
Measuring the Impact of Gradient Accumulation on
Cloud-based Distributed Training

Zimeng Huang∗, Bo Jiang∗, Tian Guo†, Yunzhuo Liu∗
∗Shanghai Jiao Tong University, China
†Worcester Polytechnic Institute, U.S

∗{lukehuang, bjiang, liu445126256}@sjtu.edu.cn, †tian@wpi.edu

Abstract—Gradient accumulation (GA) is a commonly adopted
technique for addressing the GPU memory shortage problem in
model training. It reduces memory consumption at the cost of
increased computation time. Although widely used, its benefits
to model training have not been systematically studied. Our
work evaluates and summarizes the benefits of GA, especially in
cloud-based distributed training scenarios, where training cost is
determined by both execution time and resource consumption.
We focus on how GA can be utilized to balance execution time
and resource consumption to achieve the lowest bills. Through
empirical evaluations on AliCloud platforms, we observe that
the total training cost can be reduced by 31.2% on average
with a 17.3% increase in training time, when GA is introduced
in the large-model and small-bandwidth scenarios with data-
parallel training strategies. Besides, taking micro-batch size into
optimization can further decrease training time and cost by
21.2% and 24.8% on average, respectively, for hybrid-parallel
strategies in large-model and GPU training scenarios.

Index Terms—gradient accumulation, distributed training,
cloud computing

I. INTRODUCTION

Gradient accumulation (GA) [1], [2] is a technique com-
monly used in deep learning (DL) to train large models that
require high memory resources. GA divides the training data
into smaller micro-batches and then accumulates the gradients
from each micro-batch before applying them to update the
model. GA has been used to address the GPU mismatch
between model training requirement and the GPU memory [3].
However, prior work also demonstrates the possibility of
prolonged training time when using GA [4], [5], suggesting
the need to investigate the trade-offs between training time
and GPU memory in practice.

In this paper, we are interested in answering the key
question of what distributed training scenarios can benefit
from GA and by how much. In particular, our study focuses
on cloud-based distributed training due to its popularity and
its vast resource options that DL practitioners can explore
to speed up training. For example, GPU-equipped VMs of-
fered by Infrastructure-as-a-Service (IaaS) [6]–[8] have been
widely used to train DL models and many prior works have
investigated improving cloud-based training performance by
addressing the communication bottlenecks [4], [5], [9] or
utilizing cheaper preemptible resources [10]. However, there
still lacks a systematic study of the impact of GA, a promising

The corresponding author is Bo Jiang.

approach to improve the computation-to-communication ratio,
on IaaS-based training.

Furthermore, we have also observed an increased interest
in leveraging Function-as-a-Service (FaaS) workers [11]–[13]
to train DL models [14], [15], due to FaaS’ key benefits in
true pay-as-you-go pricing model and the ability to scale to
many workers. These FaaS-based training frameworks are still
in their infancy and could benefit from further optimization
opportunities associated with GA. In short, our study evaluates
the impact of GA on two popular cloud resource offerings:
VMs by IaaS and serverless functions by FaaS.

Another dimension, besides the cloud resource offerings,
that can also impact the distributed training performance is
the parallelism strategy. Commonly implemented strategies
include data parallelism (DP) and hybrid parallelism (HP) [5],
[9], which differ in how the training workload is divided and
scheduled. In this work, we consider both DP and HP due
to their popularity. We define the combination of the cloud
resource offerings and parallelism strategy as an instance of
training scenario. For each scenario, we choose a representa-
tive training framework and measure the training performance
(time, cost, and accuracy), both with and without integration
with GA.

When training with DP [5], the training dataset is partitioned
and each worker, i.e., training node, is assigned a subset. Each
worker has a copy of the complete model, trains with their own
data per batch, and performs gradient synchronization with
each other to update model parameters. In essence, DP allows
training models with larger global batch size by having more
workers [16] , each in charge of a local batch, a proportion of
the global batch. However, more workers also mean larger
synchronization overhead which often translates to inferior
training performance.

GA brings the opportunity to alleviate the abovementioned
synchronization overhead because it decouples the configura-
tion of the number of workers from the global batch size. That
is, unlike vanilla DP-based training, we can use any number
of workers for a given DL model and global batch size when
using GA with DP-based training. Moreover, GA also softens
the requirement on GPU memory, therefore increasing the
pool of eligible cloud configurations. To better leverage GA to
improve training performance, we need to address the added
resource configuration problem, e.g., how many workers to use
and the worker resource configuration. In this work, we use



Bayesian Optimization (BO) to find the desired configuration.
Training with HP means that both data parallelism and

model parallelism are used. In this paper, we focus on a
specific variant of model parallelism called pipeline paral-
lelism due to the more available framework support. Pipeline
parallelism divides a DL model into multiple stages, each
consisting of a number of layers, and runs each stage on
one or more workers depending on whether DP is also used.
During training, each input batch is further divided into
multiple micro-batches to go through different stages in a
pipelined fashion. A typical DNN training iteration contains a
forward pass and a backward pass through all stages. In each
phase, different micro-batches are calculated successively in
the forward pass and the activations generated are stored for
reuse in the backward pass. Note GA is naturally incorporated
in HP through the use of micro-batches in the pipeline.

Our empirical observation shows that HP-based training per-
formance can be affected by micro-batch size (mbs). However,
many existing works [9], [17] manually set the mbs for a
given setup, lacking details on its impact or how to configure
it for different training scenarios. Moreover, we observe that
different mbs will affect the time to complete a full batch
training. Therefore, for HP-based training, we will consider
configurations of mbs when measuring the impact of GA.

In evaluating GA’s impact on cloud-based distributed train-
ing, we make the following key contributions.

• We establish the potential of GA in improving cloud-
based distributed training via empirical measurement
and performance modeling. For DP-based scenarios, we
find that directly applying GA can further optimize the
training cost via adjusting the number of workers; for
HP-based scenarios, we find that considering mbs in the
optimization problem can regulate the computation time
of one full iteration to achieve better training time and
cost.

• Our evaluation with four frameworks on a public
cloud shows that GA can help further reduce training
time and cost. For example, we find that GA can be
effectively combined with DP for training large models
with low network bandwidth. For some training scenarios,
the combination of GA and DP can reduce the training
cost by 31.2% while increasing the total training time by
17.3% correspondingly, whereas considering the micro-
batch size optimization in the HP scenario can reduce the
training time by 21.2% and the cost by 24.8% on average.

The rest of the paper is organized as follows: §II introduces
common cloud-based training scenarios and the gradient accu-
mulation technique, in addition to reviewing the related work
in distributed training techniques. §III identifies the potential
opportunities and optimization effects of GA in cloud-based
distributed training scenarios through preliminary empirical
evaluation and analytical modeling. §IV elaborates on the
evaluation methodology and corresponding design details we
employ. §V presents the evaluation results of GA with various
distributed training frameworks regarding training cost and

speed. §VI concludes this paper and identifies possible future
work on the training framework design.

