimum, where different initial allo-
cations could be applied for improvement.

5.2.2 Coordinate Descent in Stage 1

Considering the hardness of computing the global optimum
ofQðC2; �Þ, which is needed in fðC1;XÞ by Eq. (4), we would
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like to define a proxy function Q̂ðC2; �Þ which is maximized
by Algorithm 1. Accordingly, the objective function
becomes f̂ðC1;XÞ. The coordinate descent allocation in
stage 1 follows the similar idea. We start from an arbitrary
allocation in X and optimize f̂ðC1;XÞ iteratively. In each
iteration, we randomly pick two users i, j and adjust the dis-
counts between them with other discounts fixed. Let B01 ¼
ci þ cj, B

0
1 is a constant during the rearrangement. Then,

f̂ðC1;XÞ can be written as

f̂ðC1;XÞ ¼
X

S�Xnfi;jg
PrðS;C1; X n fi; jgÞ�

n
½1�piðciÞ�½1�pjðB01�ciÞ�maxQ̂ðC2;NðSÞÞ
þ ½1�piðciÞ�pjðB01�ciÞmaxQ̂ðC2;NðS [ fjgÞÞ
þ piðciÞ½1�pjðB01�ciÞ�maxQ̂ðC2;NðS [ figÞÞ
þ piðciÞpjðB01�ciÞmaxQ̂ðC2;NðS [ fi; jgÞÞ

o
:

(10)

To handle f̂ðC1;XÞ, we need to optimize Q̂ðC2; �Þ and
estimate its influence spread. Note that the optimal alloca-
tion of Q̂ðC2; �Þ could be obtained by Algorithm 1. To esti-
mate the resultant influence spread, we apply a polling
based method in Section 3 of the supplementary file. Analo-
gous to the analysis in stage 2, f̂ðC1;XÞ can be written as
f̂ðciÞ. In each iteration, we obtain the new discount of i by
solving the following optimization problem in the same
way as stage 2. Meanwhile, cj is determined according to
cj ¼ B01 � ci.

max f̂ðciÞ
s.t. maxð0; B01 � 1Þ 	 ci 	 minðB01; 1Þ:

(11)

A framework of deciding discounts with coordinate
descent algorithm is established in Algorithm 2. We first
design the allocation in stage 1 with stage 2 collectively con-
sidered. Then, based on the seeding result in stage 1, we
determine the allocation in stage 2.

Algorithm 2. The Two-Stage Coordinate Descent
Framework

Input: Budget B1, B2, initially reachable usersX
Output: Allocation C1, C2

1: C1  CDðf̂ðC1;XÞ; B1; XÞ
2: Seed users in X with C1

3: S  users inX who accept discounts
4: C2  CDðQ̂ðC2;NðSÞÞ; B2; NðSÞÞ
5: Return C1, C2

6 ADAPTIVE INFLUENCE MAXIMIZATION

In the adaptive case, the seeding and diffusion processes
iteratively go on in a circle. In each round, one user is
seeded in stage 1. Discounts are allocated to the newly
reached neighbors in stage 2, and then the influence
spread expands. The adaptive case is studied in two dis-
count settings: discrete-continuous setting and discrete-
discrete setting.

6.1 Discrete-Continuous Setting

Discrete-Continuous Setting: Users in stage 1 are probed with
actions from Y ¼ X 
D, where D ¼ fd1; d2; . . . ; dlg is the
set of optional discount rates (discrete). In stage 2, discounts
of newly reachable users take value in interval [0,1]
(continuous).

Algorithm 3. The Adaptive Greedy Algorithm pgreedy

Input: Budget B1, B2, action space Y ¼ X 
D
Output: Accepted actions P1, allocation C2

1: Initialize P1  ;, C2  0
2: while B1 � 0 do
3: if 9y 2 Y s.t. dðyÞ 	 B1 then

4: Select y� ¼ argmaxy2Y
DðyjcpÞ
dðyÞ s.t. dðyÞ 	 B1,

5: Probe vðy�Þwith discount dðy�Þ
6: if vðy�Þ accepts dðy�Þ then
7: R newly reachable users
8: Cp

2  DCAðR; y�; P1; B1; Y Þ
9: Update C2 with Cp

2

10: else
11: Y  Y n y�
12: end if
13: end if
14: end while
15: Return P1, C2

Algorithm 4. D-C AllocationDCAðR; y�; P1; B1; Y Þ
Input: Newly reachable users R, action newly accepted y�,

accepted actions P1, remaining budget B1, current action
space Y

Output: Allocation Cp
2

1: Initialize Cp
2

2: P1  P1 [ y�; B1  B1 � dðy�Þ
3: Y  Y n fyjvðyÞ ¼ vðy�Þg
4: Cp

2  CDðQ̂ðCp
2 ;RÞ; B2

B�B2

 dðy�Þ; RÞ

5: Return Cp
2

6.1.1 Seeding Strategy

In this subsection, we first specify the selection of actions in
stage 1. Given the previous seeding process cp in stage 1,
recall that sðcp; ð�p;fpÞÞ denotes the set of influenced users
under cp. Without causing ambiguity, we will write sðcpÞ ¼
sðcp; ð�p;fpÞÞ. Then, the induced graph of uninfluenced
users V n sðcpÞ can be denoted as GðV n sðcpÞÞ. Let DðyjcpÞ
denote the expected number of users influenced in GðV n
sðcpÞÞ, if vðyÞ becomes the seed and discounts are allocated
to vðyÞ’s newly reached neighbors. DðyjcÞ is the marginal
benefit brought by y, expressed as

