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 A B S T R A C T

Caching plays a crucial role in many latency-sensitive systems, including content delivery 
networks, edge computing, and microprocessors. As the ratio between system throughput and 
transmission latency increases, delayed hits in cache problems become more prominent. In real-
world scenarios, object access patterns often exhibit a non-stationary nature. In this paper, we 
investigate the latency optimization problem for caching with delayed hits in a non-stationary 
environment, where object sizes and fetching latencies are both non-uniform. We first find 
that given known future arrivals, evicting the object with the larger size, a higher aggregate 
delay due to miss and arriving the farthest in the future brings more gains in reducing latency. 
Following our findings, we design an online learning framework to make cache decisions 
more effectively. The first component of this framework utilizes historical data within the 
training window to estimate the object’s non-stationary arrival process, modeled as a mixture 
of log-gaussian distributions. Subsequently, we predict future arrivals based on this estimated 
distribution. According to these predicted future arrivals, we can determine the priority of 
eviction candidates using our defined rank function. Experimental results on four real-world 
traces show that our algorithm consistently reduces latency by 2% − 10% on average compared 
to state-of-the-art algorithms.

1. Introduction

Caching is very popular in many systems such as content delivery network (CDN) [1], wireless communication network [2], 
and recommendation systems [3]. When the requested content is available in the cache near the user, it results in a cache hit, 
reducing the user’s perceived latency. If the content is not in the cache, a cache miss occurs, requiring the content to be fetched 
from a remote server, significantly increasing latency. The capacity of a cache is typically much smaller than the total number of 
object types, making it essential to select which objects to store carefully. This allows users’ requests to be directly satisfied by their 
nearby caches as much as possible, without the need to retrieve them from elsewhere. In other words, this directly relates to the 
metric known as the hit ratio, defined as the proportion of user requests that are directly satisfied by the cache. In recent years, 
numerous studies [4–11] have focused on improving the hit ratio, operating under the assumption that the subsequent request for 
a missed object suffers zero delay. The assumption shows that the delay in retrieving missing requests from the remote server is 
negligible compared to the time interval between two consecutive requests for the same object. However, the assumption of zero 
delay becomes unrealistic, particularly in high-throughput systems where multiple requests for the same object can occur before it 
is retrieved from the remote server. For example, the fetching time might be greater than 100 ms to retrieve the missing content 
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from the remote server, while about 1 million requests for objects are sent during the fetching process [12]. The latency experienced 
by these subsequent requests during the fetching process becomes increasingly significant as the ratio between system throughput 
and latency evolves larger.

The unrealistic assumption of zero delay has inspired the exploration of novel algorithms to optimize the latency in cache 
problems. The concept of the delayed hit is first proposed in [13], which claims that during the period when a missing file is being 
retrieved from the remote server, the subsequent requests for this file are queued to be satisfied until the missed object is fetched. 
Thus, the subsequent requests suffer delayed hits. The experiment further revealed that traditional algorithms aimed at maximizing 
hit ratio do not effectively reduce latency, demonstrating that optimizing hit ratio and latency in the presence of delayed hits are 
not equivalent. The heuristic algorithms incorporated with existing algorithms LRU and LHD [14] are further proposed to optimize 
the total latency with delayed hits when the size and latency of requests are uniform. The lower bound of caching with delayed hits 
for deterministic solutions is introduced in [15]. [16] accounts for variations in request sizes and assumes the request arrival process 
follows a Poisson distribution. Under this assumption, the expression for the mean latency experienced by requests for a particular 
object is derived as a weighted sum of cache miss latency and delayed hit latency. Building on this, a novel timer-based ranking 
function is proposed to reduce overall latency. The online caching problem with delayed hits and bypassing is addressed in [12], 
where user requests can be bypassed and served directly by the remote server. [12] argues that estimating total latency due to a 
miss in [13] is aggressive while using the upper bound of fetch latency is conservative. To balance these approaches, they propose a 
well-defined combination of aggregate delay and upper bound to estimate the weight of each object, achieving a trade-off between 
the two methods. By continuously learning the weights of different objects, traditional algorithms can also effectively address the 
issue of delayed hits.

Although the aforementioned work addresses the issue of delayed hits in caching and proposes algorithms to minimize overall 
latency in various scenarios, several essential aspects of delayed hits still warrant further consideration. Firstly, the size of objects in 
real-world traces can go beyond eight orders of magnitude [5]. Thus, the fetching delay of various objects could be quite different, 
and assuming that the latency for all missing requests is identical in [13] does not fully reflect the real-world scenario. Although it is 
assumed that request sizes vary in [12], its method for estimating object weights cannot effectively differentiate between objects with 
equal weights but different sizes. What is more, the real-world requests are often non-stationary, and regular stochastic processes 
such as the Poisson process [16] cannot characterize its features thoroughly. The above considerations inspire us to ask the following 
question in this paper:

 For caching with delayed hits when the size and latency of objects are both non-uniform, can we design an online algorithm that shows 
superior performance over the existing algorithms in a non-stationary environment?

To answer this question, we first focus on the offline scenario that assumes the total request sequences are known. We find 
that evicting the object with higher aggregate delay caused by a miss, arriving farthest in the future, and with a larger object 
size can further reduce latency. Following the insights from our findings, we design an online learning framework with recurrent 
neural network (RNN) and multilayer perception (MLP) to learn the objects’ non-stationary arrival process, which is modeled as 
a mixture of log-gaussian distributions. The combination of RNN and a mixture of log-gaussian distribution can approximate any 
non-stationary arrival process [17]. The learned arrival process enables us to predict future arrivals and make cache evictions based 
on future predictions. In summary, our contributions in this paper are as follows:

• For the scenario where all request sequences are known, we find that evicting the object with a larger size that suffers the 
higher aggregate delay due to missing and will arrive the farthest in the future offers a new insight to reduce latency. (see 
Section 3)

• Inspired by our findings, we develop an online learning framework to learn the arrival process, which is modeled as a mixture 
of log-normal distributions. We can generate future arrival predictions by continuously sampling from these learned mixture 
distributions and stacking the samples. Using these predicted future arrival times, we can establish the priority of eviction 
candidates based on our defined ranking function. (see Section 4)

• We conduct simulations on a synthetic dataset and four real-world traces. The results show that compared with the state-
of-the-art algorithms considering delayed hits, our algorithm consistently reduces latency by 2%–10% on average. (see 
Section 5)

The rest of this paper is structured as follows. Section 2 discusses the related work, including cache algorithms and delayed hits. 
In Section 3, we model the delayed hits and show our findings motivated by a toy example. Then, we propose our learning framework 
in Section 4. Moreover, in Section 5, we set up our experiment and discuss the simulation results. Section 6 gives conclusions.

2. Related work

2.1. Cache algorithm

The term cache was first introduced in computer systems to describe a type of memory that can be accessed rapidly but typically 
has limited capacity [18]. Even small caches can significantly enhance system performance by exploiting the correlation in memory 
access patterns. Over time, caching has become widespread across various domains, including content delivery networks [19], edge 
computing [20], recommendation systems [3], and web pages [21], among others. However, due to the cache’s limited capacity, it 
can only store a small subset of all possible objects, making it necessary for caching algorithms to decide which contents to retain. 
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When a request arrives, if the requested object is found in the cache, it results in a hit; otherwise, it is a miss. In the case of a miss, 
the object must be retrieved from a remote server or neighboring caches, leading to additional processing overhead and longer 
response times, which can degrade the Quality-of-Service and overall system performance. The primary metric used to evaluate a 
caching algorithm is the hit ratio, defined as the proportion of requests directly served by the cache.

To determine what to store in the cache, caching algorithms must be particularly attuned to the characteristics of the request 
arrival process. Some traditional studies assume requests follow the well-known Independent Reference Model (IRM), where content 
requests are independently drawn according to static (stationary) probabilities. Under this assumption, numerous algorithms have 
been proposed to maximize the hit ratio, as seen in works such as [7–11]. However, it has become evident that the assumption of 
static request probabilities does not accurately reflect real-world scenarios [22]. In practice, requests that are frequent during one 
time period may become infrequent or even vanish in the next, while new content requests continuously emerge. Consequently, 
the arrival characteristics of requests are often non-stationary. To address this, some studies have specifically designed caching 
algorithms tailored for non-stationary request arrival processes [23–25].

