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Abstract
We study the online restless bandit problem,
where each arm evolves according to a Markov
chain independently, and the reward of pulling an
arm depends on both the current state of the corre-
sponding Markov chain and the pulled arm. The
agent (decision maker) does not know the tran-
sition functions and reward functions, and can-
not observe the states of arms even after pulling.
The goal is to sequentially choose which arms
to pull so as to maximize the expected cumu-
lative rewards collected. In this paper, we pro-
pose TSEETC, a learning algorithm based on
Thompson Sampling with Episodic Explore-Then-
Commit. The algorithm proceeds in episodes of
increasing length and each episode is divided into
exploration and exploitation phases. During the
exploration phase, samples of action-reward pairs
are collected in a round-robin fashion and utilized
to update the posterior distribution as a mixture
of Dirichlet distributions. At the beginning of the
exploitation phase, TSEETC generates a sample
from the posterior distribution as true parameters.
It then follows the optimal policy for the sampled
model for the rest of the episode. We establish
the Bayesian regret bound Õ(

√
T ) for TSEETC,

where T is the time horizon. We show through
simulations that TSEETC outperforms existing
algorithms in regret.

1. Introduction
The restless multi-armed bandits (RMAB) is a general
setup to model many sequential decision making problems
ranging from wireless communication (Tekin & Liu, 2011;
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Sheng et al., 2014; Xiong et al., 2022b), sensor/machine
maintenance (Ahmad et al., 2009; Akbarzadeh & Mahajan,
2021) and healthcare (Mate et al., 2020; 2021). This prob-
lem considers one agent and N arms. Each arm i is modu-
lated by a Markov chain M i with state transition function
P i and reward function Ri. At each time, the agent decides
which arm to pull. After the pulling, all arms make a state
transition independently. The state transitions can be action-
dependent or not, and we consider the action-independent
case. That is to say, the state of each arm makes one tran-
sition per time slot regardless of being pulled or not. More
importantly, the transition function remains the same when
pulling or not pulling. The goal is to decide which arm
to pull to maximize the expected reward, i.e., E[

∑T
t=1 rt],

where rt is the reward at time t and T is the time horizon.

In this paper, we consider the online restless bandit prob-
lem with unknown parameters (transition functions and
reward functions) and unobserved states. Many works as-
sume the arms’ states are known and concentrate on learning
unknown parameters (Liu et al., 2010; 2011; Ortner et al.,
2012; Wang et al., 2020; Xiong et al., 2022a;d;c). However,
the arms’ states are often unobserved in real-world appli-
cations, such as cache access (Paria & Sinha, 2021) and
recommendation system (Peng et al., 2020). In the cache ac-
cess problem, the user can only get the perceived delay but
cannot know whether the requested content is stored in the
cache before or after the access. In the recommender system,
we do not know the user’s preference for the items. There
are some studies that consider the unobserved states. How-
ever, they often assume the parameters are known (Mate
et al., 2020; Meshram et al., 2018; Akbarzadeh & Mahajan,
2021) or there is no discussion about the regret bound (Peng
et al., 2020; Hu et al., 2020).

One common way to handle the unknown parameters but
with observed states is to use the optimism in the face of
uncertainty (OFU) principle (Liu et al., 2010; Ortner et al.,
2012; Wang et al., 2020). However, existing policies may
not perform close to the optimal offline policy, e.g., Liu et al.
(2010) only considers the best policy that constantly pulls a
fixed arm, which is not optimal for RMAB problems. Ortner
et al. (2012) derives the lower bound Õ(

√
T ) for RMAB

problems. Another way to estimate the unknown parameters
is Thompson Sampling (TS) (Jung & Tewari, 2019; Jung
et al., 2019; Jahromi et al., 2022; Hong et al., 2022). TS
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algorithms do not need to solve all instances that lie within
the confident sets as OFU-based algorithms (Ouyang et al.,
2017). What’s more, empirical studies suggest that TS
algorithms outperform OFU-based algorithms in bandits
and Markov decision process (MDP) problems (Scott, 2010;
Chapelle & Li, 2011; Osband & Van Roy, 2017).

Some studies assume that only the states of pulled arms are
observable (Mate et al., 2020; Liu & Zhao, 2010; Wang et al.,
2020; Jung & Tewari, 2019). They translate the partially
observable Markov decision process (POMDP) problem into
a fully observable MDP by regarding the state last observed
and the time elapsed as a meta-state (Mate et al., 2020;
Jung & Tewari, 2019). Mate et al. (2020), and Liu & Zhao
(2010) derive the optimal index policy but they assume the
parameters are known. Restless-UCB in Wang et al. (2020)
achieves the regret bound of Õ(T 2/3) and their algorithm
is restricted to restless bandit problems with birth-death
state Markov chains. A general Markov chain is considered
in (Xiong et al., 2022c) with a regret bound of Õ(

√
T )

guarantee. There are also some works that consider that the
arm state is not visible even after pulling (Meshram et al.,
2018; Akbarzadeh & Mahajan, 2021; Peng et al., 2020; Hu
et al., 2020; Zhou et al., 2021; Yemini et al., 2021) and the
classical POMDP setting (Jahromi et al., 2022). Meshram
et al. (2018) and Akbarzadeh & Mahajan (2021) study the
RMAB problem with unobserved states but with known
parameters. However, the true value of the parameters are
often unavailable in practice. Some works study POMDP
problem from a learning perspective, e.g., Peng et al. (2020);
Hu et al. (2020), but there is no regret analysis. Under
the unobserved states setting, the state-of-the-art algorithm
achieves Õ(T 2/3) bound on the frequentist regret (Zhou
et al., 2021). Yemini et al. (2021) considers the arms are
modulated by two unobserved states and with linear reward.
This linear structure is quite a bit of side information that
the decision maker can take advantage of and a instance-
dependent regret bound of log(T ) is given.

To the best of our knowledge, there is no known policy
that performs close to the offline optimum with a provable
regret bound of Õ(

√
T ) for online restless bandits with un-

observed states even after pulling. The unobserved states
and unknown parameters bring many challenges. First, we
need to control estimation error about states, which are not
directly observed. Second, the error depends on the model
parameters in a complex way via Bayesian updating and the
parameters are still unknown. Third, since the state is not
fully observable, the decision-maker cannot keep track of
the number of visits to state-action pairs, a quantity that is
crucial in the theoretical analysis. To deal with this chal-
lenge, we design a learning algorithm TSEETC to estimate
these unknown parameters and update the posterior distri-
bution about unknown parameters as mixture of Dirichlet
distributions. We define the pseudo-count about the number

of visits to state-action based on Dirichlet distribution and
with this pseudo-count we obtain a bound about parame-
ters’ estimation errors. Benchmarked on a stronger oracle,
we show that our algorithm achieves a bound Õ(

√
T ) in

Bayesian regret. In summary, we make the following contri-
butions:

Problem formulation. We consider the online restless
bandit problems with unobserved states and unknown pa-
rameters. Compared with Jahromi et al. (2022), our reward
functions are unknown.

Algorithmic design. We propose TSEETC, a learning algo-
rithm based on Thompson Sampling with Episodic Explore-
Then-Commit. The whole learning horizon is divided into
episodes of increasing length, each of which consists of
exploration and exploitation phases. During the exploration
phase, we utilize a mixture of Dirichlet distributions to up-
date posterior distributions and estimate unknown parame-
ters. The belief state is implemented to encode previous his-
torical information for unobserved states. In the exploitation
phase, we sample parameters from the posterior distribution
and derive an optimal policy based on the sampled parame-
ter. Furthermore, we design increasing episode lengths to
control the total number of episodes, which is crucial to
bound the regret caused by exploration.

Regret analysis. We consider a stronger oracle which
solves POMDP based on our belief state. And we define
the pseudo-count to store the state-action pairs. Under a
Bayesian framework, we show that the expected regret of
TSEETC accumulated up to time T is bounded by Õ(

√
T ),

where Õ hides logarithmic factors. This is the first Õ(
√
T )

Bayesian regret bound in the setting with unknown parame-
ters and unobserved states even after pulling the arm.

Experiment results. We conduct the proof-of-concept ex-
periments, and compare our policy with existing baseline
algorithms. Our results show that TSEETC outperforms ex-
isting algorithms in regret and the regret order is consistent
with our theoretical result.

2. Related Work
We review the related works in two main domains: learning
algorithm for unknown parameters, and methods to identify
unknown states.

Unknown parameters. Since the system parameters are
unknown in advance, it is essential to study RMAB prob-
lems from a learning perspective. Generally speaking, these
works can be divided into two categories: OFU (Ortner
et al., 2012; Wang et al., 2020; Xiong et al., 2022a; Zhou
et al., 2021; Xiong et al., 2022d;c) or TS based (Jung et al.,
2019; Jung & Tewari, 2019; Jahromi et al., 2022; Hong
et al., 2022). The algorithms based on OFU often construct
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confidence sets for the system parameters at each time, find
the optimistic estimator that is associated with the maximum
reward, and then select an action based on the optimistic
estimator. Apart from these works, Thompson sampling
(Jung & Tewari, 2019; Jung et al., 2019) were used to solve
this problem. A TS algorithm generally samples a set of
MDP parameters randomly from the posterior distribution,
then actions are selected based on the sampled model. Jung
& Tewari (2019) and Jung et al. (2019) provide theoretical
guarantee Õ(

√
T ) in the Bayesian setting for the online rest-

less bandit with partially observed states. TS algorithms are
confirmed to outperform optimistic algorithms in bandit and
MDP problems (Scott, 2010; Chapelle & Li, 2011; Osband
& Van Roy, 2017).

Unknown states. There are some works that consider the
states of the pulled arm are unobserved (Mate et al., 2020;
Liu & Zhao, 2010; Wang et al., 2020; Jung & Tewari, 2019).
Mate et al. (2020) and Liu & Zhao (2010) assumes the unob-
served states but with known parameters. Wang et al. (2020)
constructs an offline instance and give the regret bound
Õ(T 2/3). Jung & Tewari (2019) considers the episodic
RMAB problems with observed states about pulled arms
and the regret bound Õ(

√
T ) is guaranteed in the Bayesian

setting. Some studies assume that the states are unobserved
even after pulling. Akbarzadeh & Mahajan (2021) and
Meshram et al. (2018) consider the RMAB problem with
unknown states but known system parameters. And there is
no regret guarantee. Peng et al. (2020) and Hu et al. (2020)
consider the unknown parameters but there are also no any
theoretical results. The most similar to our work is Zhou
et al. (2021) and Jahromi et al. (2022). Zhou et al. (2021)
considers that all arms are modulated by a common unob-
served Markov chain. They proposed the estimation method
based on spectral method (Anandkumar et al., 2012) and
learning algorithm based on upper confidence bound (UCB)
strategy (Auer et al., 2002). They also give the regret bound
Õ(T 2/3). Jahromi et al. (2022) considers the POMDP set-
ting and propose the pseudo counts to store the state-action
pairs. Their learning algorithm is based on Ouyang et al.
(2017) and the regret bound is also Õ(T 2/3).