DðyjcpÞ :¼E½ŝðcp [ fyg; ðL;FÞÞ
� ŝðcp; ðL;FÞÞjðL;FÞ 
 cp�;

(12)

where ðL;FÞ 
 cp denotes random realizations that con-
tain the existing realization observed by cp, and the expec-
tation is taken with respect to pðð�;fÞÞ :¼ P ððL;FÞ ¼
ð�;fÞÞ. In each round, we select the action that maximizes
the benefit-to-cost ratio with the remaining budget, i.e.
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y� ¼ argmax
y2Y

DðyjcpÞ
dðyÞ : (13)

Supposing the targeted user vðy�Þ accepts the discount, we
reach its neighbors and come to stage 2, where we further
allocate discounts to newly reached neighbors R according
to the coordinate descent algorithm CDð�Þ. However, if the
user refuses the discount, we remove y� from Y and pro-
ceed to the next round. Based on the above description, the
pseudo-code is presented in Algorithm 3 pgreedy. The
DCAð�Þ function in Algorithm 3 is presented in Algorithm
4, which describes the actions triggered after action y� is
accepted. The framework of pgreedy will be inherited in the
subsequent adaptive greedy algorithms, except some
modifications.

Definition 5 (Adaptive Submodularity). The function ŝ is
adaptive submodular with respect to pðð�;fÞÞ, if for all c � c0

(i.e.c is a subprocess of c0), and 8y 2 Y n domðcÞ, we have

DðyjcÞ � Dðyjc0Þ:

Furthermore, if for all c and all y 2 Y , DðyjcÞ � 0 holds, then
ŝ is adaptive monotone.

By Lemma 4, we find that ŝð�jð�;fÞÞ is adaptive submod-
ular and adaptive monotone, where the proof is deferred to
Section 2.5 of the supplemental file, available online. Since a
non-negative linear combination of monotone adaptive sub-
modular functions is still monotone adaptive submodular,
we have ŝð�Þ is monotone and adaptive submodular.

Lemma 4. ŝð�jð�;fÞÞ is adaptive monotone and adaptive sub-
modular, under any realization ð�;fÞ.

6.1.2 Relaxation Analysis

Following a similar idea of analyzing the adaptive algo-
rithm in [9], we relax the seeding process in stage 1 by
assuming that the minimum discount rate dminðuÞ 2 D
desired by each user u is pre-known. In the seeding process,
if u is probed with a discount no smaller than dminðuÞ, then
u will accept it and become a seed, and vice versa. To maxi-
mize the benefit-to-cost ratio, each user will be probed from
small discounts. By the definition of dminðuÞ, discounts
smaller than dminðuÞ will be rejected. When the discount
becomes dminðuÞ, the user will accept it and become the
seed, and polices with higher discount are abandoned.
Thus, it becomes meaningless to probe user u with dis-
counts higher or lower than dminðuÞ. And, the action space is
reduced to Y relaxed ¼ fðu; dminðuÞÞ; u 2 Xg. We denote the
adaptive greedy algorithm under the relaxed setting as
p
greedy
relaxed. In each round, we select an action y� from Y relaxed

that maximizes the benefit-to-cost ratio
DðyjcpÞ

dminðvðyÞÞ . Once an

action in Y relaxed is adopted, the user will become a seed def-
initely, since dminðuÞ is the desired discount of user u. The
subsequent seeding strategy in newly reachable users
remains unchanged.

With the relaxation analysis, we find that the seed sets of
the relaxed setting and the original setting are the same in
stage 1 by Lemma 5, which is similar to [9]. This lemma is
proven by mathematical induction in Section 2.6 of the sup-
plemental file, available online.

Lemma 5. Under any realization ð�;fÞ, pgreedy
relaxed yields the same

seed set in stage 1 as pgreedy.

Let pOPT denote the optimal policy under the discrete-
continuous setting. With the adaptive submodularity of ŝð�Þ
and Lemma 5, we obtain the performance guarantee of the
greedy algorithm pgreedy in Theorem 2.