II. BACKGROUND AND RELATED WORK

In this section, we provide the background of common
cloud-based training scenarios, where each scenario describes
the cloud resource offering (§II-A) and training parallelism
strategy (§II-B). We also explain the integration of gradient
accumulation in different scenarios in detail in §II-C.

A. Cloud Resource Offerings

Popular cloud providers such as AWS and Azure of-
fer computation resources to cloud customers in two main
ways: infrastructure-as-a-service (IaaS) and function-as-a-
service (FaaS). The former has become the de facto way for
deep learning practitioners to perform distributed training,
which often involves training a deep learning model using
network-connected workers equipped with GPU devices [7],
[8]. The latter, FaaS, due to its attractive benefits such as true
pay-as-you-go, has attracted many research interests to train
deep learning models with it [14], [15], [18]. Next, we briefly
introduce the key characteristics of IaaS and FaaS, which
will serve as the basis for understanding vastly different deep
learning training framework designs.

IaaS is the most commonly used cloud computing service
for deep learning [19], where resources such as servers,
storage, and networks are provided directly to users in the form
of rental, such as virtual machine (VM) rental service. IaaS
is the simplest cloud computing delivery mode, it provides
cloud resources to users by virtualization techniques. However,
tenants still need to configure the underlying server settings
and the corresponding computing environment. Many cloud
service platforms nowadays provide a variety of virtual ma-
chine families for different computing scenarios, which makes
it possible to tune different resource configurations. At present,
some prior work has pointed out the possibility of resource
configuration tuning in IaaS [18], [20], [21].

FaaS is also being used by more and more developers
in recent years. The design idea of FaaS is to divide a
single computing operation that interacts with the server into
independent functions. The developer can directly deploy and
run the service code in stateless computing containers provided
by the cloud service provider. The developer only needs to
write the function code of the business logic without worrying
about server resource management. Although FaaS was origi-
nally developed for web microservices and Internet of Things
(IoT) applications, recently researchers have also explored the
serverless service’s role in DNN training [14], [15], [18]. Due
to serverless applying a more fine-grained charging strategy
and strong resource elasticity, it is also worth looking forward
to using serverless service for DNN distributed training in
the future. However, the inability to direct communication
between FaaS nodes and the low bandwidth characteristics are
worthy of attention when we design the training framework.
Besides, the present-day commercial FaaS does not support
GPU, which is also a key difference between IaaS and FaaS.



micro-batch Global
gradients

Accumulation

Replica 0

Replica 1

Global
gradients

Accumulation

Allreduce

Weight
Update

Weight
Updatemicro-batch micro-batch

micro-batch micro-batch micro-batch

(a) GA in Data Parallelism

FW0
Global

gradients

Accumulation

BW1FW1 BW0FW2 BW2

Comm

Stage 0

Stage 1 FW0
Global

gradients

Accumulation

BW1FW1 BW0FW2 BW2

Weight
Update

Weight
Update

(b) GA in Pipeline Parallelism

Fig. 1: Gradient accumulation in different parallelism. For data parallelism, the use of GA splits the running batch into
micro-batches and accumulates the corresponding gradient in each worker. After the Allreduce operation synchronizes gradients
among all replicas, each worker updates their local weights. For pipeline parallelism, each stage produces and accumulates
gradients for all micro-batches, although the forward and backward processes are separated. We split the global batch into
three micro-batches as an example.

B. Distributed Training Parallelism

Distributed training parallelism defines how the training
workload of deep learning is distributed among different work-
ers. In this section, we describe the two parallelism strategies,
data parallelism and hybrid parallelism, that are supported by
existing training frameworks from industry and academia [5],
[9], [14]. These two parallelism strategies exhibit significant
differences in the training process and need to be integrated
with gradient accumulation differently, as described in §II-C.

Data parallelism (DP) is the most widely adopted par-
allelism strategy [4], [5], [22], where each worker saves a
replica of the entire model and part of the dataset. In a training
iteration, workers compute the gradient of their local data
in parallel, then exchange the gradients to update the model
parameters. Data parallelism is easy to implement, but its
training efficiency is often limited by the dependency between
computation and communication. There is a lot of work on
how to overlap computing and communication processes under
data parallel design. For example, the DDP framework of
Pytorch [5] effectively reduces the total training time by
overlapping the gradient computation and transmission during
backpropagation, while LAGA [4] explores the asynchronous
overlap method with the utilization of GA.

Hybrid parallelism (HP) combines both data parallelism
and model parallelism, which divides the DNN model be-
tween workers to reduce the memory bottleneck of distributed
training [23]–[25]. While there are many variants of model
parallelism [26], [27], a specific form called pipeline paral-
lelism has become the most common variant [9], [14], [17],
[28]. In pipeline parallelism, each worker retains part of the
model layers and splits the input data so that the entire training
process can be pipelined. Numerous frameworks, including
Gpipe [17] and DAPPLE [9], have implemented pipeline
parallelism to improve overall training throughout. For ex-
ample, Gpipe [17] explores the large model training method
of synchronous pipeline approach, where each data batch is
divided into several micro-batches at the beginning of each
iteration, and each worker respectively carries out forward
processing (FW) for each micro-batch and saves the activation

value. The gradient is accumulated in the backward process-
ing (BW), and the model parameters are updated. DAPPLE
[9] optimizes the memory consumption in the synchronous
pipeline method, further reducing the memory overhead in the
training process. Recent frameworks [9], [14] further support
pipeline parallelism in the context of hybrid parallelism. For
the remainder of the paper, we will evaluate the impact of GA
on hybrid parallelism, which includes pipeline parallelism as
a special case and has a larger search space of distributed
training configurations. Note that these configurations include
the number and types of workers, the model splitting schemes,
and the micro-batch size used for training.

C. Gradient Accumulation

Gradient accumulation (GA) is a technique that was pro-
posed to address the GPU memory shortage problem by the
machine learning community [1], [2]. In this paper, we are
interested in exploring the effectiveness of GA under different
cloud training scenarios.

The basic idea of gradient accumulation is to divide the
training batch in each iteration into multiple micro-batches.
After a micro-batch completes the backward propagation, we
do not immediately update the model but accumulate the
micro-batch gradients to obtain the global batch gradient. We
update the model only when all micro-batches in the current
batch have been processed; see Figure 1. In this process, the
splits for each training batch are called gradient accumulation
steps (GA steps). For the convenience of further discussion,
we refer to the overall training batch size as global batch size
(gbs), and the split batch size as micro-batch size (mbs). The
combination of GA and different parallelisms is not the same
due to the differences in the training process:

In data parallelism (Figure 1a), GA can reduce the maxi-
mum memory consumption of a worker with a smaller mbs,
but the overall training time will increase correspondingly.
By using different mbs, GA can provide a tradeoff between
memory consumption and training time.