3. Problem Setting
Consider a restless bandit problem with one agent and N
arms. Each arm i ∈ [N ] := {1, 2, . . . , N} is associated
with an independent discrete–time Markov chain Mi =
(Si, P i), where Si is the discrete state space and P i ∈
RSi×Si

the transition functions. Let sit denote the state of
arm i at time t and st = (s1t , s

2
t , . . . , s

N
t ) the state of all

arms. Each arm i is also associated with a reward function
Ri ∈ RSi×R, where Ri (r | s) is the probability that the
agent receives a reward r ∈ R when he pulls arm i in state
s. We assume the state spaces Si and the reward setR are

finite and known to the agent. The parameters P i and Ri,
i ∈ [N ] are unknown, and the state st is also unobserved to
the agent. For the sake of notational simplicity, we assume
that all arms have the same state spaces S with size S. Our
result can be generalized in a straightforward way to allow
different state spaces.

The whole game is divided into T time steps. The initial
state si0 for each arm i ∈ [N ] is drawn from a distribution hi
independently, which we assume to be known to the agent.
At each time t, the agent chooses one arm at ∈ [N ] to pull
and receives a reward rt ∈ R with probabilityRat(rt | satt ).
Note that only the pulled arm has the reward feedback. His
decision on which arm at to pull is based on the observed
history Ht = [a1, r1, a2, r2 · · · , at−1, rt−1]. Note that the
states of the arms are never observed, even after pulling.
Each arm i makes a state transition independently according
to the associated P i, whether it is pulled or not.

This process continues until the end of the game. The goal
of the agent is to maximize the total expected reward.

We use θi to denote the unknown P i and Ri for arm i
and denote θ as the unknown P i and Ri for all i ∈ [N ]
collectively. Since the true states are unobservable, the
agent maintains a belief state bit = [bit(s, θ

i), s ∈ S] ∈ ∆S
for each arm i, where

bit(s, θ
i) := P

(
sit = s | Ht, θi

)
,

and ∆S :=
{
b ∈ RS

+ :
∑
s∈S b(s) = 1

}
is the probabil-

ity simplex in RS . Note that bit(s, θ
i) depends on the un-

known model parameter θi, which itself has to be learned
by the agent. We aggregate all arms as a whole Markov
chainM and denote its transition matrix and reward func-
tion as P and R, respectively. Note that the states of the
arms at any given time t are independent, since the ini-
tial states are independent and they also evolve indepen-
dently. As a consequence, for a given θ, the overall belief
state bt = (b1t , b

2
t , · · · , bNt ) is a sufficient statistic forHt−1

(Smallwood & Sondik, 1973). Thus the agent can base his
decision at time t on bt only. Let ∆b =×N

i=1
∆S be the

state space of the overall belief state of the system. A deter-
ministic stationary policy π : ∆b → [N ] maps a belief state
to an action. The long-term average reward of a policy π is
defined as

Jπ(h, θ) := lim sup
T→∞

1

T
E

[
T∑
t=1

rt

∣∣∣ h, θ] . (1)

We use J(h, θ) = supπ J
π(h, θ) to denote the optimal long-

term average reward. We assume J(h, θ) is independent
of the initial distribution h as in Jahromi et al. (2022) and
denote it by J(θ). We make the following assumptions.

Assumption 3.1. The smallest element ϵ1 in the transition
functions P i, i ∈ N is larger than zero.
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Assumption 3.2. The smallest element ϵ2 in the reward
functions Ri, i ∈ N is larger than zero.

Assumption 3.1 and Assumption 3.2 are strong in general,
but they help us bound the error of belief estimation (De Cas-
tro et al., 2017). Assumption 3.1 also makes the MDP
weakly communicating (Bertsekas et al., 2011). For weakly
communicating MDP, it is known that there exists a bounded
function v(·, θ) : ∆b → R such that for all b ∈ ∆b (Bert-
sekas et al., 2011),

J(θ)+v(b, θ) = max
a

{
r(b, a) +

∑
r

P (r | b, a, θ)v (b′, θ)

}
,

(2)
where v is the relative value function, r(b, a) =∑

s

∑
r b
a(s, θ)Ra(r | s)r is the expected reward, b′ is the

updated belief after obtaining the reward r, andP (r | b, a, θ)
is the probability of observing r in the next step, conditioned
on the current belief b and action a. The corresponding opti-
mal policy is the maximizer of the right part in (2). Since the
value function v(, θ) is finite, we can bound the span func-
tion sp(θ) := maxb v(b, θ)−minb v(b, θ) as in Zhou et al.
(2021). We show the details about this bound in Proposition
D.1 and denote the bound by H .

We consider the Bayesian regret. The parameters θ∗ is
randomly generated from a known prior distribution Q at
the beginning and then fixed but unknown to the agent. We
measure the efficiency of a policy π by its regret, defined
as the expected gap between the cumulative reward of an
offline oracle and that of π. If an oracle knows P i, Ri

and underlying state sit, the problem becomes simple as
the agent would select a∗t = argmaxa∈N rtR

at (rt | satt )
whereRat (rt | satt ) is the reward function of the pulled arm
at and rt is the obtained reward. If we benchmark a learning
policy against the oracle, then the regret must be linear in
T , because the oracle always observes st while the agent
cannot predict the transition based on the history. Whenever
a transition occurs, there is a non-vanishing regret incurred.
Since the number of transitions during the time interval
[0, T ] is linear in T , the total regret is of the same order.
Since comparing to the oracle knowing st is uninformative,
we consider such an oracle that assumes the unknown states
and known parameters. The offline oracle is similar to Zhou
et al. (2021), which is stronger than those considered in
Azizzadenesheli et al. (2016) and Fiez et al. (2018). We
focus on the Bayesian regret of policy π (Ouyang et al.,
2017; Jung & Tewari, 2019) as follows,

RT := Eθ∗∼Q

[
T∑
t=1

(J(θ∗)− rt)

]
. (3)

The above expectation is with respect to the prior distribu-
tion about θ∗, the randomness in state transitions and the
random reward.

4. The TSEETC Algorithm
In section 4.1, we define the belief state and show how to
update it with new observation. In section 4.2, we show
how to update the posterior distributions under unknown
states. In section 4.3, we show the details about our learning
algorithm TSEETC.

4.1. Belief Encoder for Unobserved State

Here we focus on the belief update for arm i with known
parameters θi = (P i, Ri). At time t, the belief for arm i in
state s is bit(s, θ

i). Then after the pulling of arm i, we obtain
the observation rt. The belief bit(s

′, θi) can be updated as
follows:

bit+1(s
′, θi) =

∑
s b
i
t(s, θ

i)Ri (rt | s)P i(s′ | s)∑
s b
i
t(s, θ

i)Ri (rt | s)
, (4)

where the P i(s′ | s) is the probability of transitioning from
state s at time t to state s′ and Ri (rt | s) is the probability
of obtain reward rt under state s.

If the arm i is not pulled, we update its belief as follows:

bit+1(s
′, θi) =

∑
s

bit(s, θ
i)P i(s′ | s). (5)

Then at each time, we can aggregate the belief of all arms
as bt. Based on (2), we can derive the optimal action at for
current belief bt.

4.2. Mixture of Dirichlet Distribution

In this section, we estimate the unknown P i and Ri based
on Dirichlet distribution. The Dirichlet distribution is pa-
rameterized by a count vector, ϕ = (ϕ1, . . . , ϕk), where
ϕi ≥ 0, such that the density of probability distribution
p = (p1, . . . , pk) is defined as f(p | ϕ) ∝

∏k
i=1 p

ϕi−1
i

(Ghavamzadeh et al., 2015).

Since the true states are unobserved, all state sequences
(and their corresponding Dirichlet posteriors) should be
considered, with some weight proportional to the likelihood
of each state sequence (Ross et al., 2011). Denote the reward
history collected from time t1 till t2 (not including t2) for
arm i as rit1:t2 and similarly the states history is denoted
as sit1:t2 . And the belief state history is denoted as bit1:t2 .
Recall that we assume the smallest element in the transition
functions and reward functions are ϵ1 and ϵ2, respectively.
To satisfy this, we can assume the transition function P i

takes the form P i = ϵ11+ (1− Sϵ1)P̃ i, where P̃ i follows
the Dirichlet distribution and 1 is the vector with one in
each position. Similarly, we assume the reward function
Ri takes the form Ri = ϵ21+ (1− Sϵ2)R̃i, where R̃i also
follows the Dirichlet distribution. The element 1 can have
different lengths in correspondence with the dimension of
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P i and Ri. Then with these history information bit1:t2 and
rit1:t2 , the posterior distribution gt(P i) and gt(Ri) at time t
can be updated as in Lemma 4.1.

Lemma 4.1. Assuming the transition function P i has prior
g0
(
P i
)
= f(P

i−ϵ11
1−Sϵ1 | ϕ

i) , and the reward function Ri has

prior g0
(
Ri
)
= f(R

i−ϵ21
1−Sϵ2 | ψ

i), given the information ri0:t
and bi0:t , the posterior distributions in the unobserved state
setting are as follows:

gt
(
P i
)
∝
∑

si0:t∈St

(g0
(
P i
)
w(si0:t)×

∏
s,s′

(
P i(s′ | s)− ϵ1

1− ϵ1
)N

i
s,s′(s̄

i
t)+ϕ

i
s,s′−1),

(6)

and

gt
(
Ri
)
∝
∑

si0:t∈St

(g0
(
Ri
)
w(si0:t)×

∏
s,r

(
Ri(r | s)− ϵ2

1− ϵ2
)N

i
s,r(s̄

i
t)+ψ

i
s,r−1),

(7)

where w(si0:t) is the likelihood of state sequence si0:t and St
is the all possible states sequences from time 0 to t− 1. ϕi

and ψi are the count vectors for the transition matrix and
reward function of arm i, respectively.

This procedure is summarized in Algorithm 1. In line 2-3,
we consider all the possible state transition sequences and
calculate their corresponding weights. Then we derive the
Dirichlet distribution related to the specific sequence (in line
4-8). In line 9, we update the posterior distribution as the
mixture Dirichlet distribution.