Theorem 2. If global optimality is obtained in stage 2 in each
round, then the adaptive greedy policy pgreedy obtains at least

ð1� e
�B1�1

B1 Þ of the value of the optimal policy pOPT,

ŝðpgreedyÞ � ð1� e
�B1�1

B1 ÞŝðpOPTÞ.
Proof. Please refer to Section 2.7 in the supplemental file,

available online. tu

6.2 Discrete-Discrete Setting

In the previous setting, the coordinate descent algorithm is
applied to decide the continuous allocation in stage 2, which
needs numerous iterative optimizations. In this subsection,
we introduce a discrete solution in stage 2.

Discrete-Discrete Setting. In each stage, we select actions
from an action space defined by the Cartesian product of
users and discount rates D. Thus, the discounts in both
stages are discrete.

Definition 6 (Submodularity). For a real-valued function
hð�Þ defined on subsets of a finite ground set G. If for all A �
B � G, and for all x 2 G nB, we have

hðA [ fxgÞ � hðAÞ � hðB [ fxgÞ � hðBÞ.

Then, we say hð�Þ is submodular. Furthermore, if hðAÞ 	
hðBÞ holds for all A � B � G, hð�Þ is said to be monotone.

The seeding process in stage 1 is still sequential. In each
round, we select an action y� from Y :¼ X 
D. If vðy�Þ
refuses the discount dðy�Þ, we delete y� from Y and move to
the next round. If vðy�Þ accepts it and becomes a seed, some
users become newly reachable, denoted as R. An action
space Z ¼ R
D is defined in stage 2. We will select a sub-
set of actions L � Z to seed users in R under some budgets
drawn from B2. The budget only depends on the intrinsic
property of vðy�Þ, just like the discrete-continuous setting.
Different from selecting actions sequentially in stage 1, we
decide actions in stage 2 all at once without observing the
seeding and diffusion results of each action. Because in real-
istic scenario, we are not likely to have so much time to
observe the diffusion of each action in stage 2.

We next show how to select the set of actions in stage 2.
Let dðujLÞ denote the discount allocated to user u under
actions L. Analogous to the definition in Equations (1) and
(3), we define the probability that a subset of users T � R
accept discounts as

PrðT ;L;RÞ ¼
Y
u2R

puðdðujLÞÞ
Y

v2RnS
ð1� pvðdðvjLÞÞÞ: (14)

Given the partial seeding process cp in stage 1 and the set of
influenced users sðcpÞ, we denote the expected number of
users newly influenced by T as IGðV nsðcpÞÞðT Þ. Then, the
number of users influenced by actions L is
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QðL;RÞ ¼
X
T�R

PrðT ;L;RÞIGðV nsðcpÞÞðT Þ: (15)

We attempt to find a set of actions that maximize the
influence spread. However, we find that maximizing
QðL;RÞ is NP-hard by Lemma 6.

Lemma 6. Finding the optimal set of actions in stage 2 is
NP-hard.

However, we can prove the monotonicity and submodu-
larity of QðL;RÞ by Lemma 7. Since QðL;RÞ is monotone
and submodular, we are motivated to design the approxi-
mate algorithm GSðR; y�; P1; B1; Y Þ in Algorithm 5 to deter-
mine the actions in stage 2.

Lemma 7. QðL;RÞ is monotone and submodular w.r.t. L.

The selection of action y� in stage 1 is similar to the
discrete-continuous setting. We select the one that maxi-
mizes the benefit-to-cost ratio

DðyjcpÞ
dðyÞ . Note that, when cal-

culating DðyjcpÞ, discounts of users in stage 2 are
determined by Algorithm 5 rather than the coordinate
descent algorithm.

We continue to examine the property of ŝð�jð�;fÞÞ in the
discrete-discrete setting and find that it is still adaptive sub-
modular by Lemma 8.

Lemma 8. In the Discrete-Discrete Setting, ŝð�jð�;fÞÞ is still
adaptive submodular, under any realization (�, f).

For readability, the proofs of Lemma 6, 7, and 8 in this
subsection are deferred to Sections 2.8, 2.9, and 2.10 of the
supplemental file, available online, respectively. Based on
the above description, we obtain the adaptive greedy algo-
rithm p

greedy
discrete in the discrete-discrete setting. Since the only

difference from pgreedy lies in the allocation in stage 2, we
can derive p

greedy
discrete by replacing DCAðR; y�; P1; B1; Y Þ with

GSðR; y�; P1; B1; Y Þ. For the sake of the space, we omit the
detailed description here. Let pOPT

discrete denote the optimal
policy. With the adaptive submodularity in stage 1 and sub-
modularity in stage 2, we obtain the performance guarantee
of pgreedy

discrete in Theorem 3.

