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The modeling and analysis of an LRU cache is extremely challenging as exact results for the main performance

metrics (e.g., hit rate) are either lacking or cannot be used because of their high computational complexity

for large caches. As a result, various approximations have been proposed. The state-of-the-art method is

the so-called TTL approximation, first proposed and shown to be asymptotically exact for IRM requests by

Fagin [13]. It has been applied to various other workload models and numerically demonstrated to be accu-

rate but without theoretical justification. In this article, we provide theoretical justification for the approx-

imation in the case where distinct contents are described by independent stationary and ergodic processes.

We show that this approximation is exact as the cache size and the number of contents go to infinity. This

extends earlier results for the independent reference model. Moreover, we establish results not only for the

aggregate cache hit probability but also for every individual content. Last, we obtain bounds on the rate of

convergence.
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1 INTRODUCTION

Caches are key components of many computer networks and systems. Moreover, they are becom-
ing increasingly more important with the current development of new content-centric network
architectures. A variety of cache replacement algorithms have been introduced and analyzed over
the past few decades, mostly based on the least recently used algorithm (LRU). Considerable work
has focused on analyzing these policies [5, 6, 10, 15, 21, 22, 24]. Since exact results for the main
performance metrics (e.g., hit rate) are either lacking or cannot be used because of their high com-
putational complexity for large caches, approximations have been proposed [7, 11, 13, 19, 23, 27,
28]. Of all the approximation techniques developed, the state of the art is provided by the so-called
TTL approximation based on time-to-live (TTL) caches, which has been demonstrated to be ac-
curate for various caching policies and traffic models [4, 7, 9, 12, 13, 16–18, 25]. In this article, we
focus on the TTL approximation for the LRU cache with stationary requests. In a TTL cache, a
time-to-live timer is set to its maximum value T each time the content is requested. The content
is evicted from the cache when the timer expires.

The link between an LRU cache and a TTL1 cache was first pointed out in Reference [13] for
i.i.d. requests (the so-called independence reference model—IRM). In this article, Fagin introduced
the concept of a characteristic time (our terminology) and showed asymptotically that the perfor-
mance of LRU converges to that of a TTL cache with a timer set to the characteristic time. With
the exception of an application to caching in Reference [15], this work went unnoticed, and Refer-
ence [7] reintroduced the approximation, without theoretical justification, for LRU under Poisson
requests. Fricker et al. [16] provided some theoretical justification for the approximation by es-
tablishing a central limit theorem of the characteristic time under Poisson requests (see Remark 3
in Section 4.2 for a brief discussion). More recently, Reference [17] extended the TTL approxima-
tion to a setting where requests for distinct contents are independent and described by renewal
processes. The accuracy of this approximation is supported by simulations but a theoretical basis
is lacking. For independent Markovian Arrival Processes, Reference [18] developed TTL approx-
imations for the more complicated LRU(m) and h-LRU policies, both including LRU as a special
case. All the aforementioned work focused on stationary request processes with no dependence
between different contents. Dependent and so-called time-asymptotically stationary requests were
considered in Reference [27], but the results therein do not apply to the TTL approximation (see
Section 4 for a brief discussion of this work). Non-stationary request processes were considered
in Reference [25], where a TTL approximation is developed for the hit probability in a single LRU
cache and in a tandem of LRU caches, under the so-called shot noise request model. It is also
shown in Reference [25] that the cache eviction time converges to the characteristic time of the
TTL approximation as the cache size goes to infinity.

The objective of the present article is to provide a rigorous theoretical justification of the TTL
approximation for LRU in Reference [17] and its generalization to independent stationary content
request processes. To the best of our knowledge, such a justification was only provided in Reference
[13], and later on in Reference [19], under IRM (see Section 2.3 for a discussion of Theorem 1 in
Reference [19]).

We make the following contributions in this article. First, we prove under the assumption that
requests to distinct contents are described by mutually independent stationary and ergodic point
processes, that the hit probability for each content under LRU converges to that for a TTL cache
operating with a single timer value, called the LRU characteristic time, independent of the content.

1Fagin worked with the so-called working-set policy, which is the discrete time version of the TTL policy. The result can

be easily translated into one for the TTL approximation—also referred to as the Che’s approximation in the literature,

following the work of Che et al. in Reference [7]—under Poisson requests.
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Moreover, we derive rates of convergence for individual content hit probabilities under LRU to
those under TTL using the LRU characteristic time. Under additional mild conditions, we then
derive expressions for the characteristic time and the aggregate hit probability in the limit as the
cache size and the number of contents go to infinity. This last result extends the results of Fagin
[13] for the independence reference model to a more general setting of independent stationary
and ergodic content request processes.

The rest of the article is organized as follows. Section 2 presents our model of an LRU cache
under a general request model. Section 3 presents the main results of our article. Section 4 proves
the main result of the article, namely the convergence of hit probabilities under LRU to those under
TTL with bounds on the rate of convergence given in Section 5. Section 6 extends Fagin’s results
to the more general case of stationary and ergodic request processes. Last, concluding statements
are provided in Section 7.

2 MODEL AND BACKGROUND

We introduce the model for content request processes in Section 2.1 and the content popularity in
Section 2.2. Section 2.3 presents the TTL approximation that approximates hit probabilities of an
LRU cache by those of a TTL cache with an appropriately chosen timer value.

2.1 Content Request Process

We consider a cache of sizeCn servingn unit sized contents labelled i = 1, . . . ,n, whereCn ∈ (0,n).
We assume thatCn → ∞ asn → ∞. In particular, several results will be obtained under the assump-
tion that Cn ∼ β0n with β0 ∈ (0, 1). Requests for the contents are described by n independent sta-
tionary and ergodic simple point processes Nn,i := {tn,i (k ),k ∈ Z}, where −∞ ≤ · · · < tn,i (−1) <
tn,i (0) ≤ 0 < tn,i (1) < · · · ≤ ∞ represent successive request times to content i = 1, . . . ,n. We as-
sume the point processes are defined on a common probability space with probability measure P
and associated expectation operator E. Let 0 < λn,i < ∞ denote the intensity of request process
Nn,i , i.e., the long-term average request rate for content i (see, e.g., Reference [2, Sections 1.1 and
1.6] for an introduction to stationary and ergodic point processes). Note that P[tn,i (0) = 0] = 0 for
all i [2, Section 1.1.4], i.e., no request arrives precisely at time 0. The same request processes were
considered in Reference [14] for TTL caches.

Following Reference [9], we will use Palm calculus for stationary and ergodic point processes
[2]. Let P0

n,i be the Palm probability2 associated with the point process Nn,i (see, e.g., Reference [2,

Equation (1.2.1)]). In particular, P0
n,i [tn,i (0) = 0] = 1, i.e., under P0

n,i content i is requested at time
t = 0. It is known that [2, Exercice 1.2.1]

E
0
n,i [tn,i (1)] =

1

λn,i
, (1)

where E0
n,i is the expectation operator associated with P0

n,i . Define

Gn,i (t ) = P0
n,i [tn,i (1) ≤ t], (2)

the cumulated distributed function (cdf) of the inter-request time for content i under P0
n,i .

For any distribution F , we denote its mean by mF and the corresponding complementary
cdf by F̄ := 1 − F . For any F with support in [0,∞) and mF ∈ (0,∞), we define an associated

2Readers unfamiliar with Palm probability can think of P0
n,i as being defined by P0

n,i [A] = P[A | tn,i (0) = 0] for any event

A, i.e., the conditional probability conditioned on the event that content i is requested at time 0, although the definition is

more general.
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distribution F̂ by

F̂ (t ) =
1

mF

∫ t

0

F̄ (z)dz, t ≥ 0. (3)

It is well-known that (see, e.g., Reference [2, Section 1.3.4])

P[−tn,i (0) ≤ t] = Ĝn,i (t ) = λn,i

∫ t

0

Ḡn,i (z)dz, (4)

withmGn,i = 1/λn,i from Equation (1). Note that P[−tn,i (0) ≤ t] is the cdf of the time elapsed since
content i was last requested before the random observation time t = 0 (recall that the system is in
steady state at time t = 0), often referred to as the age distribution of the last request for content i .