Algorithm 1 Posterior Update for Ri(s, ·) and P i(s, ·)
1: Input: the history length τ1, the state space S, the be-

lief history bi0:τ1 , the reward history ri0:τ1 , the initial
parameters ϕis,s′ , ψ

i
s,r, for s, s′ ∈ S, r ∈ R,

2: generate Sτ1 possible state sequences
3: calculate the weight w(j) =

∏τ1−1
t=0 bit(s, θ), j ∈ Sτ1

4: for j in 1, . . . ,Sτ1 do
5: count the occurence times of event (s, s′) and (s, r)

as N i
s,s′ , N

i
s,r in sequence j

6: update ϕis,s′ ← ϕis,s′ +N i
s,s′ , ψ

i
s,r ← ψis,r +N i

s,r

7: aggregate the ϕis,s′ as ϕ(j), ψis,r as ψ(j) for all
s, s′ ∈ S, r ∈ R

8: end for
9: update the mixture Dirichlet distribution
gτ1(P

i) ∝
∑Sτ1

j=1 w(j)f(
P i−ϵ11
1−Sϵ1 | ϕ(j)),

gτ1(R
i) ∝

∑Sτ1

j=1 w(j)f(
Ri−ϵ21
1−Sϵ2 | ψ(j))

Algorithm 2 Thompson Sampling with Episodic Explore-
Then-Commit

1: Input: prior g0(P ),g0(R), initial belief b0, exploration
length τ1, the first episode length T1

2: for episode k = 1, 2, . . . , do
3: start the first time of episode k, tk := t
4: sample Rtk ∼ gtk−1+τ1(R) and Ptk ∼ gtk−1+τ1(P )
5: for t = tk, tk + 1, ..., tk + τ1 do
6: pull the arm i for τ1/N times in a round robin way
7: receive the reward rt
8: update the belief bit using Rtk , Ptk according to

(4)
9: update the belief bjt , j ∈ N \{i} using Ptk accord-

ing to (5)
10: end for
11: for i = 1, 2, . . . , N do
12: input the obtained rt1:t1+τ1 , ..., rtk:tk+τ1 ,

bt1:t1+τ1 , ..., btk:tk+τ1 to Algorithm 1 to update
the posterior distribution gtk+τ1(P ), gtk+τ1(R)

13: end for
14: sample Rtk+τ1 ∼ gtk+τ1(P ), Ptk+τ1 ∼ gtk+τ1(R)
15: for i in 0, 1, . . . , N do
16: re-update the belief bit from time 0 to tk + τ1 ac-

cording to Rtk+τ1 and Ptk+τ1
17: end for
18: compute π∗

k(·) = Oracle (·, Rtk+τ1 , Ptk+τ1)
19: for t = tk + τ1 + 1, · · · , tk+1 − 1 do
20: apply action at = π∗

k (bt)
21: observe new reward rt+1

22: update the belief bt of all arms using (4), (5)
23: end for
24: end for

4.3. Our Algorithm

In this section, we present the details about our TSEETC
algorithm. TSEETC operates in episodes with different
lengths. The total number of episodes is denoted by kT .
The length of episode k is denoted as Tk and is determined
by Tk = T1+ k− 1, where T1 =

⌈√
T+1
2

⌉
. Denote the first

time of the episode k by tk. Each episode is split into an
exploration phase and an exploitation phase. The length of
exploration phase in each episode is fixed as τ1 such that
τ1KT = O(

√
T ) and τ1 ≤ T1+KT−1

2 . Define the sampled
parameters at time t as Rt and Pt. With these notations, we
show the pseudo-code about TSEETC in Algorithm 2.

In episode k, for the exploration phase (line 3-17), we first
sample the Rtk , Ptk from the distribution gtk−1+τ1(P ) and
gtk−1+τ1(R) to update the belief states. We pull each arm
for τ1/N times in a round-robin way. For the pulled arm, we
update its belief according to (4) using Rtk and Ptk . For the
arms that are not pulled, we update its belief according to
(5) using Ptk . The reward and belief history of each arm are
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input into Algorithm 1 to update the posterior distribution af-
ter the exploration phase. Then we sample the new Rtk+τ1 ,
Ptk+τ1 from the posterior distribution, and re-calibrate the
belief bt based on the most recent sampled Rtk+τ1 , Ptk+τ1 .
Next, we enter into the exploitation phase (line 18-23). First,
we use an Oracle to derive the optimal policy πk for the sam-
pled parameters Rtk+τ1 , Ptk+τ1 . The Oracle can be the
Bellman equation for POMDP as we introduced in equa-
tion (2), or the approximation methods (Pineau et al., 2003;
Silver & Veness, 2010), etc. The approximation error is
discussed in Remark 4.2. Then we use policy πk for the rest
of the episode k.

Our deterministic linear increment of episode length guaran-
tees the episode number kT is order O(

√
T ) as in Lemma

B.6. Then the regret of the exploration phases can be bound
by O(

√
T ), which is an crucial part in Theorem 5.1.

Remark 4.2. If the oracle returns an ϵk-approximate
policy π̃k in each episode instead of the optimal pol-
icy, i.e., r(b, π̃k(b)) +

∑
r P (r | b, π̃k(b), θ)v (b′, θ) ≤

maxa {r(b, a) +
∑
r P (r | b, a, θ)v (b′, θ)}−ϵk, then there

will be an extra regret termE
[∑

k:tk≤T (Tk − τ1)ϵk
]

in
the exploitation phase. If we control the error as
ϵk ≤ 1

Tk−τ1 , then this extra regret can be bounded as

E
[∑

k:tk≤T (Tk − τ1)ϵk
]
≤ kT = O(

√
T ) by Lemma B.6.

Thus the approximation error in the computation of optimal
policy does not affect the order of our regret bound.

5. Performance Analysis
In Section 5.1, we show our theoretical results and some
discussions. In Section 5.2, we provide a proof sketch and
the detailed proof is in Appendix B.

5.1. Regret Bound and Discussions

Theorem 5.1. Suppose Assumptions 3.1,3.2 hold and the
Oracle returns the optimal policy in each episode. The
Bayesian regret of our algorithm satisfies

RT ≤48C1C2S
√
NT log(NT ) + C1C2+

(τ1∆R+H + 4C1C2SN)
√
T ,

where C1 = L1 + L2N + N2 + S2, C2 = rmax + H
are constants independent with time horizon T , L1 =
4(1−ϵ1)2
Nϵ21ϵ2

, L2 = 4(1−ϵ1)2
ϵ31

, ϵ1 and ϵ2 are the lower bounds
of the functions P ∗ and R∗, respectively. τ1 is the fixed ex-
ploration length in each episode, ∆R is is the gap between
the maximum and the minimum rewards, H is the bounded
span, rmax is the maximum reward obtain each time, N is
the number of arms and S is the state size for each arm.

The best existing bounds on both the frequentist regret and
the Bayesian regret are Õ(T 2/3) in the setting with both

unobserved state and unknown parameters. Our algorithm
is the first to achieves the Õ(

√
T ) Bayesian regret bound on

average. Whether one can achieve the Õ(
√
T ) frequentist

regret bound is still open.

The key ingredients that allow us to obtain the Õ(
√
T )

bound are as follows. First, we estimate the unknown param-
eters based on Thompson sampling to update the posterior
distribution of unknown parameters as the mixture of each
combined distribution. Second, to control the regret caused
by the exploration phases, we use an episodic algorithm and
increase the episode length in a deterministic manner that
guarantees the total episode number is order O(

√
T ), so

the regret of the exploration phases is bounded by O(
√
T ).

Third, we propose a novel pseudo count of the state-action
pairs based on Dirichlet distribution, which allows us to
bound the total estimation errors about unknown parameters
and unobserved states in the exploitation phase by Õ(

√
T ).

The algorithm in Zhou et al. (2021) is also episodic and
each episode is divided into an exploration phase and an
exploitation phase as ours. Their cumulative regret bounds
in each phase are both Õ(T 2/3) in the frequentist sense.
The bottleneck of their method is the spectral estimator
used for parameter estimation, which has an error bound
of order 1/

√
k, where k is the episode index. To control

this error, they had to use a longer exploration phase than
we do, which results in a larger regret. In contrast, the re-
grets of our algorithm in both phases are well controlled by
Õ(
√
T ), in the Bayesian sense though. Jahromi et al. (2022)

considers a similar problem in the POMDP setting and ob-
tain a Bayesian regret bound of Õ(T 2/3). They define the
pseudo counts of state-action pairs, but their pseudo counts
are always smaller than the true counts with a nonzero prob-
ability at any time. On the other hand, in our algorithm,
the sampled parameter is more concentrated around the true
values with the posterior update. Therefore, our belief-based
pseudo counts defined in (13) approximate the true counts
more closely, which helps us obtain the final Õ(

√
T ) regret

bound.

The existing work in restless bandits provide regret bounds
depending on the mixing time Tmix. To guarantee an
accuracy of 1

T , the mixing time Tmix can be bound by
O(log T ) (Jung et al., 2019). Therefore, bounds depend-
ing on Tmix can be bound as O(log T

√
T ) (Jung et al.,

2019) and O
(
log7/2 T

√
T
)

(Ortner et al., 2012). Our re-
gret bound depends on the lower bounds ϵ1 and ϵ2 in As-
sumptions 3.1,3.2, which is independent with the time hori-
zon T . Then our regret bound is O(

√
T log T ). Therefore

our regret bound improves those two bounds by a logarith-
mic factor.

Remark 5.2. (Continuous reward functions). We assume
the reward set is finite as Jung & Tewari (2019); Zhou et al.
(2021); Singh et al. (2022). However, our TSEETC algo-
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rithm can be extended to handle continuous rewards. First,
for unknown states, we can update the belief states incorpo-
rated with such continuous reward function. After pulling
the arm and observing r, the belief state b is revised accord-
ing to Bayes’ theorem: b (s′) ∝

∑
s b(s)R(r | s)P (s′ | s)

(Hoey & Poupart, 2005), where R(r | s) is a probability
density function. Second, the posterior distribution g(R)
should be updated with continuous reward. For the case
where each arm has two states, g(R) is the Beta distribution.
We can accordingly modify TSEETC so that after observing
the reward rt ∈ [0, 1] at time t, it performs a Bernoulli trial
with success probability rt. Let the random variable r̃t de-
note the outcome of this Bernoulli trial, and let Si(t), Fi(t)
be the number of successes and failures in the Bernoulli
trials until time t. If r̃t = 1, we set Si(t) = Si(t) + 1. Oth-
erwise, we let Fi(t) = Fi(t) + 1. Then we can update the
parameters in g(R) accordingly. We leave the theoretical
analysis for continuous reward as future work.
Remark 5.3. (Thompson sampling approximation error).
The establishment of the final regret bound and the total
estimation error for belief states requires satisfying not only
Assumption 3.1 and Assumption 3.2, but also relies cru-
cially on the Oracle returning the optimal policy in each
episode and exact posterior updates. However, in practice,
marginalizing the full state sequence in Algorithm 1 is an ex-
ponentially costly task. Therefore, we approximate the pos-
terior distribution (Urteaga & Wiggins, 2018; Lu & Van Roy,
2017) by sampling M state transition sequences, where M
is a hyperparameter. As such, it is necessary to consider the
impact of approximation errors on the posterior distribution
(Phan et al., 2019; Mazumdar et al., 2020) in relation to the
regret bound. A desired final regret bound comprises two
terms: the first term is the regret bound achieved by Thomp-
son sampling with an exact posterior, while the second term
is an incremental term and accounts for posterior mismatch.
Importantly, the second term converges to zero as the size
of sequences considered M approaches infinity. To achieve
this, we need to study the divergence between two distribu-
tions g(P ) and g′(P ) defined by different Dirichlet counts
and bound the gap between the sampled transition matrix
and the true parameters based on such a divergence. This is
nontrivial and it deserves further study.