Algorithm 5. The Greedy Selection GSðR; y�; P1; B1; Y Þ
Input: Newly reachable users R, action newly accepted y�,
actions acceptedP1, remaining budgetB1, current action space Y
Output: Actions P2

1: Initialize P2  ;
2: P1  P1 [ fy�g; B1  B1 � dðy�Þ
3: Y  Y n fyjvðyÞ ¼ vðy�Þg
4: S1  ;, Z  R
D, S2  argmaxz2ZfQðfzg;RÞjz 2 Z; dðzÞ
	 B2

B�B2

 dðy�Þg

5: while
P

z2S1 dðzÞ 	
B2

B�B2

 dðy�Þ do

6: z�  argmaxz2Z
QðS1[zÞ�QðS1Þ

dðzÞ
7: if dðz�Þ þP

z2S1 dðzÞ 	
B2

B�B2
dðy�Þ then

8: S1  S1 [ fz�g, Z  Z n fz�g
9: end if
10: end while
11: P2  argmaxS2fS1 ;S2gQðS;RÞ
12: Return P2

Theorem 3. The greedy policy p
greedy
discrete obtains at least ð1�

e
�B1�1

2B1
ð1�1eÞÞ of the value of pOPT

discrete,

ŝðpgreedy
discreteÞ � ð1� e

�B1�1
2B1
ð1�1eÞÞŝðpOPT

discreteÞ:

Proof. Please refer to Section 2.11 in the supplemental file,
available online. tu
The performance guarantee of p

greedy
discrete is not appealing

enough. The enumeration method can be further applied to
improve the approximation ratio. In fact, the size of newly
reachable users is relatively small comparedwith thewhole net-
work, hence, the enumeration will not be so computationally
costly. The modified greedy algorithm in stage 2 is described in
Algorithm 6 whose approximation ratio is ð1� e�1Þ [29]. The
complete algorithm pgreedy

enum can be derived by replacing
DCAðR;y�; P1;B1; Y Þ in Algorithm 3 with the MGS ðR;y�;
P1;B1; Y Þ. Following similar argument in the proof of Theorem
3,we obtain the approximation ratio ofpgreedy

enum in Theorem4.

Theorem 4. The policy pgreedy
enum achieves an approximation ratio

of 1� e
�B1�1

B1
ð1�1eÞ.

Algorithm 6.Modified GreedyMGSðR; y�; P1; B1; Y Þ
Input: Newly reachable users R, action newly accepted y�,
actions acceptedP1, remaining budgetB1, current action space Y
Output: Actions P2

1: P1  P1 [ fy�g; B1  B1 � dðy�Þ
2: Y  Y n fyjvðyÞ ¼ vðy�Þg
3: S1  ;, Z  R
D, S2  argmaxfQðA;RÞjA � Z; jAj < 3;P

z2A dðzÞ 	 B2
B�B2

dðy�Þg
4: for A � Z, jAj ¼ 3,

P
z2A dðzÞ 	 B2

B�B2
dðy�Þ do

5: Z0  Z nA
6: while Z0 6¼ ; do
7: z�  argmaxz2Z0

QðA[z;RÞ�QðA;RÞ
dðzÞ

8: if dðz�Þ þP
z2A dðzÞ 	 B2

B�B2
dðy�Þ then

9: A A [ fz�g
10: end if
11: Z0  Z0 n z�
12: end while
13: if QðAÞ > QðS1Þ then
14: S1  A
15: end if
16: end for
17: P2  argmaxS2fS1;S2gQðS;RÞ
18: Return P2

7 EXPERIMENTS

In this section, we examine the performance of the proposed
algorithms on four real-world datasets. The purpose lies in
three parts. First, we compare the expected influence spread of
our two-stage algorithms with other algorithms to show the
advantage of our proposed algorithms. Second, we examine
the scalability of our algorithmswith respect to the total budget.
Third, we test the sensitivity to different settings of seed proba-
bility function. Fourth, the impact of the friendship paradox is
evaluated. All algorithms were implemented in C# and simu-
lated on a Linux x64 server (Intel Xeon E5-2650 v2 @2.6Ghz,
128GBRAM).
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7.1 Experimental Setup

Dataset Description.We test our algorithms on four networks
derived from SNAP [30]. The parameters of the four data-
sets are presented in Table 2. Undirected networks are con-
verted to directed networks, which means that every
undirected edge ðu; vÞ is replaced by two directed edges
ðu; vÞ and ðv; uÞ, and the number of edges is doubled. In
each network, we randomly selected 100 nodes as the ini-
tially accessible usersX.

Propagation Probability. The diffusion model adopted is
the independent cascade model, which is widely employed
in the literature of influence maximization [7], [8], [21], [31].
Each edge ðu; vÞ is associated with a propagation probability
puv, set to be a

in�degree of v , where a 2 f0:6; 0:8; 1g. This setting
is quite common in existing works [1], [8], [9], [31].