We assume all cdfs Gn,i are continuous. Let

G∗n,i (t ) = Gn,i (t/λn,i ) (5)

be the scaled version of Gn,i that is standardized in the sense that it has unit mean. We assume
that there exists a continuous cdf Ψ with support in [0,∞) and meanmΨ > 0 such that

Ḡ∗n,i (t ) ≥ Ψ̄(t ), ∀t ,n, i, (6)

or, by the definition of G∗n,i ,

Ḡn,i (t ) ≥ Ψ̄(λn,it ), ∀t ,n, i, (7)

which, by Equation (3), implies

Ĝn,i (t ) ≥ mΨΨ̂(λn,it ), ∀t ,n, i . (8)

Let us elaborate a bit on the assumption in Equation (6). Consider the L1 distance between Ψ
and G∗n,i , which, by Equation (6), is given by

‖G∗n,i − Ψ‖1 = ‖Ḡ∗n,i − Ψ̄‖1 =
∫ ∞

0

[Ḡ∗n,i (t ) − Ψ̄(t )]dt = 1 −mΨ .

Since ‖G∗n,i − Ψ‖1 ≥ 0, it follows thatmΨ ≤ 1. Note that allG∗n,i live on the sphere of radius 1 −mΨ

centered at Ψ. Since bothG∗n,i and Ψ are continuous,mΨ = 1 if and only ifG∗n,i (t ) = Ψ(t ) or, equiv-

alently, if and only if Gn,i (t ) = Ψ(λn,it ) for all t , n, and i . Intuitively, the function Ψ controls the
variability within the family of cdfs G = {G∗n,i : n ≥ i ≥ 1}, andmΨ is a measure of this variability.

WhenmΨ → 0, the constraint Equation (6) becomes empty, and G∗n,i could be very different from
each other. As mΨ increases, G∗n,i become more and more similar to each other. When mΨ = 1,
G∗n,i degenerates to a single distribution Ψ, in which case, Gn,i are all from the scale family3 as

Gn,i (t ) = Ψ(λn,it ) from Equation (5).
The most important example of the degenerate case mΨ = 1 is when all request processes are

Poisson, i.e., Gn,i (t ) = 1 − e−λn,i t with Ψ(t ) = 1 − e−t . Non-Poisson examples include Erlang dis-
tributions with the same number of stages, Gamma distributions with the same shape parameter,
and Weibull distributions with the same shape parameter.

An important example of the non-degenerate case is when Gn,i are from a finite number, J , of
scale families, i.e. G = {Ψ1, . . . ,ΨJ } for some distinct cdfs Ψj with mΨj

= 1. More specifically, let

P1, . . . ,PJ be a partition of the set {(n, i ) ∈ N2 : n ≥ i ≥ 1} such that G∗n,i = Ψj for all (n, i ) ∈ Pj .

Note that Equation (6) holds with Ψ(t ) = max1≤j≤ J Ψj (t ) in this case. However, mΨ < 1 unless
J = 1, which reduces to the degenerate case.

3Recall that a family of cdfs F (st ), indexed by a scale parameter s > 0, is called the scale family with standard cdf F .
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Let Nn := {tn (k ),k ∈ Z} be the point process resulting from the superposition of the n inde-
pendent point processes Nn,1, . . . ,Nn,n , where −∞ ≤ · · · < tn (−1) < tn (0) ≤ 0 < tn (1) < · · · ≤ ∞.
Note that we have used the fact that the points tn (k ) are distinct with probability one [2,
Property 1.1.1]. Let P0

n be the Palm probability4 associated with Nn , and E0
n the associated expecta-

tion operator. Under P0
n a content is requested at t = 0; i.e., P0

n[tn (0) = 0] = 1. Let X 0
n ∈ {1, . . . ,n}

denote this content. It is known that (see, e.g., Reference [2, Section 1.4.2])

P
0
n[X 0

n = i] =
λn,i

Λn
:= pn,i , (9)

where Λn :=
∑n

i=1 λn,i , and

P
0
n[A] =

n∑
i=1

pn,iP
0
n,i [A] (10)

for any event A.

2.2 Content Popularity

The probability pn,i defined in Equation (9) gives the popularity of content i . Previous work (see,
e.g., Reference [16] and references therein) shows that the popularity distribution {pn,1, . . . ,pn,n }
usually follows Zipf’s law,

pn,i =
i−α∑n

j=1 j
−α
, (11)

where α ≥ 0 and most often α ∈ (0, 1). This will be the main example of popularity distribution
used throughout the rest of the article.

In Reference [13], the popularity distribution is assumed to be given by

pn,i = F
( i
n

)
− F

( i − 1

n

)
, (12)

where F is a continuously differentiable cdf with support in [0, 1]. With some slight modification,
Equation (12) can be extended to include Equation (11) as a special case. Note that Equation (12)
does not assume the pn,i ’s are ordered in i .

In this article, we consider more general popularity distributions, which include as special cases
both Equations (11) and (12) with the mild condition that F ′ > 0 a.e. on [0, 1]. Let σi be the index
of the ith most popular content, i.e.,

pn,σ1 ≥ pn,σ2 ≥ · · · ≥ pn,σn
(13)

is the sequence pn,1, . . . ,pn,n rearranged in decreasing order. Define the tail P̄n of the content
popularity distribution by

P̄n (i ) =
n∑

k=i+1

pn,σk
, (14)

which is the aggregate popularity of the n − i least popular contents. Roughly speaking, we will
focus on popularity distributions whose values P̄n (i ) are of the same order for i around Cn . This
will be made more precise later; see assumption (P1) in Section 3.1.3.

4Again, readers unfamiliar with Palm probability can think of P0
n as being defined by P0

n [A] = P[A | tn (0) = 0] for any

event A, i.e., the conditional probability conditioned on the event that a request arrives at time 0.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 4, Article 20. Publication date: September 2018.



20:6 B. Jiang et al.

2.3 TTL Approximation

Let Yn,i (t ) = 1 if content i is requested during the interval [−t , 0) and Yn,i (t ) = 0 otherwise. With
this notation,

Yn (t ) :=

n∑
i=1

Yn,i (t ) (15)

is the number of distinct contents requested during [−t , 0). Let [−τn , 0) be the smallest past interval
in which Cn distinct contents are referenced, i.e.,

τn = inf {t : Yn (t ) ≥ Cn }. (16)

Note that if we reverse the arrow of time, we obtain statistically the same request processes, and
τn is a stopping time for the process Yn (t ).