5.2. Proof Sketch

The total regret can be decomposed as follows:

RT =Eθ∗

[
kT∑
k=1

tk+τ1∑
tk

J(θ∗)− rt

]
︸ ︷︷ ︸

Regret (A)

+ Eθ∗

[
kT∑
k=1

tk+1−1∑
tk+τ1+1

J(θ∗)− rt

]
︸ ︷︷ ︸

Regret (B)

.

(8)

Bounding Regret (A). The Regret (A) is the regret caused
in the exploration phase of each episode. This term can be
simply bounded as follows:

Regret (A) ≤ Eθ∗

[
kT∑
k=1

τ1∆R

]
≤ τ1∆RkT (9)

where ∆R = rmax−rmin is the gap between the maximum
and the minimum rewards. The regret in (9) is related to the
episode number kT . Since the first episode has length of
order O(

√
T ) and the episode length is increasing linearly

with the episode index, we can easily bound the total episode
number by O(

√
T ) as in Lemma B.6.

Bounding Regret (B). Next we bound Regret(B) in the
exploitation phase. Let b̂t denote the belief updated with pa-
rameter θk and b∗t the belief with true parameter θ∗. During
episode k, based on (2) for the sampled parameter θk and
that at = π∗(b̂t), we can write:

J (θk)+v(b̂t, θk) = r(b̂t, at)+
∑
r

P (r | b̂t, at, θk)v(b′, θk).

(10)
With (10), we proceed by decomposing the regret as:

Regret(B) = R1 +R2 +R3 +R4 (11)

where each term is defined as follows:

R1 = Eθ∗
kT∑
k=1

[(Tk − τ1 − 1) (J(θ∗)− J(θk))] ,

R2 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
v(b̂t+1, θk)− v(b̂t, θk)

)]
,

R3 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(∑
r

P (r | b̂t, at, θk)v(b′, θk)

− v(b̂t+1, θk)
)]
,

R4 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
r(b̂t, at)− r(b∗t , at)

)]
.

Bounding R1. A key property of TS algorithms is that
when the prior distribution g0 coincides with that of the true
parameter θ∗, given the historyHtk , the sampled θk has the
same distribution as θ∗ at time tk as stated in Lemma 5.4.
Since the length Tk is deterministic and independent of θk,
R1 is zero thanks to this property as stated in Lemma 5.5 .

Lemma 5.4. (Posterior Sampling (Ouyang et al., 2017)). In
TSEETC, tk is an almost surely finite σ (Htk)-stopping time.
If the prior distribution g0(P ),g0(R) is the distribution of
θ∗, then for any measurable function g,

E [g (θ∗) | Htk ] = E [g (θk) | Htk ] .
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Lemma 5.5. R1 satisfies that R1 = 0.

Bounding R2. The inner sum in R2 is a telescopic sum
that reduces to the difference of two value functions, which
is upper bounded by the span and hence by H . Since the
number of episodes kT is deterministic and O(

√
T ), we

have R2 ≤ HkT = O(H
√
T ) and we have Lemma 5.6.

Lemma 5.6. R2 is bounded by R2 ≤ O(H
√
T ).

Bounding R3 and R4. The regret terms R3 and R4 are
related to the estimation error of θ (including the transition
function P and reward function R) and estimation error of
belief state. The belief estimation error can be bounded in
terms of the estimation errors of θ by a result of Xiong et al.
(2022e), reproduced in Proposition D.2. Thus the key is to
bound the estimation error of θ. Recalling the definition
of ϕ, ψ in Lemma 4.1, we define the posterior mean of
P̂ i(s′ | s) and R̂i(r | s) for arm i at time t as follows:

P̂ i(s′ | s) =
ϵ1 + (1− ϵ1)ϕis,s′(t)

Sϵ1 + (1− ϵ1)
∥∥ϕis,·(t)∥∥1

R̂i(r | s) =
ϵ2 + (1− ϵ2)ψis,r(t)

Sϵ2 + (1− ϵ2)
∥∥ψis,·(t)∥∥1 .

(12)

For a fixed arm i, it can be pulled or not each time. The
action a is 1 or 0 depending on whether the arm is pulled
or not. Then we define the pesudo count of the state-action
pair (s, a) before the episode k as

N i
tk
(s, 1) =

∥∥ψis,·(tk)∥∥1 − ∥∥ψis,·(0)∥∥1 , (13)

N i
tk
(s, 0) = (

k−1∑
j=1

Tj)−N i
tk
(s, 1), (14)

where ψis,·(tk) is the parameter in the Dirichlet distribution
at time tk about reward function of arm i. LetMi

k be the
set of plausible MDPs in episode k with reward function
Ri (r | z) and transition function P i (s′ | z) satisfying,∑

s′∈S

∣∣∣P i (s′ | z)− P̂ ik (s′ | z)∣∣∣ ≤ βk(z)∑
r∈R

∣∣∣Ri (r | z)− R̂ik (r | z)∣∣∣ ≤ βk(z), (15)

where βik(s, a) :=

√
14S log(2NtkT )

max{1,Ni
tk

(s,a)} is chosen conserva-

tively (Auer et al., 2008) so thatMi
k contains both P i∗ and

P ik, Ri∗ and Rik with high probability. P i∗ and Ri∗ are the
true parameters as we defined in Section 4.1.

The core of the proof lies in deriving a high-probability
confidence set with our pseudo counts and showing that the
estimated error accumulated to T for each arm is bounded
by
√
T . Thus, we can derive the final error bound about the

MDP aggregated by all arms as stated in Lemma 5.7 . The
proof of Lemma 5.7 is in the Appendix B.3.2.

Lemma 5.7. (Estimation errors of unknown parameters).
Suppose Assumptions 3.1,3.2 hold and the posterior distri-
butions are exactly updated, then the total estimation error
about unknown parameters accumulated by all exploitation
phases satisfies the following bound

Eθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥P ∗ − Pk∥1

]
≤48SN

√
NT log(NT )

+ 4SN2
√
T +N,

Eθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗ −Rk∥1

]
≤48S

√
NT log(NT )

+ 4SN
√
T + 1,

where Pk,Rk are the sampled parameters in episode k.

With Lemma 5.7, we can bound the estimation errors about
belief states as stated in Lemma 5.8. The proof of Lemma
5.8 is in the Appendix B.3.2.

Lemma 5.8. (Control belief error). Suppose Assumptions
3.1,3.2 hold and the posterior distributions are exactly up-
dated, then the total estimation error about belief states
accumulated by all exploitation phases satisfies the follow-
ing bound

Eθ∗
[
KT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]
≤ 4C1SN

√
T

+ 48C1S
√
NT log(NT ) + C1

The Lemma 5.8 shows that the accumulated belief errors
about unobserved states is also bounded by Õ(

√
T ). Then,

we can obtain the final bound about R3, R4 and the detailed
proof in Appendix B.3,B.4.

Lemma 5.9. R3 satisfies the following bound

R3 ≤ 48C1SH
√
NT logNT + 4C1SNH

√
T + C1H.

Lemma 5.10. R4 satisfies the following bound

R4 ≤48C1Srmax
√
NT log(NT )

+4C1SNrmax
√
T + C1rmax.

Then the claim of the Theorem 5.1 directly follows from
Lemma 5.5, Lemma 5.6, Lemma 5.9, 5.10.

6. Numerical Experiments
In this section, we present proof-of-concept experiments. To
implement TSEETC efficiently, we just consider the most
possible states transition sequences in the posterior update
about unknown parameters. This approximation reduce the
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Table 1. The average accumulated regrets of different algorithms with different arms and states

(ARMS, STATES) TSEETC SEEU RUCB Q-LEARNING ϵ-GREEDY SLIDE-UCB

(2, 2) 580 871 1259 1710 2653 4039
(4, 2) 9968 10253 13520 14932 16684 17690
(6, 2) 14640 25940 26932 29875 30260 33894
(8, 2) 27252 34614 35650 42261 44962 46541

(10, 2) 39635 42600 44506 49580 51540 54652
(2, 3) 4654 6065 7420 7976 8598 9590
(2, 4) 10080 11652 14064 15648 17895 18953

computational complexity and the final simulation results
show that this approximated algorithm can still achieve bet-
ter performance than the existing algorithms. We consider
two arms and there are two hidden states (0 and 1) for each
arm. We pull just one arm each time. The learning horizon
T = 50000, and each algorithm runs 100 iterations. At state
1, the reward set is {10, 20} and the reward set is {−10, 10}
at state 0. The transition functions and reward functions
for all arms are the same. We initialize the algorithm with
uninformed Dirichlet prior on the unknown parameters. The
baselines include ϵ-greedy (Lattimore & Szepesvári, 2020)
with ϵ = 0.01, Sliding-Window UCB (Garivier & Moulines,
2011) with specified window size( equal to 50), RUCB (Liu
et al., 2010), Q-learning (Hu et al., 2020), and SEEU (Zhou
et al., 2021). The pseudo-counts in Jahromi et al. (2022) are
related with the expectation of true counts, which can not
be obtained due to the unknown states. Thus we excluded it
in our experiments. The results are shown in Figure 1. We
observe that approximate TSEETC has the minimum regret
among these algorithms.

Figure 1. The cumulative regret

In Figure 2, we plot the cumulative regret versus T of the
six algorithms in log-log scale. We observe that the slopes
of all algorithms except for our TSEETC and SEEU are
close to one, suggesting that they incur linear regrets. What
is more, the slope of TSEETC is close to 0.5, which is better
than SEEU. This is consistent with our theoretical result.