Most existing frameworks with synchronous pipeline par-
allelism utilize GA in their design [9], [17], [29]. Specifi-
cally, a global batch is divided into multiple micro-batches,



32 64 128 256 512
global batch size

0

20

40

60

80

100
co

m
m

/c
om

p 
tim

e(
s)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

m
in

 it
er

 c
os

t(R
M

B)comp_time
comm_time
minimal iteration cost
reference line

(a) FaaS

32 64 128 256 512
global batch size

0

1

2

3

4

5

co
m

m
/c

om
p 

tim
e(

s)

0.005

0.010

0.015

0.020

m
in

 it
er

 c
os

t(R
M

B)comp_time
comm_time
minimal iteration cost
reference line

(b) IaaS

Fig. 2: The minimal cost and corresponding communication/computation time for one iteration without using GA. We
use Amoebanet-D18 model and Cifar-10 dataset in this experiment. The dotted line in the figure represents the reference line
assuming that minimal iteration cost is proportional to gbs.

and the gradient of a micro-batch is accumulated when the
corresponding backward calculations are completed. In this
process, adjusting the size of mbs will also affect the overall
performance of training, as discussed in detail in §III.

It is worth noting that the use of GA can also affect
the model’s accuracy, especially for layers that need to be
calculated across micro-batches, such as Batch Normalization
(BN) layers [30]. The direct use of GA may affect the
parameter learning of these layers [17], thus affecting the final
performance of the model. Taking the BN layer as an example,
in the process of gradient calculation, we need to calculate the
statistics of the whole batch data, but when a batch is split into
multiple micro-batches, only the data in the micro-batch can
be counted in the forward and backward calculation, which
results in a certain negative impact on the parameter learning
of this layer. In this paper, we also discuss the influence of
GA on the accuracy of the model and evaluate the degree of
influence in §V-B.

III. IDENTIFYING OPPORTUNITY OF GA VIA EMPIRICAL
MEASUREMENT AND PERFORMANCE MODELING

In theory, GA is a promising technique to improve cloud
training cost and time. However, it is unclear whether different
cloud training scenarios can benefit from GA in practice. In
this section, we first demonstrate the potential for improvement
in four different cloud training scenarios (DP-IaaS, DP-FaaS,
HP-IaaS, HP-FaaS) via an empirical measurement conducted
on AliCloud, a popular cloud provider in China. For each
scenario, we further use training performance models to ana-
lyze the time and cost improvement when integrated with GA.
In short, our analyses pinpoint that GA can be an effective
technique in practice.

A. Opportunities for Data Parallelism

Although many existing works have given corresponding
resource configuration optimization methods for DP, these
studies have not considered the resource optimization of DP
combined with GA. In fact, GA provides the ability to adjust

the number of workers and may further reduce the training
cost in the DP scenario, making it a valuable addition.

For DP, the duration of a single iteration is primarily
affected by the computation time and the communication time
for model synchronization. Given that the resources available
on a single worker node are limited (e.g. up to 80GB for
VM (IaaS) and 32GB for serverless (FaaS) in AliCloud [6],
[11]), scaling up the number of workers becomes necessary
as gbs increases, resulting in a noticeable hike in the overall
cost caused by the increasing communication time and the
number of invested instances. Our experiments on the Ali-
Cloud platform (Figure 2) demonstrate that the optimal cost
of training one iteration of Amoebanet-D18 model increases
superlinearly in the gbs, which suggests the potential for cost
optimization in data parallel training. This phenomenon of
superlinear growth stems from two distinct factors. First, as
the scale of training expands, communication time increases
with the number of nodes involved. Second, for varying work-
loads, the optimization process often yields dissimilar optimal
configurations. Additionally, the correlation between instance
performance and unit price of cloud service providers is fre-
quently nonlinear. By comparing different training scenarios, it
can be distinctly observed that the growth of minimal iteration
cost is more significant with the increasing gbs in FaaS which
has limited bandwidth and cheaper instances. In contrast,
training Amoebanet-D18 models in IaaS has alleviated this
phenomenon.

The GA approach extends a new dimension to each data
parallel worker node by allowing the accumulation of gradi-
ents from multiple micro-batches within a single node, thus
reducing the overall number of workers. Additionally, GA
also expands the range of resource configurations that can be
used. By setting a small mbs value, we can choose a smaller
resource configuration to complete the training process. We
let m denote the micro-batch size used for DP training, n the
num of worker nodes, p the price per unit time, s the number
of GA steps, Tcalc(m) the computation time with micro-batch
size m, Sover(m) the overlapped part of communication and



TABLE I: Total computation time and iteration time with
different mbs for training Resnet101.

Micro-batch
size

Tcomp(s) for
HP-FaaS

Tcomp(s) for
HP-IaaS (T4)

Titer(s) for
HP-FaaS

Titer(s) for
HP-IaaS (T4)

1 182.41 16.21 58.33 5.53
2 168.74 10.42 54.92 3.58
4 161.37 8.74 52.73 3.17
8 155.82 5.88 51.65 3.24
16 OOM 5.24 OOM 2.76
32 OOM 5.13 OOM 2.82

computation, and Sall(n) the total communication time. If we
do not use GA (which means s = 1), the training time and
training cost for one iteration can be represented as:

Titer = Tcalc(m) + Sall(n)− Sover(m)

Citer = np× [Tcalc(m) + Sall(n)− Sover(m)]

Keeping the other configurations unchanged, we can reduce
the number of workers by using GA. In the above example,
suppose we double the number of GA steps (s′ = 2), the
number of worker nodes can be halved (n′ = n

2 ). The training
time and training cost are then changed as:

T ′
iter = 2× Tcalc(m) + Sall(n/2)− Sover(m)

C ′
iter =

np

2
× [2× Tcalc(m) + Sall(

n

2
)− Sover(m)]

= np× [Tcalc(m) +
1

2
Sall(

n

2
)− 1

2
Sover(m)]

Note that C ′
iter < Citer, which shows that employing GA in

the current resource configuration schemes could reduce the
training cost. Nevertheless, it is worth noting that when the
number of workers is small and the value of mbs is high, the
training time of an iteration may increase correspondingly.