In an LRU cache, a content that is least recently referenced is evicted when another content
needs to be added to the full cache. Thus, a request for content i results in a cache hit if and only
if i is among the Cn distinct most recently referenced contents. By stationarity, we can always
assume that this request arrives at t = 0. Thus, the stationary hit probability of an LRU cache is
given by

HLRU
n = P0

n[Yn,X 0
n

(τn ) = 1]. (17)

Similarly, the stationary hit probability of content i in an LRU cache is given by

HLRU
n,i = P

0
n,i [Yn,i (τn ) = 1], (18)

By Equation (10), HLRU
n and HLRU

n,i are related by

HLRU
n =

n∑
i=1

pn,iH
LRU
n,i . (19)

In a TTL cache, when a content is added to the cache, its associated time-to-live timer is set to
its maximum valueT . The content is evicted from the cache when the timer expires. The capacity
of the cache is assumed to be large enough to hold all contents with non-expired timers. In this
article, we consider the so-called TTL cache with reset, which always resets the associated timer
to T when a cache hit occurs. Thus, a request for content i results in a cache hit if and only if i is
referenced in a past window of length T . The stationary hit probability is then given by

HTTL
n (T ) = P0

n[Yn,X 0
n

(T ) = 1], (20)

and that for content i by

HTTL
n,i (T ) = P0

n,i [Yn,i (T ) = 1], (21)

which will be shown to equal Gn,i (T ) in Lemma 4.8. By Equation (10), HTTL
n (T ) and HTTL

n,i (T ) are
related by

HTTL
n (T ) =

n∑
i=1

pn,iH
TTL
n,i (T ). (22)

The TTL approximation was first introduced by Fagin for IRM requests [13], later rediscovered
for independent Poisson request processes [7] and extended to renewal request processes [17],
in the latter two cases without theoretical basis. It should be noticed that Fagin’s result can be
reproduced [20] by restricting the support of the distribution to [0, 1] in Theorem 4 in Refer-
ence [23]. Also, Theorem 1 in Reference [19] proves that the individual content hit probability
in an LRU cache converges to the corresponding quantity in a TTL cache as the number of items
increases to infinity, when contents are requested according to independent Poisson processes and
when there is only a finite number of types of contents; see discussion after Example 4.5.
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We now present it for general independent stationary and ergodic request processes. Let

Kn (T ) := E[Yn (T )] (23)

denote the expected number of contents in a TTL cache with timer valueT , where Yn is defined in

Equation (15). It will be shown in Lemma 4.9 that Kn (T ) =
∑n

i=1 Ĝn,i (T ). Given the size Cn of an
LRU cache, let Tn satisfy

Cn = Kn (Tn ) =
n∑

i=1

Ĝn,i (Tn ). (24)

The timeTn is the characteristic time of the LRU cache. The TTL approximation then approximates
the hit probabilities of the LRU cache by those of a TTL cache with timer value Tn , i.e.,

HLRU
n,i ≈ HTTL

n,i (Tn ), ∀i = 1, . . . ,n.

For Poisson requests, Equation (24) takes the familiar form

Cn =

n∑
i=1

(1 − e−λn,iTn ).

Note that the TTL approximation for general independent stationary and ergodic processes takes
the same form as for renewal processes [17], which is not surprising in view of Theorem 2 in
Reference [18].

In Section 4, we show that, as Cn and n become large, the TTL approximation becomes exact;
i.e., an LRU cache behaves like a TTL cache with a TTL approximation timer value equal to the
LRU characteristic time.

3 OVERVIEW OF MAIN RESULTS

In this section, we present the main results of the article. Section 3.1 collects various assumptions
used in the main results and discusses their relations. The mains results are presented in Section 3.2.

3.1 Assumptions

We divide the assumptions into three categories according to whether they concern cache size,
request processes, or content popularity distribution.

3.1.1 Cache Size. Throughout the article, it is assumed that the cache sizeCn ∈ (0,n) andCn →
∞ as n → ∞. In addition, each result assumes one of the following conditions.

(C1) Cn ≤ β1n for some β1 ∈ (0,mΨ) and n large enough, wheremΨ is the mean of Ψ in Equa-
tion (6).

(C2) Cn ∼ β0n for some β0 ∈ (0, 1).

Note that (C2) requires Cn to scale linearly in n while (C1) only requires Cn to scale at most
linearly. For β0 < mΨ, (C2)=⇒(C1).

3.1.2 Request Processes. The requests for different contents follow independent stationary and
ergodic simple point processes. The request process for content i has continuous inter-request dis-
tribution satisfying Equation (6). In addition, each result assumes one of the following conditions,
with Gi := {G∗n,i : n ≥ i} and G :=

⋃∞
i=1 Gi , where G∗n,i is defined in Equation (5),

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 3, No. 4, Article 20. Publication date: September 2018.
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(R1) Given i , Gi is equicontinuous.5

(R2) G is equicontinuous.
(R3) |G| < ∞, i.e., the inter-request distributions are from a finite number of scale families.
(R4) G = {Ψ}, i.e., the inter-request distributions are from a single scale family.
(R5) G is uniformly Lipschitz continuous.6

(R6) There exist a constant B and ρ ∈ (0, 1] such that

|G (t ) −G (t ± xt ) | ≤ Bx , for x ∈ [0, ρ], ∀t and ∀G ∈ G. (25)

By Lemma A.1, (R1) (respectively, (R2)) holds if Gi (respectively, G) is composed of a finite fam-
ily of continuous cdfs. Hence, (R4)=⇒(R3)=⇒(R2)=⇒(R1). Note also that (R5)=⇒(R2). Examples
of (R5) include families of distributions that have densities with a common upper bound. The last
condition (R6) can be thought of as some kind of uniform Lipschitz continuity, where the bound
depends on the relative deviation of the arguments rather than on the absolute deviation as in (R5).
Condition (R6) is satisfied if the inter-request distributions are all exponential, which correspond-
ing to Poisson requests (Example 5.3), or, more generally, if (R3) holds with every G ∈ G having a
continuous density (see Example 5.4, which also includes an example with infinite G). Note that
(R6) implies uniform Lipschitz continuity for t strictly bounded away from zero, which is in fact
all we need when working with (R5), so for our purpose (R6) is stronger than (R5).

3.1.3 Popularity Distribution. Each result assumes one of the following conditions for content
popularity distribution.

(P1) There exist constants κ1 ∈ ( 1
mΨ
, 1

β1
) for β1 in (C1), κ2 ∈ [0, 1] and γ ∈ (0, 1) such that for

all sufficiently large n, the tail popularity P̄n defined in Equation (14) satisfies

P̄n (�κ1Cn�) > γ P̄n (�κ2Cn�). (26)

(P2) Fagin’s condition: for some continuous function f defined on (0, 1] such that f > 0
a.e. and limx→0+ f (x ) ∈ [0,+∞], and for some zn,i ∈ [ i−1

n
, i

n
], the popularities pn,i ∼

дn f (zn,i ) uniformly in i , i.e.,

max
1≤i≤n

�����дn f (zn,i )

pn,i
− 1

�����→ 0, as n → ∞. (27)

(P3) The generalization Equation (58) of (P2) from a single function f to a finite number of
functions fj ’s.

For a discussion of (P1), see Remark 1 after Proposition 4.4. Note that (P2) is slightly more general
than Fagin’s original condition Equation (12). Note also (P2)=⇒(P3)=⇒ (P1). Example 4.5 shows
that the Zipfian popularity distribution in Equation (11) with α ≥ 0 satisfies (P1). Example 6.2
shows that it also satisfies (P2) and hence (P3).

The common assumptions that Cn → ∞ as n → ∞ and that requests for different contents are
described by mutually independent stationary and ergodic processes satisfying Equation (6) will
be assumed without explicit mentioning throughout the rest of the article.

5A family of functions F is equicontinuous if for every ϵ > 0, there exists a δ > 0 such that |x1 − x2 | < δ implies |f (x1) −
f (x2) | < ϵ for every f ∈ F. There is another commonly used definition of equicontinuity, which is a weaker notion in

general but turns out to be equivalent to the former in our setting.
6A family of functions F is uniformly Lipschitz continuous if there exists an M > 0 such that |f (x1) − f (x2) | < M |x1 − x2 |
for every x1, x2 and every f ∈ F.
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3.2 Main Results

In this section, we present the main results of the article. The first establishes that individual con-
tent hit probabilities under LRU converge to those under TTL as the cache sizeCn and the number
of contents n go to infinity, provided the timer values for all contents are set to the LRU character-
istic time Tn introduced in the previous section and provided the inter-request time distributions
satisfy certain continuity properties.