Next, we show the robustness of TSEETC to other action
and state dimensionalities. We first consider the setting with

Figure 2. The log-log regret

different arms and each with the same state space. Secondly,
we consider the case where the number of arms is equal,
but the state spaces of each arm are different. The results
are shown in Table 1. It shows that our TSEETC achieves
minimal cumulative regret among all compared algorithms
under different settings.

7. Conclusion
In this paper, we consider restless bandits with unknown
states and unknown dynamics. We propose the TSEETC
algorithm to estimate these unknown parameters and derive
the optimal policy. We also establish the Bayesian regret of
our algorithm as Õ(

√
T ). Numerical results validate that the

TSEETC algorithm outperforms other learning algorithms
in regret. A related open question is whether our method
can be applied to the setting where the transition functions
are action dependent. We leave it for future work.

Acknowledgements
This work is supported in part by the National Natural
Science Foundation of China (No. 62072302, 42050105,
62262018), and the Open Research Project of the State
Key Laboratory of Media Convergence and Commu-
nication, Communication University of China, China
(No.SKLMCC2021KF011). We thank all reviewers for
their constructive feedback.

9



Online Restless Bandits with Unobserved States

References
Ahmad, S. H. A., Liu, M., Javidi, T., Zhao, Q., and Kr-

ishnamachari, B. Optimality of myopic sensing in mul-
tichannel opportunistic access. IEEE Transactions on
Information Theory, 55(9):4040–4050, 2009.

Akbarzadeh, N. and Mahajan, A. Maintenance of a col-
lection of machines under partial observability: Indexa-
bility and computation of whittle index. arXiv preprint
arXiv:2104.05151, 2021.

Anandkumar, A., Hsu, D., and Kakade, S. M. A method
of moments for mixture models and hidden markov mod-
els. In Conference on Learning Theory, pp. 33–1. JMLR
Workshop and Conference Proceedings, 2012.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2):235–256, 2002.

Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret
bounds for reinforcement learning. Advances in neural
information processing systems, 21, 2008.

Azizzadenesheli, K., Lazaric, A., and Anandkumar, A. Re-
inforcement learning of pomdps using spectral methods.
In Conference on Learning Theory, pp. 193–256. PMLR,
2016.

Bertsekas, D. P. et al. Dynamic programming and optimal
control 3rd edition, volume ii. Belmont, MA: Athena
Scientific, 2011.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. Advances in neural information processing
systems, 24, 2011.

De Castro, Y., Gassiat, E., and Le Corff, S. Consistent
estimation of the filtering and marginal smoothing distri-
butions in nonparametric hidden markov models. IEEE
Transactions on Information Theory, 63(8):4758–4777,
2017.

Fiez, T., Sekar, S., and Ratliff, L. J. Multi-armed bandits
for correlated markovian environments with smoothed
reward feedback. arXiv preprint arXiv:1803.04008, 2018.

Garivier, A. and Moulines, E. On upper-confidence bound
policies for switching bandit problems. In International
Conference on Algorithmic Learning Theory, pp. 174–
188. Springer, 2011.

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A., et al.
Bayesian reinforcement learning: A survey. Founda-
tions and Trends® in Machine Learning, 8(5-6):359–483,
2015.

Hoey, J. and Poupart, P. Solving pomdps with continuous
or large discrete observation spaces. In IJCAI, pp. 1332–
1338, 2005.

Hong, J., Kveton, B., Zaheer, M., Ghavamzadeh, M., and
Boutilier, C. Thompson sampling with a mixture prior.
In International Conference on Artificial Intelligence and
Statistics, pp. 7565–7586. PMLR, 2022.

Hu, Z., Zhu, M., and Liu, P. Adaptive cyber defense against
multi-stage attacks using learning-based pomdp. ACM
Transactions on Privacy and Security (TOPS), 24(1):1–
25, 2020.

Jahromi, M. J., Jain, R., and Nayyar, A. Online learning
for unknown partially observable mdps. In International
Conference on Artificial Intelligence and Statistics, pp.
1712–1732. PMLR, 2022.

Jung, Y. H. and Tewari, A. Regret bounds for thompson
sampling in episodic restless bandit problems. Advances
in Neural Information Processing Systems, 32, 2019.

Jung, Y. H., Abeille, M., and Tewari, A. Thompson sam-
pling in non-episodic restless bandits. arXiv preprint
arXiv:1910.05654, 2019.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.
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A. Table of Notations
Notation Description

T The length of horizon
kT The episode number of time T
Tk The episode length of episode k
τ1 The fixed exploration length in each episode
P i The transition functions for arm i
Ri The reward function for arm i
Pk The sampled transition function for aggregated MDP
Rk The sampled reward function for aggregated MDP
rt The reward obtained at time t

bit(s, θ) The belief state for being in state s at time t for arm i with parameter θ
b̂t The belief of all arms at time t with parameter θk
b∗t The belief of all arms at time t with parameter θ∗

at The action at time t
r(bt, at) The expected reward obtained when the belief state is bt and the action is at
J(θk) The optimal long term average reward with parameter θk
rmax The maximum reward obtained each time
rmin The minimum reward obtained each time
∆R The biggest gap of the obtained reward

B. Proof of Theorem 5.1
Recall that our goal is to minimize the regret :

RT := Eθ∗
[
T∑
t=1

(J(θ∗)− rt)

]
. (16)

rt depends on the state st and at. Thus rt can be written as r(st, at). Due to Eθ∗ [r (st, at) | Ht−1] = r(b∗t , at) for any t,
we have,

RT := Eθ∗
[
T∑
t=1

(J(θ∗)− r(b∗t , at))

]
. (17)

In our algorithm, each episode is split into the exploration and exploitation phase then we can rewrite the regret as:

RT = Eθ∗
[
kT∑
k=1

tk+τ1∑
tk

(J(θ∗)− r (b∗t , at)) +
kT∑
k=1

tk+1−1∑
tk+τ1+1

(J(θ∗)− r (b∗t , at))

]
, (18)

where τ1 is the exploration length for each episode. τ1 is a constant. tk is the start time of episode k. Define the first part as
Regret (A) which is caused by the exploration operations. The another part Regret (B) is as follows.

Regret (A) = Eθ∗
[
kT∑
k=1

tk+τ1∑
tk

(J(θ∗)− r (b∗t , at))

]
,

Regret (B) = Eθ∗
[
kT∑
k=1

tk+1−1∑
tk+τ1+1

(J(θ∗)− r (b∗t , at))

]
.

Recall that the reward set isR and we define the maximum reward gap inR as ∆R = rmax − rmin. Then we get:

J(θ∗)− r (b∗t , at) ≤ ∆R.

13
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Then Regret (A) can be simply upper bounded as follows:

Regret (A) ≤ Eθ∗
[
kT∑
k=1

τ1∆R

]
≤ τ1∆RkT .

Regret (A) is related with the episode number kT obviously, which is bounded in Lemma B.6. Next we should bound the
term Regret (B).

During the episode k, based on (2), we get:

J (θk) + v(b̂t, θk) = r(b̂t, at) +
∑
r

P (r | b̂t, at, θk)v (b′, θk) , (19)

where J (θk) is the optimal long-term average reward when the system parameter is θk, b̂t is the belief at time t updated
with parameter θk, r(b̂t, at) is the expected reward we can get when the action at is taken for the current belief b̂t, b′ is the
updated belief based on (4) with parameter θk when the reward r is received.

Using this equation, we proceed by decomposing the regret as:

Regret(B) = R1 +R2 +R3 +R4, (20)

where

R1 = Eθ∗
kT∑
k=1

[(Tk − τ1 − 1) (J(θ∗)− J(θk))] ,

R2 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
v(b̂t+1, θk)− v(b̂t, θk)

)]
,

R3 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(∑
r

P (r | b̂t, at, θk)v(b′, θk)− v(b̂t+1, θk)

)]
,

R4 = Eθ∗
kT∑
k=1

[
tk+1−1∑
tk+τ1+1

(
r(b̂t, at)− r(b∗t , at)

)]
.

Next we bound the four parts one by one.

B.1. Bound R1

Lemma B.1. R1 satisfies that R1 = 0.

Proof. Recall that:

R1 = Eθ∗
kT∑
k=1

[(Tk − τ1 − 1) (J(θ∗)− J(θk)] .

For each episode, Tk is determined and is independent with θk. Based on Lemma 5.4, we know that,

Eθ∗ [J(θ∗)] = Eθ∗ [J(θk)].

therefore, the part R1 is 0.

B.2. Bound R2

Lemma B.2. R2 satisfies the following bound
R2 ≤ HkT ,

where kT is the total number of episodes until time T .
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Proof. Recall that R2 is the telescoping sum of value function at time t+ 1 and t.

R2 = Eθ∗
kT∑
k=1

[
tk+1−1∑

t=tk+τ1+1

[
v(b̂t+1, θk)− v(b̂t, θk)

]]
. (21)

We consider the whole sum in episode k, then the R2 can be rewrite as:

R2 = Eθ∗
kT∑
k=1

[
v(b̂tk+1

, θk)− v(b̂tk+τ1+1, θk)
]
.

Due to the span of v(b, θ) is bounded by H as in proposition D.1 , then we can obtain the final bound,

R2 ≤ HkT .

B.3. Bound R3

In this section, we first rewrite the R3 in section B.3.1. In section B.3.2, we show the details about how to bound R3.

B.3.1. REWRITE R3

Lemma B.3. (Rewrite R3 ) The regret R3 can be bounded as follows:

R3 ≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

||P ∗ − Pk||1

]
+HEθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]

+ S2HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗ −Rk∥1

]
,

where Pk is the sampled transition functions in episode k, Rk is the sampled reward functions in episode k, b∗t is the belief
at time t updated with true P ∗ and R∗, b̂t is the belief at time t updated with sampled Pk, Rk.

Proof. The most part is similar to Jahromi et al. (2022), except that we should handle the unknown reward functions.

Recall that R3 = Eθ∗
∑kT
k=1

[∑tk+1−1
t=tk+τ1+1

(∑
r P (r | b̂t, at, θk)v (b′, θk)− v(b̂t+1, θk)

)]
.