B. Opportunities for Hybrid Parallelism

At present, most of the existing hybrid parallel training
frameworks set mbs as a hyperparameter that requires manual
setting, without accounting for how mbs should vary with
different training workloads [9], [14], [17], this is equivalent
to disregarding GA’s tradeoff effect on memory usage and
training time. To demonstrate the impact of mbs on the overall
computation time, we conduct an experiment involving the
training of Resnet101 under the FuncPipe framework with
three pipeline stages, consisting of 119, 134, and 51 model
layers respectively. We keep gbs fixed at 256 and vary the
value of mbs. The experiments are performed on AliCloud
serverless 3GB instances (FaaS) and gn6i.xlarge instances
(IaaS with an NVIDIA T4 GPU), and the number of instances
used is determined by the FuncPipe analytical optimizer. For
each iteration, we measure the sum of the computation time
of all three stages, denoted by Tcomp, and the actual training
time, denoted by Titer. The results are presented in Table I. It
is worth noting that Titer is significantly shorter than Tcomp,
as computations of different stages overlap with each other.

We observe that mbs has a non-negligible effect on both the
total computation time Tcomp and the iteration time Titer. As

St1 St1 St1 St1

St2

St3 St3 St3 St3

St4 St4 St4 St4

St1

St2

St2

Timeline

Workers

St2 St2 St2

#wk 2

#wk 1

St5 St5 St5 St5

St5

#wk 3

Comp

Comm

St2

final gap :St5

total runtime of each stage: ΣSt

Fig. 3: Analysis of FuncPipe’s forward process. During
pipeline’s each stage, the input gap between adjacent micro-
batch tasks can be stretched by larger stage running time. The
analysis is similar to the backward process.

mbs varies from 1 to 32, Tcomp can be reduced by 18.70%
for FaaS and 68.35% for IaaS, while Titer can be reduced by
11.45% for FaaS and 49.01% for IaaS. These results highlight
the potential benefits of considering mbs as an optimization
variable to further enhance the efficiency of training, both in
terms of time and cost. However, it is important to note that the
overall computation time Tcomp and the iteration time Titer

cannot continue to decrease indefinitely, since a larger value of
mbs corresponds to greater memory consumption by a single
worker node, which may eventually result in Out-Of-Memory
(OOM) errors. In addition, while the overall computation
time Tcomp decreases monotonically with increasing mbs, the
iteration time Titer does not decrease monotonically. To better
understand the relationship between mbs and Titer, we conduct
a detailed analysis below.

In pipeline parallelism, we differentiate computation tasks
and communication tasks as distinct stages when constructing
the pipeline. To describe the running time of each stage, we
use the notation Sti(m), where i denotes the stage ID and
m represents the value of mbs, as illustrated in Figure 3. We
can divide the overall iteration time into two parts: the total
running time of each stage for one mbs and the final gap
between two successive micro-batches. Note that the final gap
between two successive micro-batches is determined by the
maximum stage running time. The backward pass is similar
to the forward pass, with the initial gap between successive
micro-batches given by the final gap in the forward pass. It
should be noted that we assign stage IDs to both the forward
and backward processes. Assuming the partition of model
stages is fixed with total s stages and gbs = B, we can express
the training time for a full iteration in FuncPipe as follows:

Titer =

s∑
k=1

Stk(m) + (
B

m
− 1)max

k
Stk(m) (1)

Prior work [14], [31] have established that the time of a
single stage Sti exhibits a linear growth pattern with respect
to mbs and the relationship between Sti(m) and mbs can be
represented as follows:

Sti(m) = αi ·m+ βi



where αi and βi are the coefficients in the i-th stage. Thus
the total iteration time in (1) is given by

Titer =

s∑
k=1

(αkm+ βk) + (
B

m
− 1) · (α∗m+ β∗)

= Bα∗ + (

s∑
k=1

βk − β∗) +m(

s∑
k=1

αk − α∗) +
B

m
β∗,

(2)

where α∗ and β∗ correspond to the coefficients of the slowest
stage. Note that adjusting the mbs can optimize the total
iteration time by altering the m(

∑s
k=1 αk − α∗) and B

mβ∗

part above, which also theoretically explains why tuning the
mbs results in a reduced iteration time.

It is worth noting that DAPPLE and FuncPipe differ signif-
icantly in terms of their training process design. Specifically,
in DAPPLE (HP-IaaS), the pipeline is configured to adapt
the order of task execution, with training being performed in
a one-forward-one-backward (1F1B) order in each stage [9].
Within the DAPPLE framework, when the training process
stabilizes, all GPUs in the pipeline are fully utilized, resulting
in the total training time being predominantly influenced by
the running time of the slowest stage. Considering the warmup
and stable phases of training, the overall iteration time for
DAPPLE can be expressed as:

Titer =
B

m
(α1m+ β1) + (

B

m
− 1) · (α∗m+ β∗)

= Bα1 +Bα∗ − β∗ +
B

m
(β1 + β∗)− α∗m (3)

The difference between (2) and (3) suggests that the optimal
mbs values may vary for different training frameworks in
distinct scenarios. Additionally, it is worth noting that the
changes in the time coefficient αi attributable to modifications
in configurations tend to have a more pronounced effect in the
IaaS scenario than βi, which will also cause an impact on the
optimal mbs value in different scenarios. The impact of GA
on HP-based training scenarios will be evaluated in §V.

It should be noted that the analytical models for Citer and
Titer in this section are for fixed model splitting schemes. In
the HP scenario, where the model splitting scheme can vary,
it is unclear yet how to model Citer and Titer for DAPPLE.

IV. EVALUATION METHODOLOGY

In this section, we present our evaluation methodology for
answering the key question of the impact of GA on cloud-
based distributed training. Specifically, we design experiments
for four cloud-based training scenarios to quantify GA’s ben-
efits, in terms of training time and monetary cost.

A. Training Workload

To cover different types of deep learning training work-
loads, we choose three models: ResNet [32], BERT [33], and
AmoebaNet [34]. ResNet is a widely used CNN model, BERT
a Transformer-based model, and AmoebaNet a model based
on the NASNet structure. To illustrate the training cost opti-
mization effect of different model sizes, we select Resnet101,

TABLE II: Training models used in evaluation

Model name Parameter size
(MB)

Activation size
per sample(MB)

Resnet101 170 198
Amoebanet-18 476 432
Amoebanet-36 900 697
Bert-Large 1153 263

Amoebanet-D18, Amoebanet-D36, and BERT-Large for exper-
iments, whose size ranges from 170MB to 1GB. Table II shows
the sizes of the different models and the activation values in
detail. We use the popular image classification dataset Cifar-
10 to train Resnet101, Amoebanet-D18, and Amoebanet-D36.
As for the BERT-Large model, we use the SQuAD benchmark
[35] to run the fine-tuning task.