Seed Probability Function. Recall that whether a user u
accepts the discount cu is captured by the seed probability
function puðcuÞ, which means the probability that u accepts
the discount cu and becomes a seed. User’s behavior is
affected by various factors, such as time and demand. The
best way to estimate the probability function may be learn-
ing from data, which is out of the scope of our research.
Thus, we apply synthesized seed probability functions,
which satisfy the four properties mentioned in Section 3.
For each network, we randomly select 5 percent nodes and
set puðcuÞ with puðcuÞ ¼ c2u, 10 percent nodes with puðcuÞ ¼
cu and 85 percent with puðcuÞ ¼ 2cu � c2u.

Discount Rate. The action space is defined as the Carte-
sian product of users and discount rates D. In our experi-
ment, the discount rate D is set to be an arithmetic
progression from 10 to 100 percent with common difference
10 percent. That is, 10 candidate discounts are considered.

Implementation. Influence estimation is frequently
demanded in the algorithms to determine discount alloca-
tion. To obtain an unbiased estimation, we adopt the polling
based technique proposed in [7] [21], where u (given in
Table 2) reverse reachable sets are generated. For detailed
description, please refer to Section 3 of the supplemental
file, available online. All the reported influence spreads are
estimated by running 20K times Monte Carlo simulations.

7.2 Algorithms Evaluated

To validate the performance of our four algorithms, we
include six more algorithms for comparison. All the algo-
rithms are tested under budgets B 2 f10; 20; 30; 40; 50g with
B1 : B2 ¼ 1 : 4. For one-stage algorithms, the budget B is all
spent inX.

� Non-adaptive Algorithms
Random Friend (RF). We introduce RF as a basic two-stage

algorithm. We uniformly and randomly select B1 users inX

as agents S. Then, B2 users are selected from NðSÞ in a simi-
lar way.

Discrete Influence Maximization (IM). First applied by
Kempe et al. [1], IM is a classic algorithm with performance
guarantee 1� 1

e . Users in X are greedily selected in a man-
ner that, given the first k seeds, the user u, which maximizes
the expected marginal benefit IðT [ fugÞ � IðT Þ, is selected
as the ðkþ 1Þ-th seed.

Coordinate Descent (CD). This is a one-stage algorithm car-
ried out in initially accessible users X. Detailed description
could be found in Algorithm 1. As for the initial allocation,
we first rank users in X with respect to the degree in a non-
increasing order. Then, the budget B is uniformly allocated
to the first 1:5B users. The number of iterations is set to be
50, enough for the refinement in 100 nodes.

Two-Stage CD (2CD). This is the two-stage algorithm
described in Algorithm 2. The initial allocation in each stage
is determined in the same way as CD. The number of itera-
tions is 10 in both stages.

� Adaptive Algorithms
Adaptive Selection (Ada). As the only one-stage algorithm

in the adaptive case, adapted from [9], Ada sequentially
seeds users in X with budget B. Each time, we select the
action y from Y which maximizes the benefit-to-cost ratio
DðyjcpÞ
dðyÞ , where DðyjcpÞ is the expected influence spread

brought by vðyÞ under the previous diffusion result.
LP-Based Approach (LP). A two-stage algorithm proposed

in [11], where the degree of a user is regarded as its influ-
ence. The maximization problem is formulated as an integer
linear programming. The solution returns an allocation
with ð1� 1

eÞ-approximation ratio.
A-Greedy. Proposed in [32], A-Greedy is an adaptive one-

stage algorithm. Thus, we transform it into a two-stage algo-
rithm. In both stages, A-Greedy is applied to select the
seeds. The optimal seeding pattern A� is adopted, where
one user is selected each time and the next selection takes
place until no user is further influenced. The activation
probability fu of each user u in [32] is set to be 0.6.

pgreedypgreedy (Ada+CD). This two-stage algorithm is described
in detail in Algorithm 3. The coordinate descent algorithm
is applied in newly reachable users. The initialization and
number of iterations are the same as the CD algorithm.

p
greedy
discretep
greedy
discrete (Ada+GS). The framework is the same as the Ada

+CD algorithm. But in stage 2, the coordinate descent algo-
rithm is replaced by the Greedy Selection in Algorithm 5. It
is worth noting that the discount rate D in stage 2 becomes
f0:5; 1g, because we find that a fine-grained discount rate
with granularity 0.1 will lead to worse results. The explana-
tion is that greedy selection prefers giving small discounts
to many users, while the number of newly reachable users
is relatively small. Then, the budget is left, making the
experiment unfair.

pgreedy
enumpgreedy
enum (Ada+MGS). The actions in the second stage are

determined by the Modified Greedy Selection described in
Algorithm 6. The discount rate in stage 2 remains to be
f0:5; 1g for the same reason.