Recall thatHt is the history of actions and observations prior to action at. Conditioned onHt, θ∗ and θk, the only random
variable in b̂t+1 is rt+1, then we can get,

Eθ∗
[
v(b̂t+1, θk) | Ht, θk

]
=
∑
r∈R

v (b′, θk)P (r | b∗t , at, θ∗), (22)

where P (r | b∗t , at, θ∗) is the probability of getting reward r given b∗t , at, θ
∗. By the law of probability, P (r | b∗t , at, θ∗) can

be written as follows,

P (r | b∗t , at, θ∗) =
∑
s′

R∗ (r | s′)P (st+1 = s′ | Ht, θ∗)

=
∑
s′

R∗ (r | s′)
∑
s

P ∗ (st+1 = s′ | st = s,Ht, at, θ∗)P (st = s | Ht, θ∗)

=
∑
s

∑
s′

b∗t (s)P
∗ (s′ | s)R∗ (r | s′) ,

(23)

where P ∗ is the transition functions for the MDP aggregated by all arms, R∗ is the reward function for the aggregated MDP.
Therefore, we can rewrite the R3 as follows,

R3 = Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r∈R

(P (r | b̂t, at, θk)− P (r | b∗t , at, θ∗)v (b′, θk)

)]
.
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Based on (23), we get

R3 = Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)R
∗ (r | s′)

∑
s

b∗t (s)P
∗(s′ | s)

)]

= Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)P
∗(s′ | s)

)]

+ Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)P
∗(s′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)R
∗ (r | s′)

∑
s

b∗t (s)P
∗(s′ | s)

)]
.

(24)

where Rk is the sampled reward function for aggregated MDP, Pk is the sampled transition function for aggregated MDP.

Define

R′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)

[∑
s

b̂t(s)Pk(s
′ | s)−

∑
s

b∗t (s)P
∗(s′ | s)

])]
,

R′′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk) [Rk (r | s′)−R∗ (r | s′)]
∑
s

b∗t (s)P
∗(s′ | s)

)]
.

Bounding R′
3. The part R′

3 can be bounded as Jahromi et al. (2022).

R′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)

[∑
s

b̂t(s)Pk(s
′ | s)−

∑
s

b∗t (s)P
∗(s′ | s)

])]
= R′

3(0) +R′
3(1)

where

R′
3(0) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)Pk(s
′ | s)

)]

R′
3(1) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)P
∗(s′ | s)

)]
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For R′
3(0), because

∑
r Rk (r | s′) = 1,

∑
s′ Pk(s

′ | s) = 1,v (b′, θk) ≤ H , we have

R′
3(0) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b̂t(s)Pk(s
′ | s)

)]

− Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

b∗t (s)Pk(s
′ | s)

)]

= Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

(b̂t(s)− b∗t (s)Pk(s′ | s)

)]

≤ Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′)
∑
s

|b̂t(s)− b∗t (s)|Pk(s′ | s)

)]

≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s

|b̂t(s)− b∗t (s)|

)]

= HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∥∥∥b̂t(s)− b∗t (s)∥∥∥
1

)]
,

where the first inequality is due to b̂t(s)− b∗t (s) ≤ |b̂t(s)− b∗t (s)| and the second inequality is because
∑
r Rk (r | s′) = 1,∑

s′ Pk(s
′ | s) = 1, v (b′, θk) ≤ H .

For the first term in R′
3(1) , note that conditioned onHt, θ∗, the distribution of st is b∗t . Furthermore, at is measurable with

respect to the sigma algebra generated byHt, θk since at = π∗(b̂t, θk). Thus, we have

Eθ∗
[
v (b′, θk)

∑
s

P ∗ (s′ | s) b∗(s) | Ht, θk

]
= v (b′, θk)Eθ∗ [P ∗ (s′ | s) | Ht, θk] . (25)

Eθ∗
[
v (b′, θk)

∑
s

Pk (s
′ | s) b∗(s) | Ht, θk

]
= v (b′, θk)Eθ∗ [Pk (s′ | s) | Ht, θk] . (26)

Substitute (25), (26) into R′
3(1), we have

R′
3(1) = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′) (Pk(s′ | s)− P ∗(s′ | s))

)]

≤ Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk)Rk (r | s′) |Pk(s′ | s)− P ∗(s′ | s)|

)]

≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s′

|Pk(s′ | s)− P ∗(s′ | s)|

)]

≤ HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∥Pk − P ∗∥1)

]
,

where the first inequality is because Pk(s′ | s) − P ∗(s′ | s) ≤ |Pk(s′ | s) − P ∗(s′ | s)|, the second inequality is due to
v (b′, θk) ≤ H and

∑
r Rk (r | s′) = 1.

Therefore we obtain the final results,

R′
3 ≤ HE

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

||P ∗ − Pk||1

]
+HE

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]
.
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Bounding R′′
3 . For part R′′

3 , note that for any fixed s′,
∑
s b

∗
t (s)P

∗(s′ | s) ≤ S, therefore we can bound R′′
3 as follows,

R′′
3 = Eθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

∑
s′

v (b′, θk) [Rk (r | s′)−R∗ (r | s′)]
∑
s

b∗t (s)P
∗(s′ | s)

)]

≤ SHEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s′

∑
r

[Rk (r | s′)−R∗ (r | s′)]

)]

≤ SHEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

S ∥Rk −R∗∥1

]

≤ S2HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥Rk −R∗∥1

]
,

(27)

where the first inequality is due to v (b′, θk) ≤ H and
∑
s b

∗
t (s)P

∗(s′ | s) ≤ S , the second inequality is due to for any
fixed s′,

∑
r [Rk (r | s′)−R∗ (r | s′)] ≤ ∥Rk −R∗∥1.

B.3.2. BOUND R3

Lemma B.4. R3 satisfies the following bound

R3 ≤ 48(L1 + L2N +N + S2)SH
√
NT log(NT ) + (L1 + L2N +N + S2)H

+ 4(L1 + L2N +N2 + S2)SNH(T1 + kT − τ1 − 1).

Proof. Recall that the R3 is as follows:

R3 = Eθ∗
kT∑
k=1

[
tk+1−1∑

t=tk+τ1+1

(∑
r

P [r | b̂t, at, θk]v (b′, θk)− v(b̂t+1, θk)

)]
.

This regret terms are dealing with the model estimation errors. That is to say, they depend on the on-policy error between the
sampled transition functions and the true transition functions, the sampled reward functions and the true reward functions.
Thus we should bound the parameters’ error especially in our unobserved state setting. Based on the parameters in our
Dirichlet distribution, we can define the empirical estimation of reward function and transition functions for arm i as follows:

P̂ i(s′ | s) =
ϵ1 + (1− ϵ1)ϕis,s′(t)

Sϵ1 + (1− ϵ1)
∥∥ϕis,·(t)∥∥1 , R̂i(r | s) =

ϵ2 + (1− ϵ2)ψis,r(t)
Sϵ2 + (1− ϵ2)

∥∥ψis,·(t)∥∥1 . (28)

where ϕis,s′(t) is the parameters in the posterior distribution of P i at time t, ψis,r(t) is the parameters in the posterior
distribution of Ri at time t. For each arm, it can be pulled or not. When it is pulled, we define the action a is 1 and the action
a is 0 when it is not pulled. Then we define the pseudo count N i

tk
(s, a) of the state-action pair (s, a) before the episode k

for arm i as
N i
tk
(s, 1) =

∥∥ψis,·(tk)∥∥1 − ∥∥ψis,·(0)∥∥1 ,
N i
tk
(s, 0) = (

k−1∑
j=1

Tj)−N i
tk
(s, 1).

For notational simplicity, we use z = (s, a) ∈ S ×A and zt = (st, at) to denote the corresponding state-action pair. Then
based on Lemma B.3 we can decompose the R3 as follows,

R3 = Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
r

P [r | b̂t, at, θk]v (b′, θk)− v(b̂t+1, θk)

)]

= Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

[∑
r

(
P (r | b̂t, at, θk)− P (r | b∗t , at, θ∗)

)
v(b′, θk)

]]
≤ R0

3 +R1
3 +R2

3
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where

R0
3 = HEθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥P ∗ − Pk∥1

]
,

R1
3 = HEθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

||b∗t − b̂t||1

]
,

R2
3 = S2HEθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗ −Rk∥1

]
.

Note that the following results are all focused on one arm. Define P i∗ is the true transition function for arm i, P ik is the
sampled transition function for arm i. We can extend the results on a arm to the aggregated large MDP based on Lemma D.3.

Bounding R0
3. Since 0 ≤ v (b′, θk) ≤ H from our assumption , each term in the inner summation is bounded by∑

s′∈S
|
(
P i∗ (s

′ | zt)− P ik (s′ | zt)
)
|v (s′, θk)

≤H
∑
s′∈S

∣∣P i∗ (s′ | zt)− P ik (s′ | zt)∣∣
≤H

∑
s′∈S

∣∣∣P i∗ (s′ | zt)− P̂ ik (s′ | zt)∣∣∣+H
∑
s′∈S

∣∣∣P ik (s′ | zt)− P̂ ik (s′ | zt)∣∣∣ .
where P i∗ (s

′ | zt) is the true transition function, P ik (s
′ | zt) is the sampled reward function and P̂ ik (s

′ | zt) is the posterior
mean. The second inequality above in due to triangle inequality. LetMi

k be the set of plausible MDPs in episode k with
reward function Ri (r | z) and transition function P i (s′ | z) satisfying,∑

s′∈S

∣∣∣P i (s′ | z)− P̂ ik (s′ | z)∣∣∣ ≤ βik(z), ∑
r∈R

∣∣∣Ri (r | z)− R̂ik (r | z)∣∣∣ ≤ βik(z),
where βik(s, a) :=

√
14S log(2NtkT )

max{1,Ni
tk

(s,a)} is chosen conservatively (Auer et al., 2008) so thatMi
k contains both P i∗ and P ik,

Ri∗ and Rik with high probability. P i∗ and Ri∗ are the true parameters as we defined in section 4.1. Note that βik(z) is the
confidence set with δ = 1/tk.

Then we can obtain, ∑
s′∈S

∣∣∣P i∗ (s′ | zt)− P̂ ik (s′ | zt)∣∣∣+ ∑
s′∈S

∣∣∣P ik (s′ | zt)− P̂ ik (s′ | zt)∣∣∣
≤ 2βik (zt) + 2

(
I{P i

∗ /∈Bk} + I{P i
k /∈Bk}

)
.