Result 1 (Proposition 4.4). Under assumptions (C1), (R1), and (P1), TTL approximation is

asymptotically exact for content i , i.e.,���HLRU
n,i − HTTL

n,i (Tn )���→ 0, as n → ∞.

Under assumptions (C1), (R2), and (P1), TTL approximation is asymptotically exact uniformly for all

contents, i.e.,

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )���→ 0, as n → ∞.

The next result provides a uniform bound for the rates at which individual content hit prob-
abilities under LRU converge to those under TTL under a slightly stronger Lipschitz continuity
property.

Result 2 (Proposition 5.1). Under assumptions (C1), (R5), and (P1), the following holds:

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� = O ��
(

logCn

Cn

) 1
4 �� .

The above rate of convergence is slow. This is improved in the next result where it is shown to be
O ((logCn/Cn )1/2) under slightly stronger assumptions regarding the marginal inter-request time
distributions. However, numerical results (see, e.g., Reference [16]) suggest that the convergence
rate might be faster than proved here.

Result 3 (Proposition 5.2). Under assumptions (C1), (R6), and (P1), the following holds:

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� = O ���
√

logCn

Cn

��� .
The last two results include extensions of Fagin’s results for IRM to the case where content

requests are described by mutually independent stationary and ergodic processes where the mar-
ginal inter-request time distributions satisfy mild continuity properties.

Result 4 (Proposition 6.3). Under assumptions (C2), (R4), and (P2), the following holds:

HLRU
n →

∫ 1

0

f (x )Ψ(ν0 f (x ))dx , as n → ∞,

where ν0 the unique real number in (0,∞) that satisfies∫ 1

0

Ψ̂(ν0 f (x ))dx = β0.

Result 4 considers a single class of contents in the sense that there is a single f and a single Ψ for
all contents. The following result extends it to J classes of contents, where class j has a fraction bj

of the total contents, and each class j satisfies the assumptions in Result 4 with potentially different
fj and Ψj . See Proposition 6.4 for a more precise statement of (R3) and (P3).
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Result 5 (Proposition 6.4). Under assumptions (C2), (R3), and (P3), the following holds:

HLRU
n →

J∑
j=1

bj

∫ 1

0

fj (x )Ψj (ν0 fj (x ))dx , as n → ∞,

where ν0 the unique real number in (0,∞) that satisfies

J∑
j=1

bj

∫ 1

0

Ψ̂j (ν0 fj (x ))dx = β0.

4 ASYMPTOTIC EXACTNESS

It has been observed numerically in Reference [16] that the TTL approximation is very accurate
uniformly for contents of a wide range of popularity rank when the request processes are all
Poisson. In this section, we prove that under some general conditions, the TTL approximation is
exact in the large system regime, in the sense that individual content hit probabilities under LRU
converge uniformly to those under TTL using the LRU characteristic time.

The following bounds on the LRU characteristic timeTn , which may be of interest in their own
right, will be used in the proof of the main result, Proposition 4.4. The proof is found in Section 4.1.

Proposition 4.1. The characteristic timeTn defined by Equation (24) exists and is unique. For any

n1 ∈ (Cn/mΨ,n], which exists if Cn < nmΨ, we have

Tn ≤
ν0

λn,σn1

, (28)

where σn1 is defined in Equation (13), and ν0, which exists, is any constant that satisfies

Ψ̂(ν0) ≥ Cn

n1mΨ
.

For any n2 ≤ Cn ,

Tn ≥
Cn − n2

Λn P̄n (n2)
. (29)

The following examples show that Proposition 4.1 yields the same scaling order ofTn as in Ref-
erence [16, Equation (7)] for Zipfian popularity distribution with α � 1, but for request processes
more general than Poisson.

Example 4.2. Consider Zipfian popularity distribution in Equation (11) with α ∈ (0, 1). In this
case, we need Cn = Ω(n) so that the cache stores a nonnegligible fraction of the files in the sense
that Pn (Cn ) does not vanish as n increases. Assume Cn ∼ β0n with β0 ∈ (0,mΨ). Setting n1 = n in
Equation (28), we obtain

Tn ≤
ν0

pn,nΛn
∼ ν0n

(1 − α )Λn
,

where ν0 satisfies Ψ̂(ν0) > β0/mΨ. Setting n2 = 0 in Equation (29), we obtain

Tn ≥
Cn

Λn
∼ β0n

Λn
.

Note that

pn,σn
= pn,n =

n−α∑n
j=1 j

−α
∼ (1 − α )n−1,

where the last step follows from the well-known asymptotics (see, e.g., Reference [1, Theo-
rem 3.2])

∑n
j=1 j

−α ∼ n1−α /(1 − α ) for large n. Therefore,Tn = Θ(nΛ−1
n ). In particular, if λn,i = i

−α ,

then Λn ∼ n1−α /(1 − α ), and hence Tn = Θ(nα ).
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Example 4.3. Consider Zipfian popularity distribution in Equation (11) with α > 1. In this case,
Pn (Cn ) never vanishes as long as Cn ≥ 1. Assume Cn ≤ β0n with β0 ∈ (0,mΨ). Consider the limit
Cn → ∞. Setting n1 ∼ κ1Cn in Equation (28) with κ1 ∈ ( 1

mΨ
, 1

β0
), we obtain

pn,σn1
= pn,n1 =

n−α
1∑n

j=1 j
−α
∼ 1

κα
2 C

α
n ζ (α )

,

and hence

Tn ≤
ν0κ

α
1 ζ (α )Cα

n

Λn
,

where ν0 satisfies Ψ̂(ν0) > (κ1mΨ)−1. Setting n2 ∼ κ2Cn in Equation (29) with κ2 ∈ (0, 1), we obtain

P̄n (n2) ∼
n1−α

2

(1 − α )ζ (α )
,

where ζ (α ) =
∑∞

j=1 j
−α is the Riemann zeta function. Thus,

Tn ≥
Cn − n2

Λn P̄ (n2)
∼ (1 − α )ζ (α ) (Cn − n2)

Λnn
1−α
2

∼
(1 − α )ζ (α ) (1 − κ2)Cα

n

Λnκ
1−α
2

.

Therefore, Tn = Θ(Cα
n Λ−1

n ). In particular, if Cn = Θ(n) and λi = i
−α , then Λn ∼ ζ (α ) and hence

Tn = Θ(nα ). However, we do not need to have Cn scale linearly in n.

Proposition 4.4 is the main result, which provides sufficient conditions for the hit probabilities
in the TTL approximation to converge to the corresponding hit probabilities in the LRU cache.
The proof is found in Section 4.2.

Proposition 4.4. Under assumptions (C1), (R1), and (P1), TTL approximation is asymptotically

exact for content i ; i.e., ���HLRU
n,i − HTTL

n,i (Tn )���→ 0, as n → ∞. (30)

Under assumptions (C1), (R2), and (P1), TTL approximation is asymptotically exact uniformly for all

contents; i.e.,

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )���→ 0, as n → ∞. (31)

Remark 1. Condition (P1) requires that the popularity distribution P̄n (i ) take values of the
same order for i around Cn , as alluded to in Section 2.2. Intuitively, this means P̄n (i ) should not
change abruptly around i = Cn . In a stronger form obtained by setting κ2 = 0, Equation (26) reads
P̄n (�κ1Cn�) > γ , which means that even with a slightly larger cache, the contents that cannot fit
into the cache have an aggregate probability at least γ , or equivalently, the optimal static caching
policy has a miss probability at least γ . For Zipfian popularity in Equation (11), this stronger form
is satisfied only for α ≤ 1, while Equation (26) is satisfied for all α ≥ 0 as shown in Example 4.5.