7.3 Experimental Results

The ten algorithms are mainly evaluated on four metrics: (1)
the expected influence spread; (2) the scalability regarding

TABLE 2
Datasets

Datasets Nodes Edges Type u

wiki-Vote 7,115 103,689 Directed 0.25M
ca-CondMat 23,133 186,936 Directed 2M
com-DBLP 317,080 1,049,866 Undirected 20M
soc-LiveJournal1 4,847,571 68,993,773 Directed 40M
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the total budget; (3) the sensitivity of algorithms with
respect to different settings of seed probability functions; (4)
the impact of the FP phenomenon. Due to space limitation,
the influence spread and scalability under a ¼ 0:8 are pre-
sented in Section 4 of the supplemental file, available online.

7.3.1 Influence Spread

The expected influence spread of the non-adaptive case and
the adaptive case is presented in Figs. 2 and 3 respectively.

� Non-adaptive Case
From Fig. 2, we can see that CD performs better than IM,

since the discount allocation in CD is allowed to be frac-
tional and thus more fine-grained. It is a little surprising
that the simple two-stage algorithm RF shows larger influ-
ence spread than the elaborate CD in most settings, except
two points in Wiki-Vote (a ¼ 0:6, B ¼ 10 and 30) due to its
randomness. The reason is that RF has access to influential
neighbors. As can be seen, the two-stage coordinate descent
algorithm outperforms the other three algorithms in all the

settings. The ratio between 2CD and the second best result
varies from 1.3 to nearly 3. This result is easy to understand
since 2CD not only has access to the influential neighbors
but also makes refinements in both stages.

Moreover, although the scale of the four datasets is quite
different, we find that the influence spread of one-stage
algorithms (i.e., CD and IM) is nearly in the same scale,
while the influence spread of two-stage algorithms scales as
the size of networks. We can infer that simply allocating dis-
counts to initially accessible users restricts the spread of
influence. Meanwhile, exploiting the friendship paradox
helps expand the influence spread.

� Adaptive Case
As can be seen from Fig. 3, in most settings the one-stage

adaptive algorithm Ada has the smallest influence spread,
since only initially accessible users are seeded. In some set-
tings, the LP algorithm is even worse than Ada, especially
in small datasets and small budgets, since in LP the degree
is directly regarded as the influence. This treatment helps

Fig. 2. Influence spread in the non-adaptive case.

Fig. 3. Influence spread in the adaptive case.
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with the complexity but losses accuracy, and causes possible
blindness when selecting seeds. In A-Greedy, the influence is
unbiasedly estimated by the hyper-graph. The result of A-
Greedy is thus better than that of LP.Our proposed three algo-
rithms achieve larger influence spread than the above three
algorithms. The reason is three-fold. First, the discount is frac-
tional and thus more fine-grained. Second, the influence is
accurately estimated. Third, the FP phenomenon is leveraged.
There is an evident gap between Ada+MGS and Ada+GS.
This phenomenon conforms with the theoretical result that
the approximation ratio of Ada+MGS is larger than Ada+GS.
In the experiment, Ada+CD shows smaller influence spread
than Ada+GS and Ada+MGS. However, we can not say that
Ada+CD is definitely inferior to the other two algorithms,
since its performance is closely related to the initial allocation.
With a better initial allocation and more iterations, Ada+CD
could deliver a better performance.

Comparing our four proposed algorithms, we can see
that adaptive algorithms yield larger influence spread than

2CD, except some minor points in the Wiki-Vote dataset.
The reason is that adaptive algorithms make the most of the
remaining budget by seeding the next user wisely based on
the observation on the previous influence spread.

7.3.2 Scalability

The scalability of algorithms in the non-adaptive case and
the adaptive case are reported in Figs. 4 and 5 respectively.
GBT is the building time of reversely reachable sets.

� Non-adaptive Case
According to Fig. 4, the running time of IM and CD is

almost the same as the GBT, since computing the allocation
in 100 users will not take too much time. With the increase
of the network size, the gap between 2CD and GBT
decreases. In the smallest dataset Wiki-Vote, the running
time of 2CD is about 20 times that of GBT. However, the
ratio becomes less than 1.3 in the largest dataset soc-Live-
journal. The reason is that the computation cost of the

Fig. 5. Running time in the adaptive case.

Fig. 4. Running time in the non-adaptive case.
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hyper-graph is high, while the execution of the 2CD algo-
rithm is relatively efficient. It is worth noting that, the RF
algorithm has the least running time and the best scalability,
since RF does not need to build the hyper-graph. Thus, the
simple two-stage algorithm RF outperforms IM and CD in
both influence spread and scalability.

� Adaptive Case
It is shown in Fig. 5 that the running time of the adaptive

algorithms follows the sequence: Ada+CD > Ada+MGS >
Ada+GS > A-Greedy > Ada. We next explain the
sequence in an increasing order. The running time of Ada is
the smallest since it does not need to consider the allocation
in neighbors. A-Greedy computes the allocation in both
stages, so the running time is higher than Ada. The running
time of Ada+GS is larger than that of A-Greedy, since fine-
grained discounts incur more sophisticated computation. It
is not a surprise to see that Ada+MGS takes more time than
Ada+GS, since enumeration is applied in Ada+MGS. As for
Ada+CD, to estimate the benefit of each action, numerous
coordinate descent algorithms are carried out in stage 2,
incurring tremendous iterations. Thus, Ada+CD is less effi-
cient than Ada+MGS. Similar to the non-adaptive case, the
gap between algorithms and GBT is decreasing as the net-
work size grows, due to the same reason in the non-adap-
tive case. The running time of LP is almost in the same scale
over the four satasets, since it is not based on the hyper-
graph and only needs to solve an LP problem.