Over the years, numerous caching algorithms have been proposed to utilize various object features for improved cache decision-
making. Different LRU variants [26–28] apply diverse interpretations of recency to determine eviction candidates. Some algorithms 
combine both frequency and recency to rank the objects in unique ways [29,30], while others factor in both frequency and 
object size. Some studies design caching algorithms within the framework of online learning. By modeling the caching problem 
as an online learning task, they develop algorithms using techniques such as online gradient descent [31–33] or the follow-the-
perturbed-leader approach [34,35], among others. With the rise of neural network technology, people have also begun to design 
caching algorithms based on machine learning [5,36–42]. Several studies have focused on predicting an object’s features, including 
residual time [5,36–39] and object popularity [43,44]. By accurately predicting residual time, the cache algorithm can approximate 
Belady’s algorithm [45], which optimally evicts the object that will arrive the furthest in the future. Several studies have employed 
reinforcement learning to select among multiple simple cache algorithms. For instance, LeCaR [46] utilizes two cache algorithms 
including LRU and LFU. LeCaR can follow the cache decision made by LRU or LFU each time according to the different weights 
of these two algorithms. Another work models the request probability distribution and bases its decisions on this distribution. For 
example, LHD [14] utilizes the request probability distribution to compute hit density (hits per space consumed) as a criterion for 
eviction. Specifically, LHD learns the request probability as a function of object age and then adjusts this probability by considering 
the object’s size to determine the hit density.

Some recent studies have considered scenarios involving variable object sizes. Greedy Dual Size Frequency (GDSF) [29] is among 
the first algorithms to consider size when making cache replacement decisions by combining recency, frequency, cost, and size. It 
assigns each item a dynamic score based on these factors and removes the items with the lowest scores when adding new content. 
Recently, three notable size-aware caching strategies have been proposed: AdaptSize [47], LHD [14], and LRB [5]. AdaptSize adopts 
a probabilistic, size-based admission policy where larger items are less likely to be admitted than smaller ones. Specifically, it utilizes 
Markov models to refine and optimize the admission process. LHD [14] introduces the concept of hit density, which combines 
frequency and size metrics to evaluate each object’s contribution. It estimates the hit density for each item and filters out those that 
have minimal impact on the cache’s overall hit ratio. LRB [5] is an advanced cache replacement policy designed to maximize hit 
ratios and reduce bandwidth consumption in CDN. It introduces a variant called relaxed Belady, where the algorithm evicts objects 
whose next access occurs beyond a defined Belady boundary. The LRB policy employs machine learning techniques to emulate the 
relaxed Belady algorithm, which has proven to be both practical and highly effective in achieving superior hit ratios. In addition, 
by making minimal modifications to the popular TinyLFU [48] admission policy to handle variable-sized items, [49] significantly 
improves the overall hit ratio under variable object sizes.

2.2. Delayed hit

Many existing algorithms typically assume that user-perceived latency is negligible (i.e., zero latency) in case of a cache miss. 
Although this assumption is common in the literature, recent studies suggest that assuming zero latency can degrade the caching 
algorithms’ performance when the goal is to minimize user-perceived latency [13,16]. The delayed hit is first proposed in [13] and 
the authors find that in the scenario of delayed hit, the goal of optimizing the hit ratio in traditional work is not equivalent to 
minimizing delay. The authors point out that as the ratio of network throughput to fetch delay becomes larger and larger, the delay 
hit problem becomes more prominent in many scenarios such as CDN [19]. For offline scenarios, the authors propose a near-optimal 
algorithm based on Minimum-Cost Multi-Commodity Flow (MCMCF) [50]. For online scenarios, the authors propose a new ranking 
function that takes into account the aggregate delay caused by a miss and the time interval from the current time to the next arrival 
time. However, the authors do not consider the effect of object size on the caching decision when designing the algorithm. The 
work in [16] considers scenarios with different request sizes while assuming that the objects’ arrival process follows the stationary 
Poisson distribution. The authors derive the expression of the mean latency experienced by a specific content theoretically. Based 
on this expression, a new ranking function is given, which combines the arrival rate of the content, the aggregate delay caused 
by a miss, and the size of the request. The author [12] claims that the method of predicting the actual aggregate delay in [13] is 
radical, and they estimate the actual aggregate delay as the combination of the average aggregate delay of all the past requests and 
the upper bound of the total latency caused by the object’s miss. Then, the existing general file caching algorithms can handle the 
delayed hits by constantly updating the weight of each requested file, which is this novel estimation.

2.3. Arrival process estimation

Estimating arrival processes is crucial for many systems, including content delivery networks [44,51,52] and transportation 
systems [53–55] and so on. In content delivery networks, much of the existing works assumes a Poisson arrival  process [8,10,56–60], 
3 
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Fig. 1. An example of a cache-enabled network, where the hit, miss, and delayed hits occur.

estimating the arrival process essentially an estimation of the arrival rate. A straightforward way to do this is by taking the reciprocal 
of the average historical inter-arrival time, which is an unbiased estimator [61]. [44] does not directly estimate the distribution 
of inter-arrival times; instead, it employs a Long Short-Term Memory (LSTM) framework that uses historical request arrivals to 
predict future arrivals for maximizing the hit ratio. [62] proposes a survival-based approach using RNN to directly model inter-
arrival times and partially observed information, outputting the parameters of distribution instead of point estimates for predicting 
purchase patterns across multiple products. [55] implies the Pareto distribution to fit the inter-arrival time distribution and then 
derives the hit ratio expression in the vehicular edge caching problem. [63] proposes fitting unknown inter-arrival time distributions 
with a mixture of Gamma distributions and then learning the mixture parameters. [51] approximates the system’s average age of 
information (AoI) using the first and second-order moments of unknown inter-arrival time distributions since moments are easier to 
obtain via counting and statistics. [52] focuses on estimating Transmission Control Protocol (TCP) flow inter-arrival times by fitting 
them to a Weibull distribution; a window-based approach then detects anomalies through significant deviations in the Weibull 
parameters. [53] collects passenger inter-arrival data from multiple subway stations, fits eight distributions (including the newly 
introduced Hyper-Erlang distribution, HErD) via maximum likelihood estimation, and identifies HErD as the best-fitting model; 
an improved parameter estimation method—-based on long-term peak-hour volume and peak-hour factor—is further proposed to 
forecast future inter-arrival distributions for capacity design.

3. Modeling delayed hits and motivation

3.1. Delayed hits

We consider a cache-enabled network where there is a user, a local cache close to the user, and a remote server far away from 
the user. Time is divided into units of size, and there is only one request in each time slot. Denote the size of each object 𝑖 as 𝑠𝑖, 
and the delay to fetch object 𝑖 from the remote server when a miss occurs is 𝑑𝑖. For the request 𝑟𝑡𝑖 for object 𝑖 at time 𝑡, there are 
three cases to handle it:

• Hit. If 𝑟𝑡𝑖 is already in the local cache, then it can be served immediately with no latency.
• Miss. If not, it will experience a delay of 𝑑𝑖 in retrieving this object from the remote server.
• Delayed Hit. If 𝑟𝑡𝑖 is already in the fetch process, then it is queued to be served until the object is fetched into the cache. 
Assume the last missing time before time 𝑡 for content 𝑖 is 𝑡′. Thus, the corresponding latency of 𝑟𝑡𝑖 is 𝑡′ + 𝑑𝑖 − 𝑡.

It can be seen that all the same requests for object 𝑖 arrive during [𝑡′, 𝑡′ + 𝑑𝑖
) suffer delayed hits. We denote the 𝐷𝑖 as the aggregate 

delay to capture the total latency caused by a miss for object 𝑖 as follows: 

𝐷𝑖 = 𝑑𝑖 +
∑

1≤𝜏≤𝑑𝑖−1

(

𝑑𝑖 − 𝜏
)

I(𝑟𝑡+𝜏 = 𝑖), (1)

where 𝑟𝑡+𝜏 is the requested object at time 𝑡 + 𝜏 and I(𝑟𝑡+𝜏 = 𝑖) equals one if the requested object is 𝑖. In fact, the aggregate delay 
defined in (1) is related to time 𝑡. However, for the sake of simplicity, we do not explicitly include 𝑡 in the definition of 𝐷𝑖. Once 
the missed object is retrieved, we should decide which cached object to evict to make room for the new one. The goal is to reduce 
the total latency suffered by all requests.
4 
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Fig. 2. A toy example considering objects A, B, C and D.

The delayed hits are illustrated in Fig.  1. We assume the miss latency between the cache and the remote server is 3us. As can 
be seen, the requests that arrive at 𝑡 = 1𝑢𝑠 and 𝑡 = 2 are all hits because the cache stores B and C. The first request for object A at 
time 𝑡 = 3 is a miss due to it not being cached in the local cache. The miss triggers the fetching A from the remote server, which 
will take some time. Therefore, the successive requests for A arriving at 𝑡 = 4 and 𝑡 = 5 suffer the delayed hits. Object A is fetched 
back at time 𝑡 = 6, resulting in a true hit.