Example 4.5. Consider the Zipfian popularity distribution in Equation (11). We first check that
assumption (P1) is satisfied for all α ≥ 0. For large n,

P̄n (i ) ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
n1−α−i1−α

n1−α , if 0 ≤ α < 1;

log n−log i

log n
, if α = 1;

i1−α

(1−α )ζ (α ) , if α > 1.
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Thus,

lim inf
n→∞

P̄n (�κ1Cn�)
P̄n (�κ2Cn�)

≥
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − (κ1β1)1−α , if 0 ≤ α < 1;
1, if α = 1;(

κ2

κ1

)α−1
, if α > 1.

In all cases, the above guarantees the existence of a γ ∈ (0, 1) for which Equation (26) holds. Note
that for α ≤ 1, we can setκ2 = 0. IfmΨ = 1, then G = {Ψ}, which satisfies (R2) by Lemma A.1. Thus,
Equation (31) holds for any Cn satisfying (C1). In particular, Equation (31) holds when all request
processes are Poisson.

As indicated in Section 2.3, Hirade and Osogami proved in Reference [19] that the individual
content hit probability in an LRU cache converges to the individual content hit probability in a TTL
cache for Poisson requests as the number of contents increases to infinity. More precisely, they
consider nN contents, ei, j , i = 1, . . . ,N , j = 1, . . . ,n, each of size 1/n, where successive requests
for content ei, j follow a Poisson process with rate λi . These Poisson processes are assumed to be
mutually independent. Note that in this setting there is only a finite number of types of requests
(= N )7. Define Fi (t ) = 1 − exp(−λit ). It is shown in Reference [19, Theorem 1] that the probability,

p (n)
i, j , that content ei, j is in an LRU cache converges to Fi (T ) as n → ∞, where T is the unique

solution of the equation
∑N

i=1 Fi (T ) = K , with K < N being the size of the cache. By performing
the substitutionsn → nN ,GnN , (n−1)i+j (·) → Fi (·) for j = 1, . . . ,n, i = 1, . . . ,N andCn → nK (with
these substitutions the ratio “cache size/content size = nK” is the same as in Reference [19]), we
get from Equation (30),

HLRU
nN ,i ∼ HTTL

nN ,i (TnN ) = Fi (TnN ) as n → ∞,

where (see Equation (24)) TnN is the unique t satisfying the equation Kn =
∑nN

i=1 ĜnN ,i (t ) =∑N
i=1 nFi (t ), or equivalently, K =

∑N
i=1 Fi (t ). We now check the conditions (C1), (R1), and (P1) for

Equation (30). Condition (C1) reads nK ≤ β1nN , which holds for any K/N ≤ β1 < 1 (note that
mΨ = 1, since requests are Poisson). By Lemma A.1, Gi = {Ψ} with Ψ(t ) = 1 − e−t is equicontinu-
ous, satisfying (R1). To check (P1), we first observe that contents ei,1, . . . , ei,n have the same pop-

ularity ri/n ∈ (0, 1) with
∑N

i=1 ri = 1. Hence, P̄nN (�κ1Cn�) � N (1 − κ1β1) min1≤i≤N ri := γ . Since
one can find κ1 ∈ (1, 1/β1) such that γ ∈ (0, 1), we have shown that Equation (26) holds with this
γ and κ2 = 0.

Note that a similar fluid approximation for an LRU cache is developed in Reference [27], which
considers dependent and so-called time-asymptotically stationary requests. However, the modifi-
cation introduced to deal with the dependence structure renders the new approximation unsuitable
for a re-interpretation as above. Thus, the results therein do not apply to TTL approximations. Ob-
serve also that there is only empirical evidence but no theoretical proof that the fluid limit is an
accurate approximation of the original LRU cache.

The following corollary considers the convergence of the aggregate hit probability.

Corollary 4.6. Assume (C1) and (P1). Then, as n → ∞,���HLRU
n − HTTL

n (Tn )���→ 0, (32)

if either (R2) holds, or for each i , (R1) and the following hold:

lim
m→∞

lim sup
n→∞

P̄n (m) = 0. (33)

7This can be considered as a special case of the setting in Proposition 6.4 with N classes, each consisting of n equally popular

contents. However, Theorem 1 of Reference [19] concerns hit probabilities of individual contents, while Proposition 6.4

concerns average hit probability.
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Proof. By Equations (19) and (22), for anym,���HLRU
n − HTTL

n (Tn )��� ≤ max
1≤i≤m

���HLRU
n,i − HTTL

n,i (Tn )��� + P̄n (m).

Suppose (R2) holds. Letm = n. Since P̄n (n) = 0, Equation (32) follows from Equation (31).
Suppose for each i , (R1) and Equation (33) hold. Fixm and let n → ∞. By Equation (30),

lim sup
n→∞

���HLRU
n − HTTL

n (Tn )��� ≤ lim sup
n→∞

P̄n (m).

Now letm → ∞ and Equation (32) follows Equation (33). �

Example 4.7. For the Zipfian popularity distribution in Equation (11),

lim sup
n→∞

P̄n (m) =
⎧⎪⎨⎪⎩

1, if 0 ≤ α ≤ 1;
m1−α

(1−α )ζ (α ) , if α > 1.

Thus, Equation (33) holds for α > 1 but fails for α ∈ [0, 1]. For each i , if the standardized cdf G∗n,i
is the same for all n, then Gi is a singleton and hence equicontinuous by Lemma A.1. In this case,
Equation (32) holds forα > 1, but we cannot conclude the same forα ≤ 1 without further assuming
that G is equicontinuous. When mΨ = 1, in particular, when all request processes are Poisson,
Equation (32) holds. For Poisson requests, Fagin [13] has established the convergence for α ∈ (0, 1)
and Cn ∼ β0n. We now see this is also true for α ≥ 1 and for Cn scaling sublinearly in n.

4.1 Proof of Proposition 4.1

We need the following two simple lemmas.

Lemma 4.8. For i, j = 1, . . . ,n, and t > 0,

P
0
n, j [Yn,i (t ) = 1] = 1{j=i }Gn,i (t ) + 1{j�i }Ĝn,i (t ). (34)

Proof. For i = j, since tn,i (0) = 0 a.s. under P0
n,i , we have

P
0
n,i [Yn,i (t ) = 1] = P0

n,i [−tn,i (−1) ≤ t] = Gn,i (t ).

For i � j, the independence of the point processes Nn,i and Nn, j yields

P
0
n, j [Yn,i (t ) = 1] = P[Yn,i (t ) = 1];

see [2, Equation (1.4.5)] for a more formal statement. Since tn,i (0) < 0 a.s. under P, we obtain

P
0
n, j [Yn,i (t ) = 1] = P[Yn,i (t ) = 1] = P[−tn,i (0) ≤ t] = Ĝn,i (t ), (35)

where the last equality follows from Equation (4). This completes the proof of Equation (34). �

Lemma 4.9. The function Kn defined in Equation (23) satisfies the following:

Kn (T ) =
n∑

i=1

Ĝn,i (T ), (36)

K ′n (T ) =
n∑

i=1

λn,iḠn,i (T ). (37)

The function Kn is concave on [0,∞) and strictly increasing at all T ∈ [0,∞) such that Kn (T ) < n.
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Proof. Using Equations (23), (15), and (35), we obtain

Kn (T ) = E[Yn (T )] =
n∑

i=1

P[Yn,i (T ) = 1] =

n∑
i=1

Ĝn,i (T ),

proving Equation (36). Taking the derivative of Equation (36) w.r.t.T and using Equation (4) yields
Equation (37). Note that K ′n is a decreasing function of T , from which it follows that Kn (T ) is
concave.