B. Available Cloud Resource Configurations

For all our experiments, we use a public cloud provider
Alibaba Cloud, which provides both IaaS and FaaS services1.
For the serverless service, we can control the resources of
the function instances by selecting specific function memory
sizes (accurate to MB). For VM instances, we need to choose
between various configurations offered by the cloud service
provider. Specifically, we choose eight discrete memory sizes
(1024MB, 1536MB, 2048MB, 2560MB, 3072MB, 4096MB,
8192MB, and 16384MB) on AliCloud Function Computing
Platform [11] for FaaS, and six families on Alibaba Cloud
ECS [6] for IaaS: gn6i, gn7i (general purpose with GPU),
vgn7i-vws (light weight GPU), sgn7i (sharing type GPU),
gn6v (V100 GPU) and gn7e (A100 GPU). In this paper,
we only focus on single-GPU distributed training2. We show
all the VM instances used in the experiments in Table III.
Our current selection of instance types is limited by time
and budget constraints. Since sharing-type instances adopt
non-binding resource scheduling mode and their performance
may be affected by multi-tenant environments, we repeat each
experiment 5 times and take the average of the measurements
as the final test result when evaluating with sharing-type
instances.

C. Evaluation Frameworks

Considering the combination of different cloud resource
offerings and parallelism strategies, we explore four differ-
ent cloud-based distributed training scenarios, as shown in
Table IV. For each scenario, we choose a representative
training framework for carrying out experiments. For IaaS-
based scenarios with GPU-equipped VMs, DistributedData-
Parallel (DDP) [5] module proposed by PyTorch and DAP-
PLE [9] training framework are selected for testing. For FaaS-
based scenarios with function-based serverless workers, Lamb-
daML [15] and FuncPipe [14] frameworks are selected for

1Our experiment designs are not cloud-specific. Other cloud providers such
as AWS and Google Cloud can also be used and should lead to similar results.

2Multi-GPU distributed training is also a common setup, but exhibits
different communication patterns, which we will leave as future work.



TABLE III: Configurations of VM instances used in the evaluation. GPUs are all from NVIDIA. Note that the number of
GPUs may be represented as a fraction, with the denominator indicating the number of tenants sharing a single GPU.

Instance name # vCPU Memory (GB) GPU GPU memory (GB) Bandwidth (Gbps) Price (RMB/hour)
gn6i.xlarge 4 15 1*T4 16 4 11.67
gn6i.2xlarge 8 31 1*T4 16 5 14.04
gn7i.2xlarge 8 30 1*A10 24 16 12.75
gn7i.4xlarge 16 60 1*A10 24 16 13.50

vgn7i-vws.xlarge 4 30 1*A10 * 1/6 4 3 3.117
vgn7i-vws.2xlarge 10 62 1*A10 * 1/3 8 5 5.609
vgn7i-vws.3xlarge 14 93 1*A10 * 1/2 12 8 8.102

sgn7i.xlarge 4 8 1*A10 * 1/12 2 5 1.875
sgn7i.2xlarge 8 16 1*A10 * 1/6 4 10 3.124
sgn7i.4xlarge 16 32 1*A10 * 1/3 8 20 5.621

gn6v.2xlarge 8 32 1*V100 16 2.5 26.46
gn7e.4xlarge 16 125 1*A100 80 25 34.742

TABLE IV: Frameworks used for different cloud-based
training scenarios.

Training scenario Training framework

IaaS+DP DDP [5]
IaaS+HP DAPPLE [9]
FaaS+DP LambdaML [15]
FaaS+HP FuncPipe [14]

the corresponding experiments. Furthermore, we ensure that
the synchronization and communication architecture of vari-
ous training frameworks remains consistent. Specifically, all
the aforementioned training frameworks employ synchronous
communication and rely on object storage service (OSS) [36]
for intermediate storage and node communication.

Moreover, applying GA in distributed training scenarios can
bring a new dimension to the overall training optimization
process, effectively expanding the search space of the original
optimization problem. To explicitly demonstrate the impact of
GA on the optimization problem, we conduct experiments that
compare the optimization results of using GA against those
obtained without using GA, which we respectively denote as
“with GA” and “w/o GA”. When we refer to the “with GA”
settings, we explicitly exclude the corresponding “w/o GA”
settings from consideration in the optimization. This helps us
to better understand the impact of using GA on the training
process and highlights the differences between the two ap-
proaches. Additionally, it is worth noting that GA is a training
technique that is not specific to any particular framework
and can be easily applied to different training frameworks.
However, due to the significant differences between various
parallelism strategies, the specific settings of GA may vary
across different scenarios:

In the DP scenarios, the setting “w/o GA” represents the
original settings when we use corresponding DP training
frameworks with different cloud services, while “with GA”
requires GA steps not equal to 1 in the training process.

As for HP experiments, we focus on the variation of mbs
for different training scenarios. In the “w/o GA” situation,

we use the default mbs setting of most pipeline parallelism
frameworks (i.e., mbs = 4) for optimal training. In the “with
GA” situation, we treat mbs as an optimization variable and
present the optimized cost-time Pareto frontier under different
weight settings in the objective function.

D. Resource Optimization Algorithm

To fairly compare the optimization effect of GA under
different training scenarios, we employ the same optimization
algorithm for determining the training resource configuration.
Further, to simplify the resource optimization process, we uti-
lize Bayesian Optimization to conduct black-box optimization
for all training scenarios.

Problem formulation. In cloud-based training scenarios,
both training time and training cost are important factors that
users typically care about. Therefore, when optimizing for the
overall training performance, we need to consider both time
and cost dimensions. Here we use a simple weighted sum
method to integrate these two different optimization objectives:

min Citer + w · Titer.

Here, Citer and Titer represent one iteration’s cost and time,
respectively; w represents the weight value that controls the
importance of time in the objective function. Considering dif-
ferent training workloads, the specific inputs for optimization
are the DL model, the dataset, and the gbs chosen by users.
In the following experiments, we choose Citer and Titer as
the main performance metrics and adopt four different weight
settings: w = [0, 28, 212, 216].

Choosing optimization algorithm. There are three popular
types of resource optimization algorithms nowadays, which are
based on analytical modeling, Bayesian optimization (BO),
and reinforcement learning (RL). State-of-the-art approaches
employ analytical modeling for finding the optimal resource
configuration [14], [21]. However, such methods must be
customized for specific training frameworks. For some frame-
works such as DAPPLE, it is unclear if there are analytical
models that can be easily incorporated here. In addition, the
same resource configuration can perform differently in the



cloud environment. For example, in the multi-tenant shared
cloud environment, stragglers may occur [20]. Therefore,
compared with analytical models, BO also has the advantage
of dynamic optimization in changeable cloud environments.
On the other hand, prior work shows that RL-based approaches
often have high additional training costs but can only bring
relatively limited performance improvement [18]. Therefore,
in this paper, we use BO to optimize the selection of resources.