3.2. Motivation

Given precise knowledge of future requests, how should we design a caching strategy to efficiently reduce latency? Let us first 
consider a simple example illustrated in Fig.  2. The cache capacity is 3, and we consider four objects—A, B, C, and D—with sizes of 
3, 3, 2, and 1, respectively. The fetch latencies for missing objects A, B, C, and D are also 3, 3, 2, and 1, respectively. In the future, 
object A will be requested once after five time slots. Object B will be requested two times consecutively after ten time slots, while 
object C will be requested twice in succession after six time slots. Finally, object D will be requested once after eight time slots. If 
the first request for object B results in a cache miss, the subsequent request will experience a delayed hit, leading to an aggregate 
delay of 5. Similarly, the aggregate delays for requests to objects A, C, and D are 3, 3, and 1, respectively.

The question is which object to cache at the current time, assuming we retain the cached object until its next request. If we 
cache object A or B, the cache will be fully occupied, leaving no room for other objects. However, if we cache object C, there will 
be enough space to also store object D. A key insight is that cache policies must consider both (i) the total delay an object will 
incur if its first request results in a miss and (ii) the resources it consumes, including the cache space it occupies and the duration 
it remains in the cache. For example, caching object A would reduce an aggregate delay of 5, but it would remain in the cache for 
five time slots, saving an average of 35  units of delay per time slot. Similarly, caching object B saves an average of 

5
10  units of delay 

per time slot, while caching object C yields an average of 36  units of delay per time slot. Additionally, because of C’s smaller size, 
object D can be cached alongside it, saving 18  units of delay on average. Caching A is more efficient when the object size is not 
considered; however, once the object size is factored in, caching C becomes more efficient.

The toy example in Fig.  2 inspires us to cache evict the object with higher aggregate delay due to miss, arrive the farthest in the 
future, and larger size when the cache is full. Thus, we propose a rank function as follows, 

𝑓𝑖 =
𝐷𝑖
𝑅𝑖𝑠𝑖

, (2)

where 𝐷𝑖 is the sum of the delay due to miss and any delayed hits when the object is being fetched, 𝑅𝑖 is the interval from the 
current time 𝑡 to the next request arrival (i.e., residual time), and 𝑠𝑖 is the size of content 𝑖. We evict the cached object with the 
smallest rank when eviction is needed. Compared to [13], we consider the impact of object size on caching decisions. The idea is 
similar to the Belady algorithm [45], which evicts the object that arrivals farthest in the future when eviction is needed and has 
proven to be offline optimal with uniform object size and no delayed hits. The effectiveness of evicting objects based on (2) with 
the known future requests is illustrated in Sections 5.2 and 5.3.

Remark 1 (Offline Optimal Algorithm). The offline algorithm that addresses delayed hits in cache, while accounting for different 
object sizes, remains an open problem. One promising approach is to utilize the Minimum-Cost Multi-Commodity Flow (MCMCF) 
method [50]. However, requests of variable sizes introduce different latencies. Consequently, the time that the missed contents 
5 
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Fig. 3. Overview of our online learning framework.

are fetched from the remote server (i.e., the decision-making time) may not align precisely with the order in which the requests 
arrive. This discrepancy may necessitate the addition of new auxiliary edges or constraints to construct an appropriate flow graph. 
Overall, developing an offline optimal algorithm that accounts for delayed hits with different object sizes deserves further research. 
While studying offline optimal solutions can provide upper bounds, these solutions are impractical for real-time applications since 
the optimal decision for a request is unavailable unless the process for the entire request trace is completed. Our proposed offline 
algorithm overcomes this limitation by utilizing only near-future (a window related to miss latency) information to make informed 
decisions.

4. Our online learning framework

The rank function in Eq.  (2) considers the aggregate delay due to a miss, the residual time, and the object size simultaneously 
when making evictions. The aggregate delay and residual time both depend on the future arrivals. However, the exact knowledge 
of future requests is often unknown in practice. Thus, we need to predict the objects’ future arrivals and then resort to Eq.  (2) to 
make evictions. Following this idea, we propose an online learning framework depicted in Fig.  3 to predict future arrivals and make 
cache decisions based on the predictions, which consists of two major components:

• Arrival Process Estimation uses the features extracted from the train window (including the age information, object size, and 
history embedding) to estimate the object’s arrival process. Specifically, we use the combination of RNN and MLP to learn the 
parameters of objects’ arrival process.

• Rank Calculation and Cache Eviction first samples the eviction candidates from the cache objects and makes the objects’ 
future arrivals prediction based on the estimated arrival process. Then, compute the rank of eviction candidates based on our 
proposed rank function. Finally, evict the objects with the lowest rank to insert the fetched object into the cache.

This paradigm in Fig.  3 is widely used in modern machine learning algorithm applications [5,38] and has demonstrated good 
performance. For instance, LRB [5] predicts the future arrival time of requests by learning from historical arrival patterns and 
mimics the offline optimal algorithm Belady by evicting requests with the furthest future arrival time. OA-cache [38] leverages a 
temporal convolutional network to model both long-term and short-term dependencies between content requests within the training 
window. It subsequently applies an imitation learning framework to estimate the eviction probability distribution, approximating 
the oracle policy using the learned dependencies. Following this approach, we also learn request patterns from historical data and 
make decisions based on the learned characteristics. However, we introduce a specialized design to address the problem of delayed 
hits. It is important to note that the arrival process estimation module requires training two separate RNN and MLP networks to 
estimate the distributions of inter-arrival and residual time, respectively.
6 
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4.1. Arrival process estimation

4.1.1. Model the arrival process
Let {0 < 𝑇𝑖,1 < 𝑇𝑖,2 < ⋯

} represent the successive time slots when object 𝑖 is requested independently. Define the inter-arrival 
time 𝑋𝑘

𝑖 = 𝑇𝑖,𝑘 − 𝑇𝑖,𝑘−1 for 𝑘 ≥ 2 and 𝑋1
𝑖 = 𝑇𝑖,1. Define the residual time at time 𝑡 as 𝑅𝑡

𝑖 = 𝑇𝑖,𝑘 − 𝑡 for 𝑇𝑖,𝑘−1 < 𝑡 < 𝑇𝑖,𝑘. For 𝑡 > 0, 
define 𝑡

𝑖 =
{

𝑇𝑖,𝑘, 𝑘 ≥ 1  : 𝑇𝑖,𝑘 < 𝑡
} as the history of the point process {𝑇𝑖,𝑘

}

𝑘 in [0, 𝑡). Let 𝑝(𝑋𝑖) denote the density distribution of the 
inter-arrival time 𝑋𝑘

𝑖  for object 𝑖. The arrival times of requests for the same object are independent. At the same time, the arrival 
processes for different objects are also independent of each other. It is common to assume that the arrival process of each object 
is independent of each other, such as [17,64]. Let {0 < 𝑇1 < 𝑇2 < ⋯

} be the arrival process resulting from the superposition of 
{

𝑇𝑖,𝑘
}

𝑘 , 𝑖 = 1,… , 𝑛. We do not make particular stationary assumptions about the point process {𝑇𝑖,𝑘
}

𝑘, such as poisson process [16] 
and it can be a non-stationary pattern which changes slowly with time. The non-stationary means that 𝑝(𝑋𝑖) can be time-varying 
for all object 𝑖 ∈ 𝑛.

As discussed in Section 3.2 and illustrated in Fig.  3, it is essential to predict both the residual time and the future arrival time 
sequence. These two factors depend on the residual time distribution and the inter-arrival time distribution. Consequently, it is 
crucial to model and accurately estimate these distributions. We employ the mixture of log-gaussian distribution to model these two 
processes separately similar to [6]. The residual time 𝑅𝑡

𝑖 at the current time 𝑡 is indeed a conditional distribution that depends on 
age, size, and arrival history. In particular, we model 𝑅𝑡

𝑖 for the content 𝑖 as follows: 

𝑝(𝑅𝑡
𝑖 ∣ 𝑠𝑖, 𝑎

𝑡
𝑖,

𝑡
𝑖 ) =

𝐾
∑

𝑘=1

𝜔𝑘
𝑖

𝑅𝑡
𝑖𝜎

𝑘
𝑖

√

2𝜋
exp

⎛

⎜

⎜

⎝

−

(

log𝑅𝑡
𝑖 − 𝜇𝑘

𝑖
)2

2(𝜎𝑘𝑖 )2

⎞

⎟

⎟

⎠

(3)

where 𝐾 is the number of mixture components, 𝜔𝑘
𝑖 , 𝜇

𝑘
𝑖 , and 𝜎𝑘𝑖 , respectively, represent the weight, mean, and the standard deviation 

of the 𝑘th Gaussian component. The term 𝑎𝑡𝑖 is the time interval between the current time 𝑡 and the last arrival time of content 
𝑖 (i.e., age). For clarity of readability, we use 𝑝(𝑅𝑡

𝑖) to represent the distribution of residual time 𝑅𝑡
𝑖. Similarly, we model the 

inter-arrival time distribution 𝑝(𝑋𝑡
𝑖 ) as the mixture of log-normal processes.