From the results in both cases, we find that most time is
spent on building the hyper-graph. The execution time (GBT
not included) of the proposed algorithms is less than one hour
in all the cases except one point (B ¼ 50 in Fig. 4a). Generally,
the running time of 2CD is larger than Ada+MGS while
smaller than Ada+CD. Thus, we can roughly obtain the

sequence of running time of the proposed algorithms: Ada
+CD > 2CD > Ada+MGS > Ada+GS.

7.3.3 Sensitivity

We also test the sensitivity of our proposed algorithms with
respect to different settings of seed probability functions. To
this end, we introduce a second setting with different portion
of seedprobability functions. The previous setting in Section 7.1
is denoted as Setting 1 (S1). In Setting 2 (S2), 65 percent users are
assigned with puðcuÞ ¼ 2cu � c2u, and 20 percent users with
puðcuÞ ¼ cu, and 15 percent users with puðcuÞ ¼ c2u. The
algorithms are run again in Setting 2.

Table 3 reports the influence spread of the proposed algo-
rithms with a ¼ 1:0. As can be seen, the influence spread of
the four algorithms decreases in setting 2. This phenomenon
indicates that users are harder to satisfy under Setting 2. In
terms of the ability to copewith the change of seed probability
functions, 2CD shows even better performance than Ada+CD
and comparable performancewith Ada+GS. The possible rea-
son is that 2CDmakes refinement over a large amount of users
inNðSÞ, while Ada+CD and Ada+GS only allocate discounts
to neighbors of one agent each time. Thus, it is easier for 2CD
to find an alternative user to seed when the seed probability
function of a user becomes not favorable. However, Ada
+MGS shows the best performance in coping with the change
of settings. The explanation is that the enumeration process
helps find good action combinations in Setting 2.

7.3.4 Impact of the Friendship Paradox Phenomenon

In this part, we evaluate the impact of the FP phenomenon.
The algorithms are evaluated under two settings, i.e., jXj ¼
100 and 1000. To show the effect of the FP phenomenon, we
compare the influence spread between one-stage algorithms

TABLE 3
Sensitivity to the Seed Probability Function

Dataset B 2CD Ada+CD Ada+GS Ada+MGS

S1 S2 Reduction S1 S2 Reduction S1 S2 Reduction S1 S2 Reduction

Wiki-Vote 10 67 57 14.9% 110 65 40.9% 79 70 11.4% 159 135 15.1%
20 146 98 32.9% 182 121 33.5% 125 97 22.4% 241 218 9.5%
30 171 119 30.4% 228 162 28.9% 201 170 15.4% 309 274 11.3%
40 239 177 25.9% 290 184 36.6% 251 206 17.9% 349 330 5.4%
50 293 208 29% 334 205 38.6% 292 272 6.8% 397 379 4.5%

Condmat 10 411 252 38.7% 618 321 48.1% 579 407 29.7% 665 566 14.9%
20 616 390 35.6% 953 558 41.4% 820 593 27.7% 985 872 11.5%
30 803 595 25.9% 1122 733 34.7% 1013 747 26.3% 1212 1099 9.3%
40 934 686 26.6% 1333 814 38.9% 1184 881 25.6% 1483 1282 13.6%
50 1132 863 23.8% 1465 859 41.3% 1376 1029 25.2% 1685 1498 11.1%

Dblp 10 358 251 29.9% 685 266 46.6% 543 345 36.5% 859 703 18.2%
20 802 581 27.6% 1287 553 57% 891 621 30.3% 1501 1176 21.7%
30 1019 724 28.9% 1852 851 54% 1332 880 33.9% 1953 1612 17.5%
40 1308 954 27.1% 2261 983 56.5% 1735 1322 23.8% 2403 2119 11.8%
50 1644 1201 26.9% 2608 1191 54.3% 2125 1607 24.4% 2793 2440 12.6%

Livejournal 10 1564 1073 31.4% 4591 2524 45% 4481 2626 41.4% 4610 3632 21.2%
20 3193 2333 26.9% 6405 4325 32.5% 6040 4159 31.1% 7199 6843 4.9%
30 5340 3222 39.7% 8686 5148 40.7% 7067 5114 27.6% 9523 8785 7.7%
40 6935 5462 21.2% 10831 6590 39.2% 7969 6776 15% 11310 10793 4.6%
50 7464 6280 15.9% 12913 7246 56.1% 9000 7541 16.2% 12781 12719 0.5%
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and two-stage algorithms. In the non-adaptive case, CD and
2CD are selected for experiment. In the adaptive case, the
only one-stage algorithm Ada is tested and Ada+MGS is
selected due to its impressive performance.