BO [37] is a framework for solving optimization problems
where we can observe the objective function through experi-
ments. Starting from a few randomly selected sample points
in the search space, BO profiles the actual results of these
samples and estimates the value of the objective function by
modeling the objective function as a stochastic process and
computing the confidence interval. After one profiling step,
the estimated objective function and the confidence interval
will be updated correspondingly. In our experiments, we set
BO to stop after 100 iterations.

To better use BO to find a reasonable configuration scheme,
we must also make corresponding design decisions for BO:
Prior function. Like most BO frameworks [20], [21], we
choose the Gaussian process as our prior function. We also
assume that the objective function is a sample of a Gaussian
process. In different scenarios, the Gaussian process shows
good flexibility and tractability. Acquisition function. We use
the Expected Improvement (EI) [38] as our acquisition func-
tion for its ease of use and convenience. We maintain the
consistency with HeterBO [21] in terms of the design details
but discard the original constraints part.

Lastly, we use the idea of HeterBO [21] which utilizes the
MLaaS training specific prior to limit the Bayesian Optimiza-
tion search process: based on actual observations, the trend
of scale-out speedup follows a concave-shaped curve, which
means that we can early stop the search in the expensive scale-
out region if we detect a decline in training speed between two
neighboring deployments.

V. EVALUATION RESULTS

In this section, we evaluate and compare the optimization
impact of GA in different cloud computing scenarios, and give
corresponding analysis against the results. We also evaluate the
accuracy loss caused by GA.

A. Overall Performance Results

In different distributed training scenarios, we carried out
cost and time optimization for the training processes with
and without GA. These scenarios include two different dis-
tributed parallelism strategies and two popular cloud comput-
ing services for training four different models. The overall
performance results are shown in Figure 4. We choose the
commonly used gbs 256 for the experiment, then the cost-
time performance of whether using GA is tested under two
different cloud computing services of IaaS and FaaS, and two
different parallel strategies of DP and HP. We use yellow and
red polylines to represent the optimal performance achieved
with and without GA under different weights. For each set

of optimized resource configurations, we also measure the
computation time and communication time during its training
process, represented by blue and green bars in the figure,
respectively. Note that although four sets of weight values are
set before optimization, we often observe only 2 or 3 points in
different Pareto frontier curves, as some weight value settings
may lead to worse performance in the optimization process.

From the experimental results, it can be observed that the
incorporation of GA can improve the cost-time optimization
in most scenarios: in the DP scenario, the usage of GA tends
to bring lower cost options for the training process, while
in the HP scenario, GA usually makes the training cost and
training time further optimized at the same time. Nevertheless,
there are still some training scenarios that do not follow
the aforementioned trends (e.g., the difference in the optimal
performance obtained with or without GA when training
Resnet101 with HP strategy under FaaS is not significant).
We will discuss and analyze the reasons for this result in DP
and HP scenarios separately and explain the suitable scenarios
for using GA.

The appropriate scenarios under DP strategy. In our
experiments, we can observe that under the DP scenario, the
incorporation of GA can lead to a further decrease in the
optimal training cost, albeit at the cost of increased total
training time. Specifically, GA can result in a reduction in cost
ranging from 3.8% to 21.5% for IaaS, but the training time will
increase by up to 75.4% compared to training without GA. In
contrast, GA has a more significant effect on reducing training
cost in FaaS, resulting in an average reduction of 31.2% for 4
different workloads, with only a corresponding 17.3% average
increase in training time.

As mentioned in §III, with the increasing number of DP
nodes, the communication time during each iteration’s training
will also increase, and eventually affect the total training cost,
making the relationship between minimal iteration cost and
gbs show a superlinear growth. However, GA brings us the
possibility to make tradeoffs between the number of workers
and the communication time, making it possible to further
optimize the training cost, albeit with a slight increase in the
training time. It can be easily observed from Figure 4 that the
optimization algorithm is able to find a configuration solution
with lower cost under GA, which corroborates our above
discussion. We can also draw this conclusion from the relative
length of the computation time and communication time: the
yellow curve represented by using GA tends to have higher
computation time and lower communication time compared to
the red curve in the above results plot.

In addition, it is worth noting that in the above experiments
we used a relatively large gbs of 256 so that GA is able to
play a role in obtaining lower training cost for different DP
scenarios. If the gbs is small enough, some small models can
be trained on a single node without distributed processing. At
this time, GA will not produce the corresponding optimization
effect. For example, we show the case of gbs=64 training
Resnet101 using IaaS in Figure 5. Since a single A10 GPU



0.4 0.6 0.8 1.0 1.2
0.0
0.5
1.0
1.5
2.0

co
m

m
/c

om
p 

tim
e(

s) DP-IaaS

20 30 40
0

10
20
30
40

DP-FaaS

0.45 0.50 0.55 0.60
0.0
0.5
1.0
1.5
2.0

HP-IaaS

17.5 20.0 22.5 25.0
0

10
20
30
40

HP-FaaS

0.005

0.010

0.2

0.4

0.6

0.006
0.008
0.010
0.012

0.0

0.2

0.4

0.6

Ite
ra

tio
n 

co
st

(R
M

B)

w/o GA
with GA
comp_time
comm_time

Iteration time(s)

(a) Resnet101

1.0 1.5 2.0 2.5 3.0
0

2

4

co
m

m
/c

om
p 

tim
e(

s) DP-IaaS

40 45 50 55
0

10
20
30
40

DP-FaaS

0.6 0.8 1.0 1.2
0

1

2

3
HP-IaaS

7.5 10.0 12.5 15.0 17.5 20.0
0

10
20
30
40

HP-FaaS

0.008

0.010

0.012

0.014

1

2

0.015

0.020

0

1

2

Ite
ra

tio
n 

co
st

(R
M

B)

w/o GA
with GA
comp_time
comm_time

Iteration time(s)

(b) Amoebanet-D18

2.0 2.5 3.0
0

2

4

6

co
m

m
/c

om
p 

tim
e(

s) DP-IaaS

40 50 60 70
0

10
20
30
40

DP-FaaS

1.0 1.5 2.0 2.5
0

1

2

3
HP-IaaS

38 40 42 44 46
0

10
20
30
40

HP-FaaS

0.030

0.035

0.040

0.045

1.0

1.5

2.0

0.00

0.02

0.04

0

1

2

3

Ite
ra

tio
n 

co
st

(R
M

B)

w/o GA
with GA
comp_time
comm_time

Iteration time(s)

(c) Amoebanet-D36

1.5 2.0 2.5 3.0
0.0
0.5
1.0
1.5
2.0

co
m

m
/c

om
p 

tim
e(

s) DP-IaaS

20 30 40
0

10
20
30
40

DP-FaaS

1.0 1.5 2.0 2.5
0
1
2
3
4

HP-IaaS

15 20 25
0

10
20
30
40

HP-FaaS

0.0125
0.0150
0.0175
0.0200

1.0

1.5

0.00

0.01

0.02

0.0

0.5

1.0

1.5

Ite
ra

tio
n 

co
st

(R
M

B)

w/o GA
with GA
comp_time
comm_time

Iteration time(s)

(d) BERT-Large

Fig. 4: The overall performance comparison whether GA is used or not. Global batch size = 256 is set in this experiment.