4.1.2. Learning arrival process
We learn the residual time distribution 𝑝(𝑅𝑡

𝑖) and inter-arrival time distribution 𝑝(𝑋𝑡
𝑖 ) for all objects similar to [6]. We use the 

samples collected within the training window to learn the request arrival process. After receiving a number of requests equal to the 
size of the training window (since the last training), we retrain the model to adapt to changes in the arrival process. In other words, 
we train the model periodically to update the estimated 𝑝(𝑅𝑡

𝑖) and 𝑝(𝑋𝑡
𝑖 ). Next, we demonstrate the learning process for 𝑝(𝑋𝑡

𝑖 ); the 
method for learning 𝑝(𝑅𝑡

𝑖) is analogous. The input to this framework includes the historical inter-arrival times 𝑡
𝑖 , the object size 𝑠𝑖, 

and the time elapsed from the last arrive time 𝑎𝑡𝑖 (i.e., age). In particular, we firstly utilize a single-layer RNN to capture temporal 
dependencies by embedding the historical inter-arrival times into a fixed-dimensional vector 𝒉𝑡𝑖 = RNN

(

𝑋𝑡−1
𝑖 ,𝒉𝑡−1𝑖

)

. Then the triple 
𝒙 =

{

𝒉𝑡𝑖, 𝑠𝑖, 𝑎
𝑡
𝑖
} including hidden state 𝒉𝑡𝑖, object size 𝑠𝑖, and age 𝑎𝑡𝑖 are used as inputs to the three-layer fully connected MLP to learn 

the parameters 𝜙𝑖 =
[

𝝎𝒊,𝝁𝒊,𝝈𝒊
] of 𝑝(𝑋𝑡

𝑖 ). The parameters 𝜙𝑖 is obtained as follows, 

𝝎𝒊 = sof tmax
(

𝑾 𝜔𝒄 + 𝒃𝜔
)

𝝁𝒊 = 𝑾 𝝁𝒄 + 𝒃𝜇 𝝈𝒊 = exp
(

𝑾 𝜎𝒄 + 𝒃𝜎
)

, (4)

where 𝒄 is the output of MLP, 
𝒄 = ReLU

(

𝑾 2 ReLU
(

𝑾 1𝒙 + 𝒃1
)

+ 𝒃2
)

, (5)

and 𝜽 =
{

𝑾 1,𝑾 2,𝑾 𝜔,𝑾 𝝁,𝑾 𝜎 , 𝒃1, 𝒃2, 𝒃𝜔, 𝒃𝜎 , 𝒃𝜇
} are the parameters that need to be learned. Note that the exp operation ensures 

that the parameters 𝝈𝒊 are in the range (0,+∞).
Assuming the length of the training window is 𝑇 , there are 𝑀 different objects within the training window. For object 𝑖, we 

assume there are a total of 𝑘 historical inter-arrival time [𝑋1
𝑖 , 𝑋

2
𝑖 ,… , 𝑋𝑘

𝑖
] and the last arrival time is 𝑡𝑘+1𝑖 . In this subsection, we 

redefine the term 𝑘 to represent the number of arrival time intervals, replacing the previously used definition. At time 𝑡, We train 
the neural networks by maximizing the log-likelihood and survival probability of object request sequences that happened during 
the training window. The specially introduced survival probability is used to solve the parameter estimation problem under data 
scarcity [6,65]. We find the optimal parameters by maximizing the following loss function: 

𝜽⋆ = max
𝜃

1
𝑇

𝑀
∑

𝑖=1

( 𝑘
∑

𝑗=1
log 𝑝

(

𝑋𝑗
𝑖 ∣ 𝜙𝑖

)

+ log Pr{𝑋𝑘+1
𝑖 > 𝑡 − 𝑡𝑘+1𝑖 ∣ 𝜙𝑖}

)

, (6)

where 𝜙𝑖 =
[

𝝎𝒊,𝝁𝒊,𝝈𝒊
] is the learned parameters for object 𝑖 and is determined by neural network parameters 𝜽, 𝑝

(

𝑋𝑗
𝑖 ∣ 𝜙𝑖

)

 is the 
likelihood of observing inter-arrival time 𝑋𝑗

𝑖  within the parameter 𝜙𝑖, the term 𝑋𝑘+1
𝑖  is sampled from our estimated inter-arrival 

time distribution, and Pr{𝑋𝑘+1
𝑖 > 𝑡− 𝑡𝑘𝑖+1 ∣ 𝜙𝑖} is the survival probability that the next inter-arrival time is greater than the survival 

time.
Similarly, we employ the same framework to learn the parameters of the inter-arrival time distribution 𝑝(𝑅𝑡

𝑖). It is important to 
note that we assume the arrival time interval distribution and the residual time distribution for a given object both follow a mixture 
log-Gaussian distribution, though their parameters differ. At the current time 𝑡, the residual time and age for object 𝑖 are related. 
Additionally, it is necessary to obtain samples of residual time from historical arrival requests. Our method is similar to the approach 
described in [6], and the core idea of obtaining residual time samples from historical arrival intervals is based on sampling. Using 
object 𝑖 as an example, we outline how to obtain its residual time samples. Recall that there are 𝑘 historical inter-arrival time  for 
7 
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object 𝑖 and the set is [𝑋1
𝑖 , 𝑋

2
𝑖 ,… , 𝑋𝑘

𝑖 ]. Specifically, for the first interval 𝑋1
𝑖 , we generate the age sample 𝑎1𝑖  by uniformly sampling 

within the range [0, 𝑋1
𝑖
]

. Then the corresponding residual time sample 𝑅1
𝑖  is 𝑋1

𝑖 − 𝑎1𝑖 . The same logic is applied to other intervals, 
and then we can obtain 𝑘 residual time samples. For the last incomplete arrival (from 𝑡𝑘+1𝑖  to 𝑡), we also apply a similar logic: we 
uniformly sample a value 𝑎𝑘+1𝑖  from the interval [0, 𝑡 − 𝑡𝑘+1𝑖

]

, and then the difference 𝑡 − 𝑡𝑘+1𝑖 − 𝑎𝑘+1𝑖  is used as the residual time. We 
then find the optimal parameters of the residual time distribution by maximizing the following loss function: 

𝜽⋆𝑹 = max
𝜽𝑹

1
𝑇

𝑀
∑

𝑖=1

( 𝑘
∑

𝑗=1
log 𝑝

(

𝑅𝑗
𝑖 ∣ 𝛹𝑖

)

+ log Pr{𝑅𝑘+1
𝑖 > 𝑡 − 𝑡𝑘+1𝑖 − 𝑎𝑘+1𝑖 ∣ 𝛹𝑖}

)

, (7)

where 𝛹𝑖 (including the weights, means and standard deviations) is the learned parameters for the residual time distribution of 
object 𝑖 and is determined by neural network parameters 𝜽𝑹, 𝑝

(

𝑅𝑗
𝑖 ∣ 𝛹𝑖

)

 is the likelihood of observing residual time 𝑅𝑗
𝑖  within the 

parameter 𝛹𝑖, the term 𝑅𝑘+1
𝑖  is sampled from our estimated residual time distribution, and Pr{𝑅𝑘+1

𝑖 > 𝑡 − 𝑡𝑘+1𝑖 − 𝑎𝑘+1𝑖 ∣ 𝛹𝑖} is the 
survival probability that the residual time is greater than the survival time minus age.

Remark 2 (Data Scarcity). In real-world, especially those with long-tailed distributions [66–68], a small number of popular contents 
account for the majority of requests, while the vast majority of contents are characterized by significantly fewer requests. For 
contents with small amounts of arrival, effective features may not be learned from this limited data. Traditional methods [69,70] 
that rely solely on the log-likelihood of observed intervals may risk overfitting to contents with abundant data while neglecting those 
with limited data. Therefore, we have to consider the issue of data scarcity when estimating parameters. In our estimation method, 
we use survival probability to solve this problem. The second term in our loss functions represents the survival probability of the 
next request arriving after a certain time interval, which serves as a critical regularization term that balances the estimation for 
both frequently and infrequently requested items similar to [6]. By incorporating survival probability, the model learns to map the 
history embeddings of infrequent objects to distributions where large residual times and inter-arrive time have higher probabilities. 
Therefore, our model can effectively generalize to infrequent objects, mitigating the impact of limited observations and improving 
its ability to estimate inter-arrival time and residual time distributions in data-scarce scenarios.