(29)

We assume the length of the last episode is the biggest. Note that even the assumption does not hold, we can enlarge the
sum items as TkT−1 − τ1. This does not affect the order of our regret bound. With our assumption, because the all episode
length is not bigger than the last episode, that is tk+1 − 1− (tk + τ1) ≤ TkT − τ1, then we can obtain,

kT∑
k=1

tk+1−1∑
t=tk+τ1

βik (zt) ≤
kT∑
k=1

TkT
−τ1∑

t=1

βik (zt) . (30)

Note that
∑
s′∈S

∣∣∣P i∗ (s′ | zt)− P̂ ik (s′ | zt)∣∣∣ ≤ 2 is always true. And with our assumption τ1 ≤ T1+kT−1
2 , it is easy to

show that when N i
tk
≥ TkT − τ1, βik (zt) ≤ 2 holds. Then we can obtain,
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kT∑
k=1

TkT
−τ1∑

t=1

min{2, βik (zt)} ≤
kT∑
k=1

TkT
−τ1∑

t=1

2I(N i
tk
< TkT − τ1)

+

kT∑
k=1

TkT
−τ1∑

t=1

I(N i
tk
≥ TkT − τ1)

√
14S log (2NtkT )

max
(
1, N i

tk
(zt)

) .
(31)

Consider the first part in (31). Obviously, the maximum of N i
tk

is TkT − τ1. Because there are totally SA state-action

pairs, therefore, the first part in equation (31) can be bounded as,
∑kT
k=1

∑TkT
−τ1

t=1 2I(N i
tk
< TkT − τ1) ≤ 2(TkT − τ1)SA.

Due to TkT = T1 + kT − 1 and Lemma B.6, we get ,

2(TkT − τ1)SA = 2(T1 + kT − τ1 − 1)SA = O(
√
T ).

Consider the second part in 31. Denote the N i
t (s, a) is the count of (s, a) before time t(not including t). Due to we just

consider the exploration phase in each episode, then N i
t (s, a) can be calculated as follows,

N i
t (s, a) =

∣∣{τ < t, τ ∈ [tk, tk + τ1], k ≤ k(t) :
(
siτ , a

i
τ

)
= (s, a)

}∣∣ ,
where k(t) is the episode number where the time t is in.

In the second part in (31), when N i
tk
≥ TkT − τ1, based on our assumption τ1 ≤ T1+kT−1

2 , we can get,

τ1 ≤
T1 + kT − 1

2
,

2τ1 ≤ T1 + kT − 1 = TkT .

therefore, TkT − τ1 ≥ τ1. Because N i
tk
≥ TkT − τ1, then N i

tk
(s, a) ≥ τ1. For any t ∈ [tk, tk + τ1],we have

N i
t (s, a) ≤ N i

tk
(s, a) + τ1 ≤ 2N i

tk
(s, a).

Therefore N i
t (s, a) ≤ 2N i

tk
(s, a). Next we can bound the confidence set when Nt(s, a) ≤ 2Ntk(s, a) as follows,

kT∑
k=1

TkT
−τ1∑

t=1

βik (zt) ≤
kT∑
k=1

tk+1−1∑
t=tk

√
14S log (2NtkT )

max
(
1, N i

tk
(zt)

)
≤

kT∑
k=1

tk+1−1∑
t=tk

√
14S log (2NT 2)

max
(
1, N i

tk
(zt)

)
=

T∑
t=1

√
28S log (2NT 2)

max
(
1, N i

t (zt)
)

≤
√

56S log(2NT )

T∑
t=1

1√
max

(
1, N i

t (zt)
) .

(32)

where the second inequality in (32) is due to tk ≤ T for all episodes and the first equality is due to N i
t (s, a) ≤ 2N i

tk
(s, a).

Then similar to Ouyang et al. (2017), since N i
t (zt) is the count of visits to zt, we have

T∑
t=1

1√
max

(
1, N i

t (zt)
) =

∑
z

T∑
t=1

I{zt=z}√
max

(
1, N i

t (z)
)

=
∑
z

I{Ni
T+1(z)>0} +

Ni
T+1(z)−1∑
j=1

1√
j


≤
∑
z

(
I{Ni

T+1(z)>0} + 2
√
N i
T+1(z)

)
≤ 3

∑
z

√
N i
T+1(z).
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Since
∑
z N

i
T+1(z) ≤ T , we have

3
∑
z

√
N i
T+1(z) ≤ 3

√
SN

∑
z

N i
T+1(z) = 3

√
SNT . (33)

With (32) and (33) we get

2H

kT∑
k=1

tk+1−1∑
t=tk

βik (zt) ≤ 6
√
56HS

√
NT log(NT ) ≤ 48HS

√
NT log(NT ).

Then we can bound the (30) as follows,

kT∑
k=1

tk+1−1∑
t=tk

βik (zt) ≤ 24S
√
NT log(NT ) + 2SA(T1 + kT − τ1 − 1). (34)

Choose the δ = 1/T in Lemma D.4, and based by Lemma 5.4, we obtain that

P
(
P ik /∈ Bk

)
= P

(
P i∗ /∈ Bk

)
≤ 1

15Tt6k
.

Then we can obtain,

2Eθ∗
[
kT∑
k=1

Tk
(
I{θ∗ /∈Bk} + I{θk /∈Bk}

)]
≤ 4

15

∞∑
k=1

t−6
k ≤

4

15

∞∑
k=1

k−6 ≤ 1. (35)

Therefore we obtain

2HEθ∗
[
kT∑
k=1

Tk
(
I{θ∗ /∈Bk} + I{θk /∈Bk}

)]
≤ H. (36)

Therefore, we can obtain the bound for one arm as follows,

Eθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(∑
s′∈S

(
P i∗ (s

′ | zt)− P ik (s′ | zt)
)
v (s′, θk)

)]
≤ H + 4SNH(T1 + kT − τ1 − 1) + 48HS

√
NT log(NT ).

(37)

Next we consider the state transition of all arms. Recall that the states of all arms at time t is st. Because every arm evolves
independently, then the transition probability from state st to state st+1 is as follows,

P (st+1 | st, θ∗) =
N∏
i=1

P i∗
(
sit+1 | sit

)
,

where P i∗ is the true transition functions of arm i. Based by the Lemma D.3 and our assumption that all arms have the same
state space S, we can obtain

∑
st+1

|P (st+1 | st, θ∗)− P (st+1 | st, θk)| ≤
N∑
i

∥∥P i∗ (sit+1 | sit
)
− P ik

(
sit+1 | sit

)∥∥
1

≤ N
∥∥P i∗ (sit+1 | sit

)
− P ik

(
sit+1 | sit

)∥∥
1
.

(38)

Therefore, we can bound the R0
3 as follows:

R0
3 ≤ NH + 4SN2H(T1 + kT − τ1 − 1) + 48SNH

√
NT log(NT ). (39)
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Bounding R1
3. Based on the Proposition D.2, we know that∥∥∥b∗t − b̂t∥∥∥

1
≤ L1∥R∗ −Rk∥1 + L2 max

s
∥P ∗(s, :)− Pk(s, :)∥2 .

Note that the elements in the true transition matrix P ∗ and the sampled matrix Pk are between the interval (0, 1). Then
based on the facts about the norm, we know that

max
s
∥P ∗(s, :)− Pk(s, :)∥2 ≤ ∥P

∗ − Pk∥1 .

Therefore, we can bound the belief error at any time as follows:∥∥∥b∗t − b̂t∥∥∥
1
≤ L1∥R∗ −Rk∥1 + L2∥P ∗ − Pk∥1. (40)

Recall in the confidence for Mk, the error bound is the same for ∥R∗ −Rk∥1 and ∥P ∗ − Pk∥1, and based by the bound in
(34) and (35), we can bound the R1

3 as follows:

R1
3 ≤ HEθ∗

[
kT∑
k=1

tk+1−1∑
t=tk

(L1∥R∗ −Rk∥1 + L2∥P ∗ − Pk∥1)

]

≤ (L1 + L2N)HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk

(
2βik (zt) + 2

(
I{P∗ /∈Bk} + I{Pk /∈Bk}

))]
≤ 48(L1 + L2N)SH

√
NT log(NT ) + (L1 + L2N)H

+ 4(L1 + L2N)SNH(T1 + kT − τ1 − 1).

(41)

Bounding R2
3. Based on (34) and (35), we can bound R2

3 as follows,

R2
3 = S2HEθ∗

[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

∥R∗(· | s)−Rk(· | s)∥1

]

≤ S2HEθ∗
[
kT∑
k=1

tk+1−1∑
t=tk+τ1+1

(
2βik (zt) + 2

(
I{R∗ /∈Bk} + I{Rk /∈Bk}

))]
≤ HS2 + 4S3NH(T1 + kT − τ1 − 1) + 48HS3

√
NT log(NT ).

(42)

Combine the bound in (39), (41) and (42), we bound the term R3 as follows:

R3 ≤ 48(L1 + L2N)SH
√
NT log(NT ) + 4(L1 + L2N)SNH(T1 + kT − τ1 − 1)

+ (L1 + L2N)H +NH + 4SN2H(T1 + kT − τ1 − 1) + 48SNH
√
NT log(NT )

+HS2 + 4S3NH(T1 + kT − τ1 − 1) + 48HS3
√
NT log(NT )

= 48(L1 + L2N +N + S2)SH
√
NT log(NT ) + (L1 + L2N +N + S2)H

+ 4(L1 + L2N +N2 + S2)SNH(T1 + kT − τ1 − 1).

(43)

B.4. Bound R4

Lemma B.5. R4 satisfies the following bound

R4 ≤ 48(L1 + L2N +N + S2)Srmax
√
NT log(NT ) + (L1 + L2N +N + S2)rmax

+ 4(L1 + L2N +N + S2)SArmax(T1 + kT − τ1 − 1).
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Proof. We can rewrite the R4 as follows:

R4 = Eθ∗
[
kT∑
k=1

tk+1−1∑
tk+τ1+1

(∑
s

rk (s, at) b̂t(s)−
∑
s

r∗ (s, at) b
∗
t (s)

)]

≤ Eθ∗
[
T∑
t=1

(∑
s

rk (s, at) b̂t(s)−
∑
s

rk (s, at) b
∗
t (s) +

∑
s

rk (s, at) b
∗
t (s)−

∑
s

r∗ (s, at) b
∗
t (s)

)] (44)

where rk (s, at) =
∑
r rR

at
k (r | s) is the expect reward conditioned on the state s of pulled arm and at, when the reward

function is Ratk . And r∗ (s, at) =
∑
r rR

at
∗ (r | s) is the expect reward conditioned on the state s and at,with the true reward

function Rat∗ . The (44) is due to the add the term
∑
s rk (s, at) b

∗
t (s) and subtract it.

Denote

R0
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b̂t(s)−
∑
s

rk (s, at) b
∗
t (s)

)]
,

R1
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b
∗
t (s)−

∑
s

r∗ (s, at) b
∗
t (s)

)]
.

For R0
4,

R0
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b̂t(s)−
∑
s

rk (s, at) b
∗
t (s)

)]

= Eθ∗
[
T∑
t=1

(∑
s

rk (s, at) (b̂t(s)− b∗t (s))

)]

≤ rmaxEθ∗
[
T∑
t=1

(∑
s

∣∣∣b̂t(s)− b∗t (s)∣∣∣
)] (45)

where the last inequality is due to the fact rk (s, at) ≤ rmax.