0.24 0.26 0.28 0.30 0.32 0.34
iteration time(s)

0.00

0.25

0.50

0.75

1.00

1.25

co
m

m
/c

om
p 

tim
e(

s)

0.0012

0.0014

0.0016

0.0018

ite
r. 

co
st

(R
M

B)comp_time
comm_time
DP-with GA
DP-w/o GA

Fig. 5: Optimization results for Resnet101 with DP, with
gbs=64. Under this scenario, applying GA can not even reach
the vanilla optimal performance without GA.

node is sufficient to support the workload with gbs=64, we
could not directly apply GA to this configuration scheme.
Although GA allows us to select some smaller instances for
training, better training performance was not observed in the
actual experimental tests.

The appropriate scenarios under HP strategy. In the HP-
IaaS scenario, we can observe an average 21.2% decrease in
the optimal training time after considering mbs as an opti-

mization variable, accompanied by an average 24.8% decrease
in the training cost when training different models. However,
when using HP-FaaS, the optimization effect is not significant
compared to IaaS situation, especially when training smaller
models like Resnet101 and Amoebanet-D18.

Our experiment further shows that the difference between
the optimal mbs and the default mbs of the popular pipeline
training framework is more pronounced in the IaaS scenario
compared to the FaaS scenario. This distinction can be ex-
plained not only by the alteration of the training framework
discussed in §III, but also by the elevated bandwidth and
GPU acceleration capabilities present in IaaS scenarios, as
demonstrated by the monotonicity of equations (2) and (3). For
FaaS, the optimal mbs setting is similar to the default setting,
which leads to a poor optimization effect when utilizing GA.
Note that when training large models, the coefficient of the
part that cannot be accelerated by parallelization in the time
expression will also increase, which will shift the position
of the optimal mbs to the right. Therefore, in the above
experiment, we can observe that GA has better optimization
effects during the training of large models.



0 50 100 150 200 250 300 350
Epochs

1.0

1.5

2.0
Tr

ai
n 

lo
ss

no GA
GA steps = 32

325 350

0.8
0.9

(a) Training loss

0 50 100 150 200 250 300 350
Epochs

0.4

0.6

0.8

Te
st

 a
cc

325 350

0.90
0.95

no GA
GA steps = 32

(b) Test accuracy

Fig. 6: Convergence rate and accuracy results for Resnet101, using gbs = 256 and Cifar-10 dataset.

TABLE V: Final training accuracy loss caused by GA.

GA steps Final accuracy (%)
for Resnet101

Final F1-score(%)
for BERT-Large

1 94.42 90.91
2 94.42 90.72
4 94.39 90.88
8 94.35 90.75
16 94.31 90.63
32 94.11 90.89

B. Final Accuracy and Convergence Rate

To determine the extent of the accuracy loss caused by GA,
we tested the final accuracy and F1-score for Resnet101 and
BERT-Large, respectively, using a fixed gbs value of 256 and
different number of GA steps. We follow the Linear Scaling
Rule [39] while changing the mbs, which dictates that when
the mbs is multiplied by a factor of K, the learning rate
should be increased correspondingly by the same factor of
K. The experiments are conducted on AliCloud gn7e.4xlarge
instance and the results are shown in Table V3. Note that the
accuracy of Resnet101 decreases only slightly as we increase
the GA steps, the loss being 0.31% with 32 GA steps. The
F1-score of BERT-Large was not significantly impacted either.
This finding illustrates that the cross-batch computation layers
used in the model, such as the BN layer, may cause the
trend of accuracy degradation in GA. Furthermore, GA does
not cause significant accuracy degradation for models without
these layers.

By comparing the convergence rate of training loss and test
accuracy of Resnet101 with and without GA in Figure 6, it
can be found that the final convergence rate is not significantly
impacted even with an increase in the number of GA steps
to 32. While previous work [4] observes a higher accuracy
loss with the increase of GA steps, we believe that the loss
observed there is more likely to arise from the difference
in synchronization schemes (synchronous vs asynchronous)
rather than from GA. Moreover, it is worth noting that the

3Our final accuracy results are comparable to two popular baseline results:
Pytorch-Cifar10 at 93.75% accuracy [40] and SQuAD-BERT at 90.96% F1-
score [41].

Linear Scaling Rule plays a crucial role in the experiment.
For example, fixing the learning rate while changing mbs may
result in a maximum accuracy loss of up to 4%.

In conclusion, our experimental results illustrated that the
direct use of GA does not significantly impact the final accu-
racy as well as the convergence rate. Although we observed
a slight trend of accuracy degradation for models with cross-
batch layers, there are rapidly developing normalization tech-
niques, such as Instance Normalization [42] and Group Nor-
malization [43], which are designed for stable performances
independent of batch size. By replacing the normalization
layers with these above layers during training, we can mitigate
the decreasing accuracy trend in GA.

VI. CONCLUSION

In this paper, we investigated the benefits of GA for cost-
time optimization in four cloud-based distributed training
scenarios with four representative DL frameworks. Through
experiments and analysis, we showed that under the DP
strategy, GA tends to have a significant optimization effect
in scenarios with larger models and smaller bandwidths. Our
findings demonstrated that the combination of GA and DP
can reduce the training cost by 31.2% while increasing the
total training time by 17.3% in some training scenarios.
Under the HP strategy, considering mbs as an optimization
variable is more suitable for fast computing/communicating
and larger model training scenarios. For IaaS-based training,
this reduced training time by 21.2% and cost by 24.8% on
average. After evaluating and analyzing the performance of
GA in various scenarios, we conclude that GA is a worthwhile
consideration when designing a training framework for cost-
time optimization. We also investigated the appropriate use
cases for GA under different levels of parallelism, which may
provide guidance for future design of training frameworks.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
reviews. This work is partly supported by the National Natural
Science Foundation of China (No. 62072302, 61960206002),
the US National Science Foundation under Grants 2105564,
2236987, and VMWare.



REFERENCES

[1] Pytorch, “Gradient accumulation pytorch,” https://gist.github.com/
thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3.