Remark 3 (Correlated Arrival Process). Overall, our model effectively handles scenarios where the arrival process of individual objects 
exhibits dependencies. However, additional design is required to address situations where different arrival processes of objects are 
interrelated. Our model indeed captures temporal dependencies within the arrival process of each object. Specifically, the residual 
time distribution 𝑝 (𝑅𝑡

𝑖 ∣ 𝑠𝑖, 𝑎
𝑡
𝑖,

𝑡
𝑖
) incorporates the history of arrivals 𝑡

𝑖 , which allows the model to account for temporal patterns 
and dependencies inherent in the request behavior of each object. To extend our model to account for correlations between different 
objects, we can consider Graph Neural Networks (GNN) [71] as a feasible approach. Each object is represented as a node, and edges 
are established based on relationships such as co-occurrence or similarity. By employing architectures like Graph Attention Networks 
(GATs) [72], the model can dynamically weigh the influence of neighboring nodes, capturing both individual object behaviors and 
inter-object dependencies. The residual time distribution now depends on both the object’s history and the enriched embedding that 
captures inter-object correlations, which is defined as 𝑝

(

𝑅𝑡
𝑖 ∣ 𝑠𝑖, 𝑎

𝑡
𝑖,

𝑡
𝑖 ,𝐡

(𝐿′)
𝑖

)

 where 𝐡(𝐿′)
𝑖  is the final embedding after 𝐿′ GNN layers. 

This integration allows the model to effectively capture complex dependencies across objects, improving accuracy in scenarios with 
correlated arrival processes. However, integrating graph-based models to capture inter-object correlations increases computational 
complexity and poses scalability challenges with large numbers of objects. Constructing accurate graphs requires extensive domain 
knowledge and careful relationship selection, which can be time-consuming. Therefore, while extending the model to incorporate 
inter-object correlations is a promising direction, it necessitates additional careful design to address these complexities.

4.2. Rank calculation and cache eviction

We can predict future arrivals with estimated 𝑝(𝑅𝑡
𝑖) and 𝑝(𝑋𝑡

𝑖 ) after training. Following (2), we propose the rank function based 
on objects’ future arrival prediction as follows, 

𝑓𝑖 =
𝐷̂𝑖

𝑅̂𝑖𝑠𝑖
, (8)

where 𝐷̂𝑖 and 𝑅̂𝑖 is the estimated aggregate delay for the next request to content 𝑖 and the estimated residual time of content 𝑖, 
respectively. The specific process for rank calculation is as follows. Firstly, we sample residual time 𝑅̂𝑖 from 𝑝(𝑅𝑡

𝑖) and take the sum 
of 𝑅̂𝑖 and current time 𝑡 as the first arrival time 𝑇̂𝑖,1 in the future. Then, we sample from 𝑝(𝑋𝑡

𝑖 ) and take the sum of the sampled value 
and the first arrival time 𝑇̂𝑖,1 as the second arrival time 𝑇̂𝑖,2 in the future. We repeat this process until we obtain the set of future 
arrival time 𝜏 =

{

𝑇̂𝑖,1, 𝑇̂𝑖,2,… , 𝑇̂𝑖,𝑘−1, 𝑇̂𝑖,𝑘
}

, where 𝑇̂𝑖,𝑘 ≥ 𝑇̂𝑖,1 + 𝑑𝑖 and 𝑇̂𝑖,𝑘−1 < 𝑇̂𝑖,1 + 𝑑𝑖. Next, we assume 𝑇̂𝑖,1 is a miss and calculate the 
total aggregate latency 𝐷̂𝑖 for arrival time set 𝜏. Then, we can calculate the rank function using 𝐷̂𝑖 and 𝑅̂𝑖 based on (8). For object 
𝑖, the pseudocode to calculate its rank is presented in 1. In lines 5–9 of Algorithm 1, we predict and store the future arrival time of 
object 𝑖, while in lines 10–13, we compute its aggregate delay based on the set of predicted arrival time. Finally, we calculate the 
rank function of object 𝑖 in line 14.
8 
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Algorithm 1 Estimating the rank function of object 𝑖
1: Input: learned inter-arrival time distribution 𝑝(𝑋𝑡

𝑖 ∣ 𝜙𝑡
𝑖), learned residual time distribution 𝑝(𝑅𝑡

𝑖 ∣ 𝛹
𝑡
𝑖 ) , the miss latency 𝑑𝑖, the 

object size 𝑠𝑖, the current time 𝑡0
2: Initialization: the future arrival time recorder 𝜏 = ∅, 𝐷̂𝑖 = 0,𝑅̂𝑖 = 0; 
3: 𝑅̂𝑖 ∼ 𝑝(𝑅𝑡

𝑖 ∣ 𝛹
𝑡
𝑖 ) ⊳ sample the first residual time 

4: 𝑡 = 𝑡0 + 𝑅̂𝑖 ⊳ save the first future arrival time 
5: while 𝑡 < 𝑡0 + 𝑑𝑖 do 
6: 𝜏 ← 𝜏 ∪ 𝑡 ⊳  save the future arrival time in order 
7: 𝑋𝑖 ∼ 𝑝(𝑋𝑡

𝑖 ∣ 𝜙
𝑡
𝑖); ⊳ sample the inter-arrival time 

8: 𝑡 ← 𝑋𝑖 + 𝑡; ⊳ obtain the predicted arrival time
9: end while
10: for 𝑘 in 1, 2,… , |𝜏|  do 
11: 𝑡𝑘 = 𝑇̂𝑖,1 + 𝑑𝑖 − 𝑇̂𝑖,𝑘 ⊳  calculate the latency for 𝑘-th delayed hit 
12: 𝐷̂𝑖 ← 𝐷̂𝑖 + 𝑡𝑘
13: end for
14: calculate the priority score 𝑓𝑖 = 𝐷̂𝑖

𝑅̂𝑖𝑠𝑖
15: return: the priority score 𝑓 (𝑖) for object 𝑖

To reduce the error introduced by random sampling, we consider the probability that the rank of object 𝑖 is greater than that of 
any other cached objects, which is approximated as follows, 

𝑝𝑖 ≈

∑𝑄
𝑞=1 I

{

𝑓𝑖𝑞 > 𝑓𝑗𝑞 ,∀𝑗, 𝑗 ≠ 𝑖
}

𝑄
, (9)

where 𝑄 is the total sets of predicted arrival time, I{𝑓𝑖𝑞 > 𝑓𝑗𝑞 ,∀𝑗, 𝑗 ≠ 𝑖
} is 1 if the 𝑞th calculated rank of object 𝑖 is greater than the 

𝑞th calculated rank of any other objects and is 0 otherwise. When eviction is necessary, we randomly sample 𝑁 cached objects as 
eviction candidates. Subsequently, we conduct a batch prediction for all candidates to forecast their future arrivals and determine 
their respective probabilities. We then evict the object with the lowest probability and insert the fetched object into the cache.

The neural networks cannot initially learn the arrival processes of objects absent from the training set. For any such object 𝑖
absent from the training set, we define a heuristic rank 𝑓𝑖 = −𝑠𝑖 to determine its eviction. To adapt to the non-stationary request 
patterns, we employ a sliding window that leverages the latest arrival data. The neural network is retrained from scratch instead of 
updating its parameters after accumulating a fixed number of requests equal to the training window size 𝑇 . This retraining involves 
initializing the neural network parameters and solving the optimization problem defined in Section 4.1.2 to update the estimation 
of the arrival process. After retraining, the model jointly learns the neural network parameters and the arrival process parameters. 
The heuristic rank 𝑓𝑖 = −𝑠𝑖 prioritizes the eviction of larger objects. If a positive ranking function is used, these objects may become 
intermixed with other objects whose ranks are calculated using estimated distribution, making it difficult to ensure the quick eviction 
of objects with large sizes. Our experimental results also show that the negative sorting function we defined outperforms certain 
positive sorting functions (e.g., 𝑓𝑖 = 1

𝑠𝑖
).