Now we show that K ′n (T ) > 0 at all T such that Kn (T ) < n, from which it will follow that Kn is
strictly increasing at all suchT . Clearly K ′n (T ) ≥ 0 from Equation (37). Assume that K ′n (T ) = 0 for
some T > 0. Then, Ḡn,i (T ) = 0 for all i , which, by monotonicity of Ḡn,i , yields Ḡn,i (y) = 0 for all
y ≥ T . Thus, by Equation (4),

1 − Ĝn,i (T ) = λi

∫ ∞

T

Ḡn,i (y)dy = 0,

which implies Kn (T ) = n by Equation (36). Therefore,K ′n (T ) > 0 for allT such thatKn (T ) < n. �

Now we prove Proposition 4.1.

Proof of Proposition 4.1. The existence of Tn follows from the continuity of Kn , the facts
Kn (0) = 0 and limT→∞ Kn (T ) = n, and the Intermediate Value Theorem. Uniqueness follows from
the strict monotonicity of Kn given by Lemma 4.9.

By Equation (4) and the fact Ḡn,i (y) ≤ 1, we have

Ĝn,i (Tn ) = λn,i

∫ Tn

0

Ḡn,i (y)dy ≤ λn,iTn .

Thus,

Cn = Kn (Tn ) =
n∑

i=1

Ĝn,i (Tn ) ≤
n∑

i=1

min{1, λn,iTn } ≤
n2∑
i=1

1 +

n∑
i=n2+1

λn,iTn = n2 + ΛnTnP̄n (n2),

from which Equation (29) follows.
To prove Equation (28), note that

Cn =

n∑
i=1

Ĝn,i (Tn ) ≥ mΨ

n∑
i=1

Ψ̂(λn,iTn ) ≥ n1mΨΨ̂(λn,σn1
Tn ),

where the first inequality follows from Equation (8), and the second from Equations (9) and (13),

and the monotonicity of Ψ̂. Since Cn/(n1mΨ) < 1 and Ψ̂ is a continuous cdf, there exists a ν0 such
that

Ψ̂(ν0) ≥ Cn

n1mΨ
.

For any such ν0,

Ψ̂(λn,σn1
Tn ) ≤ Cn

n1mΨ
≤ Ψ̂(ν0),

which, together with the monotonicity of Ψ̂, yields Equation (28). �
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4.2 Proof of Proposition 4.4

The proof of Proposition 4.4 relies on the four lemmas below.
Note by Equation (37) that K ′n (T ) is the aggregate miss rate of a TTL cache with timer T , and

μn (T ) =
K ′n (T )

Λn
=

n∑
i=1

pn,iḠn,i (T ) (38)

is the aggregate miss probability.

Lemma 4.10. Assume (C1) and (P1). Then there exist strictly positive constants x0,ϕ that do not

depend on n, such that for T ≤ (1 + x0)Tn and sufficiently large n,

μn (T ) ≥ ϕCn

ΛnTn
. (39)

Proof. Recall the definition of κ1 and κ2 in the statement of Proposition 4.4. Let n1 = �κ1Cn�,
n2 = �κ2Cn�. As Cn/(nmΨ) ≤ β1/mΨ < 1 for sufficiently large n by (C1) and Ψ̂ is a continuous cdf

with Ψ̂(0) = 0, there exist ν0 and x0 > 0 such that

1 > Ψ̂((1 + x0)ν0) ≥ Ψ̂(ν0) ≥ β1/mΨ ≥ Cn/(nmΨ) (40)

for sufficiently large n. Recall the content ordering Equation (13). For sufficiently large n,

μn (T ) =
n∑

i=1

pn,σi
Ḡn,σi

(T )

≥
n∑

i=1

pn,σi
Ψ̄(λn,σi

T ) by Equation (7)

≥
n∑

i=n1+1

pn,σi
Ψ̄(λn,σi

T )

≥ Ψ̄(λn,σn1
T )

n∑
i=n1+1

pn,σi
by Equation (13)

= Ψ̄(λn,σn1
T )P̄n (n1). (41)

Since μn (T ) is monotonically decreasing in T , we obtain for T ≤ (1 + x0)Tn and all sufficiently
large n,

μn (T ) ≥ μn ((1 + x0)Tn )

≥ Ψ̄((1 + x0)λn,σn1
Tn )P̄n (n1) by Equation (41)

≥ Ψ̄((1 + x0)ν0)P̄n (n1) by Equation (28)

≥ Cn − n2

ΛnTn
Ψ̄((1 + x0)ν0)

P̄n (n1)

P̄n (n2)
by Equation (29)

≥ (1 − κ2)Cn

ΛnTn
Ψ̄((1 + x0)ν0)

P̄n (n1)

P̄n (n2)

≥ (1 − κ2)Cn

ΛnTn
Ψ̄((1 + x0)ν0)γ by Equation (26).

The last inequality yields Equation (39) with ϕ = (1 − κ2)γ Ψ̄((1 + x0)ν0) if Ψ̄((1 + x0)ν0) > 0. As-
sume that Ψ̄((1 + x0)ν0) = 0. This would imply that Ψ(x ) = 1 for all x ≥ (1 + x0)ν0 by monotonicity
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of Ψ, which would in turn imply that 1 − Ψ̂((1 + x0)ν0) = (1/mΨ)
∫ ∞

(1+x0 )ν0
Ψ̄(t )dt = 0, contradict-

ing Equation (40). Therefore, we indeed have Ψ̄((1 + x0)ν0) > 0, which completes the proof. �

Lemma 4.11 (Kolmogorov’s Ineqality [26, Section 19.1]). LetX1, . . . ,Xn be independent ran-

dom variables such that EXi = 0 and |Xi | ≤ b for all i . Then for any x > 0,

P

⎡⎢⎢⎢⎢⎣
n∑

i=1

Xi ≥ x
⎤⎥⎥⎥⎥⎦ ≤ exp

{
− x2

4 max{s2
n ,bx }

}
, (42)

where s2
n =

∑n
i=1 EX

2
i is the variance of

∑n
i=1 Xi .

The next lemma shows that τn is concentrated around Tn .

Lemma 4.12. Assume Equation (39) holds for T ≤ (1 + x0)Tn . Then for 0 ≤ x ≤ min{1,x0},

P
0
n,i [τn > (1 + x )Tn] ≤ exp

{
− (ϕxCn )2

4(1 + x )Cn + 4

}
.

If, in addition, ϕxCn ≥ 1, then

P
0
n,i [τn < (1 − x )Tn] ≤ exp

{
− (ϕxCn − 1)2

4Cn + 4

}
.

Proof. Let T +n = (1 + x )Tn and T −n = (1 − x )Tn . Note that

Kn (T +n ) −Cn = Kn (T +n ) − Kn (Tn ) =

∫ T +n

Tn

K ′n (T )dT ,

which, by Equations (38) and (39), yields

Kn (T +n ) −Cn ≥
∫ T +n

Tn

ϕCn

Tn
dT = ϕxCn . (43)

Since Tn = (T +n +T
−
n )/2, the concavity of Kn yields

Cn − Kn (T −n ) = Kn (Tn ) − Kn (T −n ) ≥ Kn (T +n ) − Kn (Tn ) = Kn (T +n ) −Cn ≥ ϕxCn (44)

by Equation (43). Note that by Equations (15), (34), and (36), we have

E
0
n,i [Yn (T )] =

n∑
j=1

E
0
n,i [Yn, j (T )] = Kn (T ) +Gn,i (T ) − Ĝn,i (T ).