[2] Tensorflow, “Gradient accumulation tensorflow,” https://github.com/
tensorflow/tensorflow/pull/32576.

[3] T. D. Le, T. Sekiyama, Y. Negishi, H. Imai, and K. Kawachiya,
“Involving cpus into multi-gpu deep learning,” in Proceedings of the
2018 ACM/SPEC international conference on performance engineering,
2018, pp. 56–67.

[4] I. Hakimi, R. Z. Aviv, K. Y. Levy, and A. Schuster, “Laga: Lagged
allreduce with gradient accumulation for minimal idle time,” in 2021
IEEE International Conference on Data Mining (ICDM). IEEE, 2021,
pp. 171–180.

[5] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke,
J. Smith, B. Vaughan, P. Damania et al., “Pytorch distributed:
Experiences on accelerating data parallel training,” arXiv preprint
arXiv:2006.15704, 2020.

[6] Alibaba, “Alibaba cloud elastic compute service,” https://www.aliyun.
com/product/ecs.

[7] Amazon, “Amazon elastic compute cloud(ec2),” https://aws.amazon.
com/aws/ec2.

[8] Microsoft, “Microsoft azure cloud vm,” https://azure/microsoft.com/
services/vm.

[9] S. Fan, Y. Rong, C. Meng, Z. Cao, S. Wang, Z. Zheng, C. Wu, G. Long,
J. Yang, L. Xia et al., “Dapple: A pipelined data parallel approach
for training large models,” in Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2021,
pp. 431–445.

[10] S. Li, R. J. Walls, L. Xu, and T. Guo, “Speeding up Deep Learning
with Transient Servers,” in 2019 IEEE International Conference on
Autonomic Computing (ICAC), Jun. 2019, pp. 125–135.

[11] Alibaba, “Alibaba cloud function compute,” https://www.aliyun.com/
product/fc.

[12] Amazon, “Aws lambda,” https://aws.amazon.com/lambda/.
[13] Microsoft, “Microsoft azure cloud computing,” https://azure.microsoft.

com/.
[14] Y. Liu, B. Jiang, T. Guo, Z. Huang, W. Ma, X. Wang, and C. Zhou,

“Funcpipe: A pipelined serverless framework for fast and cost-efficient
training of deep learning models,” arXiv preprint arXiv:2204.13561,
2022.

[15] J. Jiang, S. Gan, Y. Liu, F. Wang, G. Alonso, A. Klimovic, A. Singla,
W. Wu, and C. Zhang, “Towards demystifying serverless machine
learning training,” in Proceedings of the 2021 International Conference
on Management of Data, 2021, pp. 857–871.

[16] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1–43, 2019.

[17] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neu-
ral networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, 2019.

[18] A. Ali, S. Zawad, P. Aditya, I. E. Akkus, R. Chen, and F. Yan, “Smlt: A
serverless framework for scalable and adaptive machine learning design
and training,” arXiv preprint arXiv:2205.01853, 2022.

[19] D. Rani and R. K. Ranjan, “A comparative study of saas, paas and iaas
in cloud computing,” International Journal of Advanced Research in
Computer Science and Software Engineering, vol. 4, no. 6, 2014.

[20] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud configura-
tions for big data analytics,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), 2017, pp. 469–482.

[21] J. Yi, C. Zhang, W. Wang, C. Li, and F. Yan, “Not all explorations are
equal: Harnessing heterogeneous profiling cost for efficient mlaas train-
ing,” in 2020 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2020, pp. 419–428.

[22] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and
G. E. Dahl, “Measuring the effects of data parallelism on neural network
training,” arXiv preprint arXiv:1811.03600, 2018.

[23] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[24] Z. Bian, Q. Xu, B. Wang, and Y. You, “Maximizing parallelism
in distributed training for huge neural networks,” arXiv preprint
arXiv:2105.14450, 2021.

[25] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and robust parallel
dnn training through model parallelism on multi-gpu platform,” arXiv
preprint arXiv:1809.02839, 2018.

[26] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[27] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young et al., “Mesh-tensorflow:
Deep learning for supercomputers,” Advances in neural information
processing systems, vol. 31, 2018.

[28] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream: generalized
pipeline parallelism for dnn training,” in Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019, pp. 1–15.

[29] Z. Luo, X. Yi, G. Long, S. Fan, C. Wu, J. Yang, and W. Lin, “Efficient
pipeline planning for expedited distributed dnn training,” arXiv preprint
arXiv:2204.10562, 2022.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[31] J. Lamy-poirier, “Layered gradient accumulation and modular pipeline
parallelism for improved training of machine learning models,” Dec. 1
2022, uS Patent App. 17/668,200.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[34] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution
for image classifier architecture search,” in Proceedings of the aaai
conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 4780–
4789.

[35] Stanford, “The stanford question answering dataset,” https://rajpurkar.
github.io/SQuAD-explorer/.

[36] Alibaba, “Alibaba cloud object storage service,” https://www.aliyun.
com/product/oss.

[37] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[38] E. Brochu, V. M. Cora, and N. De Freitas, “A tutorial on bayesian
optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning,” arXiv preprint
arXiv:1012.2599, 2010.

[39] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[40] kuangliu, “Train cifar10 with pytorch,” https://github.com/kuangliu/
pytorch-cifar.

[41] NVIDIA, “Nvidia deep learning examples for tensor cores,”
https://github.com/NVIDIA/DeepLearningExamples/tree/master/
PyTorch/LanguageModeling/BERT.

[42] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[43] Y. Wu and K. He, “Group normalization,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 3–19.

https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3.
https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3.
https://github.com/tensorflow/tensorflow/pull/32576
https://github.com/tensorflow/tensorflow/pull/32576
https://www.aliyun.com/product/ecs
https://www.aliyun.com/product/ecs
https://aws.amazon.com/aws/ec2
https://aws.amazon.com/aws/ec2
https://azure/microsoft.com/services/vm
https://azure/microsoft.com/services/vm
https://www.aliyun.com/product/fc
https://www.aliyun.com/product/fc
https://aws.amazon.com/lambda/
https://azure.microsoft.com/
https://azure.microsoft.com/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://www.aliyun.com/product/oss
https://www.aliyun.com/product/oss
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT

	Introduction
	background and Related Work
	Cloud Resource Offerings
	Distributed Training Parallelism
	Gradient Accumulation

	Identifying Opportunity of GA via Empirical Measurement and Performance Modeling
	Opportunities for Data Parallelism
	Opportunities for Hybrid Parallelism

	Evaluation Methodology
	Training Workload
	Available Cloud Resource Configurations
	Evaluation Frameworks
	Resource Optimization Algorithm

	Evaluation Results
	Overall Performance Results
	Final Accuracy and Convergence Rate

	conclusion
	References