Remark 4 (Complexity Discussion). In algorithm 1, for a particular content 𝑖, predicting the arrival times of future requests and 
calculating the aggregate latency are the most time-consuming operations. All other operations are completed in constant time with 
(1) time complexity. The prediction of future arrival times relies on the learned request arrival process. When the cardinality of 
the set of predicted arrival times is |𝜏|, the time complexity for prediction is (|𝜏|). Similarly, calculating the aggregate latency 
involves traversing the whole set of predicted arrival times, which also has a complexity of (|𝜏|). Based on our assumption that 
the request arrival process follows a mixture of log-normal distributions, the average inter-arrival time can be approximated by 
∑𝐾

𝑘=1 𝑤
𝑘 ⋅ 𝑒𝜇

𝑘+ (𝜎𝑘 )2
2 (omit content 𝑖 here) [73], resulting in overall time complexity of ( 𝑑

∑𝐾
𝑘=1 𝑤

𝑘⋅𝑒𝜇
𝑘+ (𝜎𝑘 )2

2

) for algorithm 1, where 𝑑

is the miss latency. The algorithm’s time complexity scales linearly with the cardinality of the set of predicted arrival times |𝜏|, 
which ensures efficient computations for moderate values of |𝜏| (i.e., low miss latency 𝑑). In cases with high miss latency, |𝜏| can 
become large, potentially impacting performance. Optimization techniques such as batching [74,75] or parallel processing [76,77] 
might be necessary in such scenarios. For example, parallel processing techniques, such as distributing rank computations across 
multiple CPU cores, can significantly decrease execution time by concurrently handling independent operations, thereby making 
our algorithm more scalable and efficient for high miss latency.

Remark 5 (Learning Process). To illustrate the whole learning process: at time 𝑡, the model is initially trained on the most recent 
𝑇  requests (forming window 𝑊1). Let M be the set of objects present in 𝑊1. This training yields models for the arrival process, 
specifically 𝑝 (𝑋𝑡

𝑖 ∣ 𝜙
𝑡
𝑖
) and 𝑝 (𝑅𝑡

𝑖 ∣ 𝛹
𝑡
𝑖
)

, for each object 𝑖 ∈ M. During the subsequent 𝑇  arrivals (window 𝑊2), the model uses these 
learned distributions to infer the arrivals for these known objects (𝑖 ∈ M). For any object 𝑖 ∉ M encountered during this 𝑊2 period, 
we assign a heuristic rank 𝑓𝑖 = −𝑠𝑖, prioritizing smaller objects for retention. Once the 𝑇  requests in 𝑊2 are processed, the model 
is retrained using the data from 𝑊2. This step incorporates objects that were present in 𝑊2 but absent in 𝑊1. Consequently, in 
subsequent time intervals, the model can infer arrivals for all objects encountered thus far (both original and newly learned) using 
their respective learned distributions, and their ranks are determined according to Eq. (8).
9 
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5. Evaluation

5.1. Methodology

Baseline algorithms. We consider the baseline algorithms, including LRU, LAC [16], CALA [12],RAVEN [6], ADAPTSIZE [47], 
LHD [14], LRB [5], LHDMAD [13], and LRUMAD [13]. The detailed description of these algorithms are as follows.

• LRU: The most recent used (arrival) time of each cached content is recorded. When the missed objects are fetched from the 
remote server, it will replace the least recently used objects with new ones if the cache is full.

• LAC [16]: This algorithm calculates the expected aggregated latency of all delayed hits in the fetch process under a Poisson 
process assumption and subsequently proposes a ranking function for each object as 𝑖 as 𝑓𝑖 =

𝜆𝑖𝐿𝑖
(

1+𝜆𝑖𝐿𝑖
)

(

2+𝜆𝑖𝐿𝑖
)

𝑠𝑖
, where 𝐿𝑖 is the fetch 

latency when the object 𝑖 is missed, 𝜆𝑖 is the arrival rate of object 𝑖 and 𝑠𝑖 is the object size. This algorithm uses the reciprocal 
of the average of past arrival time intervals as an unbiased estimate of the 𝜆𝑖. When new contents are fetched from the remote 
server, it will replace the content with minimum rank if the cache is full.

• CALA [12]: The algorithm calculates the aggregate delay as 𝑊𝑖 = (1 − 𝛾)𝐷𝑖 + 𝛾𝑑2𝑖 , which combines the upper bound of miss 
latency with the average cumulative delay of all previous requests for a specific object. The conservative parameter 𝛾 is used 
to get a trade-off between these two methods. Then, simulate an existing general file caching algorithm while continuously 
updating the weight of each requested object.

• LRUMAD [13]: The algorithm assumes that all past requests for a particular content were misses and calculates the average 
aggregate delay, 𝐷̂𝑖, per miss. Similar to the LRU algorithm, LRUMAD uses recency as an estimator for the residual time, 𝑅̂𝑖. 
The algorithm then maintains the rank for each content 𝑖 as 𝑓𝑖 = 𝐷̂𝑖

𝑅̂𝑖
. When new contents are fetched from the remote server 

to the cache, it will replace the content with minimum rank with new ones if the cache space is full.
• LHD [14]: Propose a novel metric named hit density to rank the objects, defined as 𝐻𝑖 =

ℎ𝑖
𝑠𝑖𝑙𝑖

 where ℎ𝑖 is the hit ratio of content 
𝑖, 𝑠𝑖 is the content size, and 𝑙𝑖 is its expected time in the cache. When eviction is necessary, LHD evicts the object with the 
lowest rank.

• LHDMAD [13]: The algorithm presumes that every past request for a given content in history resulted in a miss and computes 
the average aggregate delay per miss, expressed as 𝐷̂𝑖, per miss. Similar to the LHD algorithm [14], LRUMAD uses hit density as 
an estimator for the residual time, 𝑅̂𝑖. Subsequently, the algorithm maintains a rank for each content 𝑖, defined as 𝑓𝑖 = 𝐷̂𝑖

(𝑠𝑖𝑙𝑖)∕ℎ𝑖
. 

When new contents are fetched from the cloud to the cache, it will replace the content with minimum rank with new ones if 
the cache space is full.

• RAVEN [6]: Utilize the estimated objects’ arrival distributions to compute the probability of an object that arrives farther than 
any other objects in the cache. This algorithm does not consider the delayed hit and approximate the optimal Belady [45] to 
make evictions. When new contents are fetched from the contents to the cache, it will replace the content that is predicted to 
arrive farthest if the cache space is full.

• ADAPTSIZE [47]: The algorithm optimizes the cache hit ratio in scenarios with heterogeneous object sizes. It is based on a 
Markov chain to determine the optimal object size admission threshold, and when the cache is full, it uses the LRU algorithm 
for eviction.

• LRB [5]: It approximates the Belady algorithm by using Gradient Boosting Machines (GBM) to identify objects for eviction 
based on past access patterns. This approach implements a relaxed version of the Belady algorithm, evicting objects whose 
next request occurs beyond a specified threshold rather than those that are farthest in the future.

Notably, the algorithms LAC [16], CALA [12], LHDMAD [13], and LRUMAD [13] address the issue of delay hits, while 
RAVEN [6], ADAPTSIZE [47], LHD [14], and LRB [5] focus on maximizing cache hit ratios in environments with heterogeneous 
object sizes.

Simulation settings. The design of our algorithm includes numerous hyperparameters, such as the size of the training window, 
the number of log-Gaussian mixtures, the number of hidden layers, the learning rate, and others. The selection of these hyperparam-
eters significantly impacts the performance of our algorithm. In Section 5.4, we investigate the effects of hyperparameters on the 
algorithm’s performance. Unless otherwise stated, we use the following default values to evaluate our algorithm. In our simulation, 
the number of log-gaussian mixture components 𝐾 is 64, and the RNN hidden state size is 64. The learning rate is 0.001, the size 
of the train window is 20K, and the total sets of predicted arrival time 𝑄 is 50 according to [78]. The epochs for each training are 
100. Similar to previous works, we choose random sample size 𝑁 as 64 [5,6].

 Optimization algorithm. We use the Adam algorithm [79] to optimize the objective function because it effectively combines 
adaptive learning rates with momentum, facilitating efficient and reliable convergence. We provide a detailed explanation of 
the optimization (6), and the optimization of (7) follows a similar approach. To apply the Adam optimization algorithm, begin 
by initializing the neural network parameters 𝜽 and setting the first and second moment (𝐦 and 𝐯) vectors to zero. Select the 
hyperparameters, including the learning rate, decay rates, and a small constant 𝜖 to prevent division by zero. In each training 
iteration, compute the loss function defined in (6) and calculate its gradients with respect to 𝜽. Update the first and second-moment 
vectors using these gradients and apply bias correction to obtain unbiased estimates 𝐦̂ and 𝐯̂. Adjust the parameters 𝜽 by adding 
the scaled first moment divided by the square root of the second moment plus 𝜖, effectively maximizing the loss function. Repeat 
these steps iteratively until the loss function converges to its maximum value.
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Fig. 4. Comparison of latency improvement between offline and state-of-the-art algorithms relative to LRU under the synthetic dataset(Poisson).