Since Gn,i and Ĝn,i are both cdfs, we obtain

Kn (T ) − 1 ≤ E0
n,i [Yn (T )] ≤ Kn (T ) + 1. (45)

Using the definition of τn in Equation (16), we obtain

P
0
n,i [τn > T

+
n ] = P0

n,i [Yn (T +n ) ≤ Cn − 1] = P0
n,i

{
Yn (T +n ) − E0

n,i [Yn (T +n )] ≤ Cn − 1 − E0
n,i [Yn (T +n )]

}
.

By Equations (45) and (43),

Cn − 1 − E0
n,i [Yn (T +n )] ≤ Cn − Kn (T +n ) ≤ −ϕxCn .

Thus,

P
0
n,i [τn > T

+
n ] ≤ P0

n,i

[
Yn (T +n ) − E0

n,i [Yn (T +n )] ≤ −ϕxCn

]
. (46)
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Since the request processes Nn,1,Nn,2 . . . ,Nn,n are independent, so are the Bernoulli random vari-
ables Yn,1 (t ),Yn,2 (t ), . . . ,Yn,n (t ) under P0

n,i . Thus,

var0
n,i [Yn (T +n )] =

n∑
j=1

var0
n,i [Yn, j (T +n )] ≤

n∑
j=1

E
0
n,i [Yn, j (T +n )] = E0

n,i [Yn (T +n )]

≤ Kn (T +n ) + 1 by Equation (45)

≤ (1 + x )Cn + 1, (47)

where last step follows from the following consequence of the concavity of Kn

x

1 + x
Kn (0) +

1

1 + x
Kn (T +n ) ≤ Kn

(
T +n

1 + x

)
= Kn (Tn ) = Cn

and the fact Kn (0) = 0.
Note that |Yn,i (T ) − E0

n,i [Yn,i ]| ≤ 1. By applying Kolmogorov’s inequality Equation (42) with

b = 1 and s2
n ≤ (1 + x )Cn + 1 to the right-hand side of Equation (46), we obtain

P
0
n,i [τn > T

+
n ] ≤ exp

{
− (ϕxCn )2

4(1 + x )Cn + 4

}
.

Similarly, if ϕxCn ≥ 1, then we have

P
0
n,i [τn < T

−
n ] = P0

n,i [Yn (T −n ) ≥ Cn]

= P0
n,i

[
Yn (T −n ) − E0

n,i [Yn (T −n )] ≥ Cn − E0
n,i [Yn (T −n )]

]
≤ P0

n,i

[
Yn (T −n ) − E0

n,i [Yn (T −n )] ≥ Cn − Kn (T −n ) − 1
]

by Equation (45)

≤ P0
n,i

[
Yn (T −n ) − E0

n,i [Yn (T −n )] ≥ ϕxCn − 1
]

by Equation (44)

≤ exp

{
− (ϕxCn − 1)2

4Cn + 4

}
by Equation (42).

�

Lemma 4.13.

P
0
n,i [Yn,i (τn ) = 1,τn ≤ T ] ≤ P0

n,i [Yn,i (T ) = 1,τn ≤ T ],

and

P
0
n,i [Yn,i (τn ) = 1,τn ≥ T ] ≥ P0

n,i [Yn,i (T ) = 1,τn ≥ T ].

Proof. SinceYn,i (t ) is increasing in t , the inequalities follow from a sample path argument. �

Now, we prove Proposition 4.4.

Proof of Proposition 4.4. Fix an arbitrary ϵ > 0. We show that for large enough n,���HLRU
n,i − HTTL

n,i (Tn )��� ≤ 2ϵ . (48)

The proof consists of two steps. We first show that HTTL
n,i (Tn ) is within ϵ distance from both

HTTL
n,i (T +n ) and HTTL

n,i (T −n ) for some T +n and T −n to be defined below. We then show that HLRU
n,i is

within ϵ distance from at least one of HTTL
n,i (T +n ) and HTTL

n,i (T −n ).
Let x0 and ϕ be given by Lemma 4.10. Since the family Gi is equicontinuous by (R1), there exists

ξi (ϵ ) > 0 such that |t1 − t2 | ≤ ξi (ϵ ) implies |G∗n,i (t1) −G∗n,i (t2) | ≤ ϵ . Since Cn → ∞ as n → ∞, let
n be sufficiently large so that

Cn ≥ max

{
1

ϕx0
,

1 + ϵξi (ϵ )

ϕϵξi (ϵ )

}
,
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which guarantees the existence of an x satisfying the following,

1

ϕCn
≤ x ≤ min

{
x0,

ϵξi (ϵ )

1 + ϵξi (ϵ )

}
. (49)

Fix such an x . Let T +n = (1 + x )Tn , T −n = (1 − x )Tn .
We first show

HTTL
n,i (Tn ) − HTTL

n,i (T −n ) ≤ ϵ, (50)

and

HTTL
n,i (T +n ) − HTTL

n,i (Tn ) ≤ ϵ . (51)

We only show Equation (50), as Equation (51) follows from the same argument. By Lemma 4.8,
Equation (50) is the same as Gn,i (Tn ) −Gn,i (T −n ) ≤ ϵ . Note that (this result holds regardless of the
values of ϵ , ξi (ϵ ) and λn,iTn )

max

{
1 − 1

ϵλn,iTn
,
ξi (ϵ )

λn,iTn

}
≥ ϵξi (ϵ )

1 + ϵξi (ϵ )
.

Since x satisfies Equation (49), there are two cases: either x ≤ ξi (ϵ )/(λn,iTn ) or x ≤ 1 − (ϵλn,iTn )−1.
In the first case, |λn,iTn − λn,iT

−
n | = xλn,iTn ≤ ξi (ϵ ). Since Gn,i (t ) = G∗n,i (λn,it ), using the defini-

tion of ξi (ϵ ), we obtain Gn,i (Tn ) −Gn,i (T −n ) ≤ ϵ . In the second case, note that

Gn,i (Tn ) −Gn,i (T −n ) ≤ 1 −Gn,i (T −n ) = Ḡn,i (T −n ),

and

1/λn,i =

∫ ∞

0

Ḡn,i (y)dy ≥
∫ T −n

0

Ḡn,i (y)dy ≥ T −n Ḡn,i (T −n ).

Thus,

Gn,i (Tn ) −Gn,i (T −n ) ≤ Ḡn,i (T −n ) ≤ 1

λn,iT −n
≤ ϵ,

where the last inequality follows from the definition T −n = (1 − x )Tn and the condition x ≤ 1 −
(ϵλn,iTn )−1. This proves Equation (50).

Next, we show Equation (48). By Lemma 4.12, for sufficiently large Cn ,

P
0
n,i [τn > T

+
n ]

P
0
n,i [τn < T

−
n ]

⎫⎪⎬⎪⎭ ≤ exp

{
− (ϕxCn − 1)2

4(1 + x )Cn + 4

}
≤ ϵ . (52)

Note that

HLRU
n,i = P

0
n,i [Yn,i (τn ) = 1]

≥ P0
n,i [Yn,i (τn ) = 1,τn ≥ T −n ]

≥ P0
n,i [Yn,i (T −n ) = 1,τn ≥ T −n ] by Lemma 4.13

≥ P0
n,i [Yn,i (T −n ) = 1] − P0

n,i [τn < T
−
n ]

= HTTL
n,i (T −n ) − P0

n,i [τn < T
−
n ],

which, by Equations (50) and (52), yields

HTTL
n,i (Tn ) − HLRU

n,i ≤ HTTL
n,i (Tn ) − HTTL

n,i (T −n ) + P0
n,i [τn < T

−
n ] ≤ 2ϵ .