For R1
4,

R1
4 = Eθ∗

[
T∑
t=1

(∑
s

rk (s, at) b
∗
t (s)−

∑
s

r∗ (s, at) b
∗
t (s)

)]

= Eθ∗
[
T∑
t=1

(∑
s

[rk (s, at)− r∗ (s, at)] b∗t (s)

)]

≤ Eθ∗
[
T∑
t=1

(∑
s

|rk (s, at)− r∗ (s, at)|

)]

≤ Eθ∗
[
T∑
t=1

(∑
s

∑
r

r |Ratk (r | s)−Rat∗ (r | s)|

)]

≤ SrmaxEθ∗
[
T∑
t=1

(
∥Ratk −R

at
∗ ∥1

)]

(46)

where the first inequality in 46 is due to b∗t (s) ≤ 1, rk (s, at)−r∗ (s, at) ≤ |rk (s, at)− r∗ (s, at)| and the second inequality
is due to

∑
r [R

at
k (r | s)−Rat∗ (r | s)] ≤ ∥Ratk −Rat∗ ∥1.

Based on the (41), we can bound the R0
4,

R0
4 ≤ 48(L1 + L2N)Srmax

√
NT log(NT ) + (L1 + L2N)rmax

+ 4(L1 + L2N)SNrmax(T1 + kT − τ1 − 1).
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Note that for any reward function R (r | z) in confidence setMk, the reward function satisfies,∑
r∈R

∣∣∣R (r | z)− R̂ik (r | z)
∣∣∣ ≤ βik(z)

Then based on (42), we get

R1
4 ≤ 48S2rmax

√
NT log(NT ) + 2S2Nrmax(T1 + kT − τ1 − 1) + Srmax.

Then we can obtain the final bound:

R4 ≤ 48(L1 + L2N + S)Srmax
√
NT log(NT ) + 4(L1 + L2N + S)SNrmax(T1 + kT − τ1 − 1)

+ (L1 + L2N + S)rmax

≤ 48(L1 + L2N +N + S2)Srmax
√
NT log(NT ) + (L1 + L2N +N + S2)rmax

+ 4(L1 + L2N +N + S2)SNrmax(T1 + kT − τ1 − 1)

where the last inequality is due to S ≤ N + S2.

B.5. The total regret

Next we bound the episode number.

Lemma B.6. (Bound the episode number) With the convention T1 =
⌈√

T+1
2

⌉
and Tk = Tk−1 + 1, the episode number is

bounded by kT = O(
√
T ).

Proof. Note that the total horizon is T . The length of episode k is Tk = T1 + k − 1. Then we can get,

T = T1 + T2 + ...+ TkT
= T1 + (T1 + 1) + ...+ (T1 + kT − 1)

= kTT1 + (1 + 2 + ...+ kT − 1)

= kTT1 +
kT (kT − 1)

2
.

(47)

Therefore,
k2T + (2T1 − 1)kT − 2T = 0. (48)

With the convention T1 =
⌈√

T+1
2

⌉
, then we can get kT = O(

√
T )

Denote C1 = L1 + L2N +N2 + S2, C2 = H + rmax and C3 = T1 + kT − τ1 − 1, then we can get the final regret:

RT = Regret(A) +R1 +R2 +R3 +R4

≤ τ1∆RkT +HkT + 48C1SH
√
NT log(NT ) + 4C1C3SAH + C1H

+ 48C1Srmax
√
NT log(NT ) + 4C1C3SArmax + C1rmax

≤ (τ1∆R+H)
√
T + 48C1S(H + rmax)

√
NT log(NT )

+ 4C1SA(rmax +H)
√
T + C1(H + rmax)

= 48C1C2S
√
NT log(NT ) + (τ1∆R+H + 4C1C2SN)

√
T + C1C2.

Thus, we get the final Theorem.
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Theorem B.7. Suppose Assumptions 3.1,3.2 hold and the Oracle returns the optimal policy in each episode. The Bayesian
regret of our algorithm satisfies

RT ≤ 48C1C2S
√
NT log(NT ) + (τ1∆R+H + 4C1C2SN)

√
T + C1C2,

where C1 = L1 +L2N +N2 +S2, C2 = rmax+H are constants independent with time horizon T , L1 = 4(1−ϵ1)2
Nϵ21ϵ2

, L2 =

4(1−ϵ1)2
ϵ31

, ϵ1 and ϵ2 are the minimum elements of the functions P ∗ and R∗, respectively. τ1 is the fixed exploration length
in each episode, ∆R is is the gap between the maximum and the minimum rewards, H is the bounded span, rmax is the
maximum reward obtain each time, N is the number of arms and S is the state size for each arm.

C. Posterior distribution
Note that we assume the state transition is independent of the action for each arm. Denote the states visited history
from time 0 till t of arm i as si0:t and the reward collected history is ri0:t. And the action history from time 0 to t is ai0:t.
Denote N i

s,s′

(
si0:t
)

as the occurence time of state evolves from s to s′ for arm i in the state history si0:t. Hence, if the
prior g (Pi(s, ·)) is Dirichlet

(
ϕis,s1 , . . . , ϕ

i
s,Si

)
, then after the observation of history si0:t, the posterior g

(
Pi(s, ·) | si0:t

)
is

Dirichlet
(
ϕis,s1 +N i

s,s1

(
si0:t
)
, . . . , ϕis,Si

+N i
s,Si

(
si0:t
))

(Ross et al., 2011).

Similarly, if the prior g (Ri(s, ·)) is Dirichlet
(
ψis,r1 , . . . , ψ

i
s,rk

)
, then after the observation of reward history ri0:t and si0:t ,

the posterior g
(
Ri(s, ·) | ri0:t, si0:t

)
is Dirichlet

(
ψis,r1 +N i

s,r1

(
si0:t, r

i
0:t

)
, . . . , ψis,rk +N i

s,rk

(
si0:t, r

i
0:t

))
, and N i

s,r is the
number of times the observation (s, r) appears in the history

(
si0:t, r

i
0:t

)
.

Here we drop the arm index and consider a fixed arm. For the unknown transition function, we assume its prior g0 (P ) =
f(P−ϵ11

1−Sϵ1 | ϕ). We consider this special prior is due to the minimum elements of the transition matrix is bigger than ϵ1. Next
we show the details that how to update the posterior distribution for unknown P and omit the details of unknown reward
function R.

g (P | a0:t−1, r0:t−1) =
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1)∫
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

=

∑
s0:t−1∈St P (r0:t−1, s0:t | P, a0:t−1) g(P )∫
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

=

∑
s0:t−1∈St g (P )

∏t
i=1 P (si | si−1)∫

P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

=

∑
s0:t−1∈St g (P )

[∏
s,s′(

P (s′|s)−ϵ1
1−ϵ1 )Nss′ (s0:t)

]
∫
P (r0:t−1, st | P, a0:t−1) g (P, a0:t−1) dP

.

,

where the last equality is due to the prior for unknown P is g0 (P ) = f(P−ϵ11
1−Sϵ1 | ϕ).

Next we show the Bayesian approach to learning unknown P and R with the history (a0:t−1, r0:t). Since the current state st
of the agent at time t is unobserved, we consider a joint posterior g (st, P,R | a0:t−1, r0:t) over st, P , and R (Ross et al.,
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2011). The most parts are similar to Ross et al. (2011), except for our special priors.

g (st, P,R | a0:t−1, r0:t−1) ∝P (r0:t, st | P,R, a0:t−1) g (P,R, a0:t−1)

∝
∑

s0:t−1∈St

P (r0:t, s0:t | P,R, a0:t−1) g(P,R)

∝
∑

s0:t−1∈St

g (s0, P,R)

t∏
i=1

P (si | si−1)R(ri | si)

∝
∑

s0:t−1∈St

g (s0, P,R)

∏
s,s′

(
P (s′ | s)− ϵ1

1− ϵ1
)Nss′ (s0:t)

×
[∏
s,r

(
R(r | s)− ϵ2

1− ϵ2
)Nsr(s0:t,r0:t−1)

]

where g (s0, P,R) is the joint prior over the initial state s0, transition function P , and reward function R; Nss′ (s0:t) is the
number of times the transition (s, s′) appears in the history of state-action (s0:t); and Nsr (s0:t, r0:t−1) is the number of
times the observation (s, r) appears in the history of state-rewards (s0:t, r0:t−1).

D. Technical Results
Proposition D.1. (Uniform bound on the bias span (Zhou et al., 2021)). If the belief MDP satisfies Assumption 3.1,3.2, then
for (J(θ), v(:, θ)) satisfying the Bellman equation (2), we have the span of the bias function span(v, θ) :=maxb,θ v(b, θ)−
minb,θ v(b, θ) is bounded by H , where

H :=
8
(

2
(1−α)2 + (1 + α) logα

1−α
8

)
1− α

, with α =
1− ϵ1
1− ϵ1/2

∈ (0, 1)

Proposition D.2. (Controlling the belief error (Xiong et al., 2022e)). Suppose Assumption 3.1,3.2 hold. Given (Rk, Pk),
an estimator of the true model parameters (R∗, P ∗). For an arbitrary reward-action sequence r̄t, āt, let b̂t(·, Rk, Pk) and
bt(·, R∗, P ∗) be the corresponding beliefs in period t under (Rk, Pk) and (R∗, P ∗) respectively. Then there exists constants
L1, L2 such that∥∥∥bt(·, R∗, P ∗)− b̂t(·, Rk, Pk)

∥∥∥
1
≤ L1∥Rk −R∗∥1 + L2 max

s
∥P ∗(m, :)− Pk(m, :)∥2 ,

where L1 = 4(1−ϵ1)2
Nϵ21ϵ2

, L2 = 4(1−ϵ1)2
ϵ31

, ϵ1 and ϵ2 are the minimum elements of the functions P ∗ and R∗, respectively.

Lemma D.3. (Lemma 13 in Jung et al. (2019)) Suppose ak and bk are probability distributions over a set [nk] for k ∈ [K].
Then we have ∑

x∈⊗K
k=1[nk]

∣∣∣∣∣
K∏
k=1

ak,xk
−

K∏
k=1

bk,xk

∣∣∣∣∣ ≤
K∑
k=1

∥ak − bk∥1 .

Lemma D.4. (Lemma 17 in Auer et al. (2008)) For any t ≥ 1, the probability that the true MDP M is not contained in the
set of plausible MDPsM(t) at time t is at most δ

15t6 , that is

P{M /∈M(t)} < δ

15t6
.
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