Performance metric. The performance of algorithm A is measured by the latency improvement relative to LRU [12], which is 
defined as the ratio of the latency difference between LRU and algorithm A to the latency of LRU as follows, 

 Latency Improvement of A =
Latency(LRU) −  Latency(A) 

 Latency(LRU) , (10)

where Latency(LRU) is the total latency of LRU algorithm, Latency(A) is the total latency of algorithm A. Better performance is 
achieved with higher improvement.

5.2. Synthetic dataset

We first conduct the simulations on synthetic non-stationary datasets. The synthetic dataset contains requests for 1000 objects 
divided into different sessions. We assume that requests’ popularity 𝑝𝑖 ∈ {1, 2,… , 𝑛} follows a Zipf distribution. Under Zipf’s law, 
the popularity 𝑝𝑖 of the 𝑖th ranked object can thus be expressed as 

𝑝𝑖 =
𝑖−𝛼

∑𝑛
𝑖=1 𝑖−𝛼

, (11)

where 𝑛 represents the total number of distinct objects, and 𝛼 denotes the Zipf exponent, which characterizes the skewness of the 
request pattern. The rank of objects (and hence their popularity) is permutated in each session, which means an object popular in 
the first session may have a different popularity in the second session. The arrival rate of an object is directly proportional to its 
popularity. We consider three different scenarios:

• Poisson: The arrival process of requests follows a Poisson distribution and remains consistent over time.
• Pareto: The arrival process of requests follows a Pareto distribution and remains unchanged.
• Mixed: The arrival process alternates, with requests following a Poisson distribution in one session and a Pareto distribution 
in the next, switching in sequence.

The datasets in these three scenarios are non-stationary, and the mixed scenario is even more non-stationary because the 
popularity of requests changes, as does their arrival process. The total number of requests corresponding to the three different 
scenarios are 164,518, 149,810, and 103,608, respectively. The object sizes are uniformly sampled between 1 MB–10 MB. The miss 
latency for each object is composed of a constant term 𝐿 and a part proportional to its size. The constant term 𝐿 represents the 
propagation delay, while the remaining part corresponds to transmission delays [80,81]. This assumption of a fixed miss latency is 
consistent with [12,16]. We measure the cache size as a fraction of the average total size of active objects as [13]. For these three 
datasets, the average size of active objects is approximately 5000MB. We consider fractions of 1% and 10%, so the cache sizes are 
50MB and 500MB, respectively. The simulation results are shown in Figs.  4, 5, and 6.

The results indicate that our online learning algorithm outperforms state-of-the-art algorithms under settings with variable fetch 
delays and cache sizes. Our algorithm outperforms the state-of-the-art algorithms across different request arrival processes, whether 
they follow a Poisson distribution, Pareto distribution, or a mixed distribution. This demonstrates that the combination of RNN 
and mixture of log-gaussian distribution can effectively estimate non-stationary processes, as validated in [6,17]. Furthermore, the 
experimental results demonstrate that the offline algorithm based on (2) performs well. While the offline algorithm is expected to 
perform well due to the assumption that future requests are known, it is essential to highlight that it offers valuable insights for 
designing online algorithms. Additionally, the gap between our algorithm and the offline solution is minimal.

5.3. Real world traces

We consider four real-world traces as follows:
11 
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Fig. 5. Comparison of latency improvement between offline and state-of-the-art algorithms relative to LRU under the synthetic dataset(Pareto).

Fig. 6. Comparison of latency improvement between offline and state-of-the-art algorithms relative to LRU under the synthetic dataset(Mixed).

• Wikipedia (2018 and 2019): These two traces originate from CDN nodes located in a metropolitan area during 2018 and 
2019 [5]. They primarily include web and multimedia content, such as images and videos.

• CloudPhysics: CloudPhysics [82] collects the block I/O traces from VMware virtual disks operating in customer data centers 
using the VMware ESXi hypervisor. A user-mode application installed on each ESXi host worked alongside the standard 
VMware vscsiStats utility to gather block I/O traces for the virtual disks [83].

• Youtube [84]: Youtube is an online platform that enables video sharing over the Internet. Users can upload videos on Youtube 
and share them with the public. Viewers can search for and watch videos on their devices.

We use a subset for simulation for the four datasets—Wiki2018, Wiki2019, Cloud, and YouTube. The total number of requests 
included in these datasets is 133,009, 155,015, 113,872, and 162,301, respectively. We present the content popularity and average 
inter-arrival time distributions of these four traces in Fig.  7. The distribution of average inter-arrival time illustrates that the Youtube 
and Cloud datasets exhibit more burstiness compared to the Wiki18 and Wiki19 datasets. We show the object size distribution in 
Fig.  8, demonstrating that real-world traces exhibit object sizes spanning over eight orders of magnitude. Considering object size 
when making caching decisions better aligns with real-world scenarios. The simulation results are shown in Figs.  9 and 10.

Impact of latency. Figs.  9 and 10 compare the latency improvement of our algorithm and state-of-the-art algorithms with 
different fetching latencies using a 128 GB and a 256 GB cache, respectively. Our algorithm is generally consistently better than 
the state-of-the-art algorithms, as discussed in Section 5.1 across various fetch latency and cache size settings. When the cache 
size is 128 GB, our algorithm achieves a latency reduction improvement of approximately 4%–6% for the Wiki18 dataset compared 
to state-of-the-art algorithms. For the Wiki19 dataset, it provides an improvement of around 3%–5%. For the Cloud dataset, the 
algorithm improves latency reduction by 2%–8%; for the YouTube dataset, the improvement ranges from 2%–5%. When the cache 
size is increased to 256 GB, our algorithm shows a latency reduction improvement of approximately 6% for the Wiki18 dataset. In 
the Wiki19 dataset, it delivers a 5%–6% improvement. For the Cloud dataset, the latency reduction ranges from 3%–10%, while for 
the YouTube dataset, the improvement is between 4%–9%, compared to state-of-the-art algorithms. The key ingredient that allows 
us to obtain a better performance is that our rank function, inspired by the offline algorithm, assists us in determining the priority 
of eviction candidates. In addition, we can make future arrival predictions for the non-stationary arrival process based on the online 
learning framework. Overall, our algorithm has improved more on YouTube and Cloud than the Wiki18 and Wiki19 datasets. This is 
attributed to YouTube and Cloud’s higher burstiness relative to Wiki18 and Wiki19. Our algorithm effectively addresses the impact 
of delayed hits in more bursty traces, showcasing superior performance.
12 



B. Jiang et al. Performance Evaluation 169 (2025) 102488 
Fig. 7. The content popularity and average interval-time distributions of the four real-world traces.

Fig. 8. The object size distribution of the four real-world traces.

Comparison with offline algorithm. In both Figs.  9 and 10, the offline algorithm based on (2) outperforms the other algorithms 
because it assumes the entire sequence is known and fully considers factors such as request size, arrival time, and cumulative delay. 
This aligns with the superior performance of the offline algorithm on the synthetic dataset compared to the others. Fig.  10 shows 
that the performance gap between our algorithm and the offline algorithm is slight for specific datasets, such as only 2% for Wiki18 
trace when the latency 𝐿 = 10 ms. However, there remains a performance gap across all datasets between our algorithm and the 
offline algorithm. Specifically, our algorithm exhibits a performance gap of approximately 3%–10% compared to the offline algorithm 
across various cache sizes and latency conditions. One possible improvement direction is to consider using parameters of objects 
with similar characteristics to new objects when making evictions [85] rather than heuristically based on the object size.

Impact of cache size.  We further characterize the impact of cache size on the latency reduction of our algorithm compared 
to state-of-the-art algorithms. We compute the latency improvement for all traces using a fixed value of 𝐿 = 100𝑢𝑠. For the Cloud 
dataset, we consider a broader range of cache sizes because its average size of active objects (approximately 600 GB) is larger 
than those of the other three datasets. The results are shown in Fig.  11. It can be seen that our algorithm has the most significant 
improvement in latency compared to other algorithms under different cache sizes and latency settings. As shown in Fig.  11, the 
relationship between latency improvement and cache size in our algorithm differs for Wiki18 and Wiki19 compared to the other 
two datasets. This is because the inflection point for latency reduction has not yet been reached. In fact, as we continue to increase 
the cache size in our experiments, we observe that the latency improvement begins to show a downward trend on Cloud and Youtube 
dataset.