The influence spread is shown in Table 4. Regardless of the
size of X, two-stage algorithms show larger influence spread
than one-stage algorithms by exploiting the influential neigh-
borhood. We next focus on the influence spread of algorithms
in the larger jXj. For the two one-stage algorithms, when jXj ¼
1000, the influence spreads both become larger, since the num-
ber of influential users is likely to be larger in a largerX. How-
ever, the performance of two-stage algorithms is different.
When jXj ¼ 1000, the influence spread of 2CD becomes
smaller, while Ada+MGS shows even better performance. We
further compare the increase of influence spread brought by
two-stage algorithms. In the two relatively smaller datasets, i.e.,
Wiki-Vote and Ca-Condmat, the increases of 2CD and Ada
+MGS both become smaller when jXj ¼ 1000. However, in
Dblp and LiveJournal, the increase of Ada+MGS is largerwhen
jXj ¼ 1000, while the increase of 2CD is still smaller. This
observation indicates that Ada+MGS has a better ability to uti-
lize the friendship paradox phenomenon.

8 CONCLUSION AND FUTURE WORK

This paper studies the influence maximization problem with
limited initially accessible users. To overcome the access limi-
tation, we propose a new two-stage seedingmodelwith the FP
phenomenon embedded, where neighbors are further seeded.
Based on this model, we solve the limited influencemaximiza-
tion problem under both non-adaptive and adaptive cases. In
the non-adaptive case, we examine the properties of this prob-
lem and establish a two-stage coordinate descent framework

to determine the discount allocation in two stages. In the adap-
tive case, we first consider the discrete-continuous setting and
design the adaptive greedy algorithmwith theoretical guaran-
tee. Then, in the discrete-discrete setting, the allocation in stage
2 is considered to be discrete. Accordingly, two algorithms are
proposed based on greedy selection. Finally, extensive experi-
ments are carried out on real-world datasets to evaluate the
performance of the proposed algorithms. Moreover, our work
is only a primary study into the two-stage IM, since the deriva-
tion of diffusion probabilities is not considered.While by serv-
ing as a subroutine, our study would continue to benefit the
design of effective online algorithms which consider the learn-
ing of diffusion parameters.

In the future, we would like to devote to finding better
allocations than the convergent one to improve the coordi-
nate descent algorithm. In the adaptive case, it is implicitly
assumed that we have enough time to observe the whole
diffusion process, which may take lots of time and thus
impractical. It is worthwhile to study the problem when
only part of the diffusion is observed in each round. In
footnote 3, although we proposed solutions to the case of
unified budget, it is still necessary to treat it as an individual
problem and more effective algorithms could be designed.
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TABLE 4
The Impact of the Friendship Paradox Phenomenon

Dataset B Non-adaptive Adaptive

jXj ¼ 100 jXj ¼ 1000 jXj ¼ 100 jXj ¼ 1000

CD 2CD Increase CD 2CD Increase Ada Ada+MGS Increase Ada Ada+MGS Increase

Wiki-Vote 10 27 67 40 34 50 16 68 159 91 149 205 56
20 47 146 99 60 106 46 98 241 143 260 301 41
30 66 190 124 84 149 65 121 309 188 336 382 46
40 85 239 154 110 220 110 139 349 210 398 439 41
50 101 293 192 128 270 142 146 397 251 451 489 38

Condmat 10 67 411 344 83 135 52 206 665 459 453 652 199
20 130 616 486 156 295 139 292 985 693 725 1039 314
30 182 803 621 234 558 324 348 1272 924 935 1314 379
40 231 934 703 306 744 438 375 1483 1108 1105 1570 465
50 276 1132 856 377 762 385 375 1685 1310 1258 1774 516

Dblp 10 69 358 289 75 251 176 188 859 671 412 1126 714
20 131 802 671 146 680 534 275 1501 1226 657 2007 1350
30 185 1019 798 213 996 783 332 1953 1621 850 2763 1913
40 228 1308 1080 281 1157 876 360 2403 2043 1011 3417 2406
50 268 1644 1376 346 1424 1328 360 2793 2433 1159 4057 2898

Livejournal 10 138 1564 1426 237 1508 1271 408 4436 4028 980 24863 23883
20 256 3193 2937 425 2523 2098 550 7199 6649 1603 30029 28426
30 363 5340 4977 580 5389 4809 680 9523 8843 2089 34059 31970
40 464 6935 6471 713 6101 5388 744 11310 10566 2465 38132 35667
50 556 7464 6908 863 7261 6398 749 12781 12032 2788 41280 38492
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