Hit ratio comparison. While our primary focus is on designing a latency-optimized caching system in the presence of delayed 
hits—where maximizing hit ratio and minimizing latency are distinct goals—we argue that the improvements in latency also 
positively impact cache hit performance. When the cache size is 256 GB, we compare the true hit ratios of different algorithms 
13 
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Fig. 9. Comparison of latency improvement between our algorithm and state-of-the-art algorithms relative to LRU using a 128 GB cache.

Fig. 10. Comparison of latency improvement between our algorithm and state-of-the-art algorithms relative to LRU using a 256 GB cache.

across various latencies, with the results shown in Fig.  12. As seen in Figs.  9 and 10, our algorithm achieves a significant latency 
reduction compared to other online algorithms. In Fig.  12, the hit ratio of our algorithm consistently exceeds that of the other 
online algorithms. When the average fetching latency becomes very large, in both traces almost all these algorithms tend to have a 
decreasing hit ratio, since nearly all the requests are misses or delayed hits.

5.4. Discussion

Sensitivity analysis of hyperparameters. We have introduced several hyperparameters in our algorithm, which significantly 
impact its performance. Therefore, we conduct a comprehensive sensitivity analysis for the key hyperparameters, including the size of 
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Fig. 11. Comparison of the latency improvement between our algorithm and state-of-the-art algorithms relative to LRU as a function of cache sizes(fixed latency 
𝐿 = 100𝑢𝑠).

Fig. 12. Comparison of true hit ratios between our algorithm and state-of-the-art algorithms using a 256 GB cache.

the training window, the mixture components, the hidden state size, and the learning rate. We conducted experiments using a cache 
size of 256 GB and a latency of 𝐿 = 100𝑢𝑠, with the results presented in Fig.  13. Similar trends are observed under other different 
parameter settings. The size of the training window plays a critical role in the algorithm’s performance. If the window size is too 
small, the learned arrival distribution will not be accurate. On the other hand, a large window size may increase memory overhead 
and result in more time required to train. Fig.  13(a) demonstrates that the algorithm’s latency improvements vary with different 
training window sizes and across various datasets. Nevertheless, all results outperform the baseline algorithms, highlighting the 
robustness of our approach. This variability suggests that the optimal training window size may differ for each training set to achieve 
maximum improvement. In our experiments, we select a window length of 20K, which ensures a balanced trade-off between latency 
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Fig. 13. The impact of hyperparameters on latency improvement with a 256 GB cache size and the fixed latency 𝐿 = 100𝑢𝑠.

Fig. 14. Impact of survival probability on the latency improvement in the loss functions.

improvement, memory overhead, and training time across all datasets. Using too few mixture components can prevent the model 
from accurately capturing the complexity of the data distribution, leading to underfitting and reduced performance. Conversely, 
employing too many components can increase computational overhead and the risk of overfitting, potentially diminishing the 
model’s ability to generalize effectively. Fig.  13(b) further confirms the robustness of our algorithm under various mixture component 
settings, suggesting that the selected number of mixture components effectively captures the necessary distributional characteristics 
without overcomplicating the model. We choose a mixture component of 64 to achieve a good average performance of the algorithm 
across different datasets. Additionally, Fig.  13(c) shows that our policy maintains better performance over the baseline algorithms 
across different hidden state sizes. As shown, when the hidden state size is between 32 and 128, there is a significant performance 
improvement. However, for smaller or larger hidden state sizes, the algorithm’s performance may slightly decrease. We select a 
hidden state size of 64 to balance the algorithm’s average performance across different datasets. We employ the Adam optimization 
algorithm [79], which uses a default learning rate of 0.001. Furthermore, we investigate the effects of varying learning rates on the 
algorithm’s performance. A learning rate of 0.01 achieved performance comparable to that of 0.001. However, learning rates of 0.1 
and 1 prevented the neural network from converging during training.

Computational overhead. Our algorithm uses the metadata of each object in the cache to infer its arrival distribution: its history 
embedding, current age, and object size. Therefore, the metadata memory of each object in the cache is 264 bytes according to our 
RNN hidden state size setting. The metadata used by LRB to make an inference for an object is the size of their manually defined 
features, which takes 176 bytes. Overall, the memory overhead of our algorithm is more than that of LRB. During the training process, 
our algorithm utilizes an average of 256MB of memory, while the LRB algorithm consumes an average of 319 MB. This demonstrates 
that our approach requires less memory during training, which can be attributed to the streamlined neural network architecture we 
designed. Specifically, it incorporates a single-layer RNN and a three-layer MLP, which contribute to reduced memory consumption. 
Both the metadata storage overhead and the memory usage during training are manageable for modern storage systems, which 
typically have capacities exceeding the GB level. The average training time of RNN and MLP on four datasets is about 2 h. Although 
this may seem time-consuming, there are several opportunities for optimization. Firstly, our implementation is currently written in 
Python, which generally exhibits lower performance (in latency) compared to high-performance languages such as C++. Second, 
leveraging optimization techniques such as batch processing [74,86] and parallel computing [76,77] can significantly reduce training 
time. For example, we can train neural networks for the inter-arrival time distribution and residual time distribution concurrently 
on separate GPUs. Additionally, in our experiments, we utilized GRU [87] as the RNN unit; however, the RNN module can be 
replaced with SRU [88], an efficient implementation of recurrent neural units that have demonstrated reduced training times without 
sacrificing performance [89–91]. We plan to explore module optimization and fine-tuning in future work.
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Fig. 15. Comparison of latency improvement between our algorithm and state-of-the-art algorithms relative to LRU using a 256 GB cache when the fetch latency 
is random.

Survival probability. We incorporate survival probability into the loss functions defined in Eqs. (6) and (7) to address data 
scarcity. In this subsection, we perform ablation experiments on survival probability using a cache size of 256 GB and a latency 
of 𝐿 = 100𝑢𝑠. There is also a similar phenomenon in other parameter settings. The results are presented in Fig.  14. In the figure, 
the legend ‘‘X: w/survival, R: w/o survival’’ indicates that survival probability is incorporated in the estimation of the arrival time 
interval but excluded from the estimation of residual time. The other legends follow similar conventions. Fig.  14 demonstrates that, 
compared to scenarios where survival probability is not considered, latency improvements are further enhanced when survival 
probability is accounted for in both the arrival time interval and residual time estimations. We observe that our algorithm’s 
performance improves across all traces, with particularly significant gains on the Wiki 18 and Wiki 19 datasets. This enhancement is 
attributed to these two datasets having a higher proportion of request types with fewer arrivals compared to the Cloud and YouTube 
datasets, which exacerbates data scarcity. By incorporating survival probability into our loss function, we effectively address and 
mitigate this issue.

Non-deterministic fetch latency. Regarding the assumption that 𝑑𝑖 is a linear function of the request size 𝑠𝑖, we note that this 
assumption is widely adopted in previous studies [13,16]. Furthermore, we have extended our experiments to include scenarios 
where the fetch latency is random, thereby better reflecting the variability of communication network conditions in the real-world. 
In this case, the fetch latency and object size do not exhibit a straightforward linear relationship. We set the cache size to 256 GB 
and model fetch latency using a truncated Gaussian distribution, ensuring that latency values are always positive. This distribution 
has a mean equal to the latency specified in Section 5.2 and a variance of 10. When a cache miss occurs, we sample from this 
distribution to determine the fetch latency for this miss instance. In our algorithm, when calculating the aggregate delay of the 
predicted request arrival sequence, we use the mean of the distribution as the delay for the first miss. Similarly, for other baseline 
algorithms, whenever fetch latency is needed to calculate the rank, we use the distribution’s mean instead. The results, presented in 
Fig.  15, demonstrate that our algorithm consistently outperforms others in latency performance, even under random fetch latency. 
Additionally, we would like to emphasize that current works on delay hits typically all assume deterministic fetch latency [12,13,16]. 
When the fetch latency is random, the caching problem under delayed hits deserves further investigation, particularly regarding how 
the characteristics of fetch latency distributions, such as variance, impact algorithm performance.

6. Conclusion

In this paper, we consider the cache scenario with delayed hits, where the arrival process is non-stationary, and the fetch latency 
and object size are both non-uniform. We design an online learning framework composed of RNN and MLP to predict objects’ future 
arrivals. Based on these predictions, we can efficiently determine the rank of eviction candidates. Simulations on a synthetic dataset 
and four real-world traces show that our algorithm consistently outperforms state-of-the-art algorithms across various delay and 
cache size settings.
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