Note that similar bounds have been used for the shot noise model in Reference [25].
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For the other direction, note that

HLRU
n,i ≤ P0

n,i [Yn,i (τn ) = 1,τn ≤ T +n ] + P0
n,i [τn > T

+
n ]

≤ P0
n,i [Yn,i (T +n ) = 1,τn ≤ T +n ] + P0

n,i [τn > T
+
n ] by Lemma 4.13

≤ P0
n,i [Yn,i (T +n ) = 1] + P0

n,i [τn > T
+
n ]

= HTTL
n,i (T +n ) + P0

n,i [τn > T
+
n ],

which, by Equations (51) and (52), yields

HLRU
n,i − HTTL

n,i (Tn ) ≤ HTTL
n,i (T +n ) − HTTL

n,i (Tn ) + P0
n,i [τn < T

+
n ] ≤ 2ϵ .

Therefore, Equation (48) holds, which proves Equation (30).
Finally, Equation (31) follows from the same argument with ξi (ϵ ) replaced by ξ (ϵ ), whose exis-

tence is guaranteed by (R2), i.e. the equicontinuity of the family G. �

Remark 2. In the above proof of Proposition 4.4, the conditions (C1) and (P1) are used only to
establish Equation (39) in Lemma 4.10. Therefore, Proposition 4.4 and Corollary 4.6 will still hold
if (C1) and (P1) are replaced by Equation (39) or other conditions that imply Equation (39).

Remark 3. Note that Reference [16] provides a more concise argument to justify the TTL approx-
imation in the case of Poisson requests, but the argument does not constitute a rigorous proof of the
asymptotic exactness of the approximation for this case. This is so for the following two reasons.
First, Proposition 2 therein assumes the quantity X (t ) is precisely Gaussian without investigating
the error in this Gaussian approximation. Second, the analysis after Proposition 2 replaces the erfc
function by the step function without further investigating the error introduced.

5 RATE OF CONVERGENCE

In this section, we provide two bounds on the rate of convergence in the TTL approxmation under
different sets of assumptions.

The following proposition provides a convergence rate of order (logCn/Cn )1/4. It is stated for
the uniform convergence of hit probabilities assuming (R5), the uniform Lipschitz continuity of
G. The obvious modification gives the convergence rate for content i assuming uniform Lipschitz
continuity of Gn,i . Examples of uniformly Lipschitz continuous cdfs include families of distribu-
tions that have densities with a common upper bound.

Proposition 5.1. Under assumptions (C1), (R5), and (P1), the following holds:

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� = O ��
(

logCn

Cn

) 1
4 �� . (53)

Proof. Let M be the Lipschitz constant in (R5). By setting ξ (ϵ ) = ϵ/M in the proof of Proposi-
tion 4.4, we obtain the following:

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� ≤ ϵ + exp

{
− (ϕxCn − 1)2

4(1 + x )Cn + 4

}
,

for 1
ϕCn
≤ x ≤ ϵ 2

M+ϵ 2 . For fixed x , the smallest ϵ is ϵ =
√

x M
1−x

. Thus,

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� ≤
√

xM

1 − x + exp

{
− (ϕxCn − 1)2

4(1 + x )Cn + 4

}
.
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Let x = 1
ϕ

√
log Cn

Cn
, which satisfies 1

ϕCn
≤ x ≤ x0 when Cn is large enough. Then the first term on

the right-hand side of the above inequality is asymptotically equal to√
M

ϕ

(
logCn

Cn

) 1
4

= Θ ��
(

logCn

Cn

) 1
4 �� ,

while the second term is asymptotically equal to

exp
{
−1

4
logCn + o(1)

}
∼ C−1/4

n .

It immediately follows that Equation (53) holds. �

The next proposition provides a faster rate of convergence under a different condition, (R6),
which says the change in the value of a cdf is bounded by a constant multiple of the relative change
in its argument. In fact, we only need Equation (25) to hold with t = Tn . Numerical results (see,
e.g., Reference [16]) show that the approximation may converge faster in practice than suggested
by Equation (54).

Proposition 5.2. Under assumptions (C1), (R6), and (P1), the following holds:

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� = O ���
√

logCn

Cn

��� . (54)

Proof. Note that the inequality in Equation (25) is invariant under scaling of t , so (R6) im-
plies that Equation (25) holds for Gn,i ,∀n, i . Replacing the bounds Gn,i (Tn ) −Gn,i (T +n ) ≤ ϵ and
Gn,i (Tn ) −Gn,i (T −n ) ≤ ϵ by (25) in the proof of Proposition 4.4, we obtain the following,

max
1≤i≤n

���HLRU
n,i − HTTL

n,i (Tn )��� ≤ Bx + exp

{
− (ϕxCn − 1)2

4(1 + x )Cn + 4

}
,

for 1
ϕCn
≤ x ≤ min{ρ,x0}. Let x = 1

ϕ

√
2 log Cn

Cn
, which falls in the interval [(ϕCn )−1,min{ρ,x0}]

when Cn ≥ max{2, (min{ρ,x0}ϕ)−4}. Then the second term on the right-hand side of the above
inequality is asymptotically equal to

exp
{
−1

2
logCn + o(1)

}
∼ C−1/2

n .

It immediately follows that Equation (54) holds. �

The following examples show that (R6) holds for a large class of distributions.

Example 5.3. For Poisson request processes, G = {Ψ} with Ψ(t ) = 1 − e−t . For any x ≥ 0,

0 ≤ Ψ(t + xt ) − Ψ(t ) = e−t (1 − e−xt ) ≤ xte−t ≤ e−1x ,

where we have used inequalities e−z ≥ 1 − z and ze−z ≤ e−1. For x ∈ [0, 1],

0 ≤ Ψ(t ) − Ψ(t − xt ) ≤ sup
z≥0

e−z (exz − 1) = (1 − x )
1
x
−1x ≤ x .

Thus, (R6) holds with B = 1 and ρ = 1.

Example 5.4. Suppose every G ∈ G has continuous density on (0,∞). By the Mean Value Theo-
rem, there exists ξG ∈ [1, 1 + x] such that

0 ≤ G (t + xt ) −G (t ) = G ′(ξGt )xt ≤ ξGtG
′(ξGt )x ≤

[
sup
t>0

tG ′(t )
]
x ≤ B0x ,
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where

B0 = sup
G ∈G

sup
t>0

tG ′(t ).

Similarly, there exists ζG ∈ [1 − x , 1] such that

0 ≤ G (t ) −G (t − xt ) = G ′(ζGt )xt ≤
ζG

1 − x tG
′(ζGt )x ≤

x

1 − x

[
sup
t>0

tG ′(t )
]
≤ B0

1 − x x .

IfB0 < ∞, then (R6) holds with any ρ ∈ (0, 1) andB = B0

1−ρ
. When isB0 < ∞ then? SinceG has finite

mean, supt>0 tG
′(t ) < ∞. If G is finite, i.e., theGn,i ’s are from a finite number of scale families, then

B0 < ∞ after taking the supremum over a finite set. In particular, for Poisson request processes,
G = {Ψ} with Ψ(t ) = 1 − e−t , so

B0 = sup
t>0

tΨ′(t ) = sup
t>0

te−t = e−1 < ∞.

Thus, (R6) holds with any ρ ∈ (0, 1) and B = e−1 (1 − ρ)−1, which is weaker than what we have
obtained in Example 5.3.

However, when G is infinite, i.e., the Gn,i ’s are not from a finite number of scale families, B0

may still diverge to infinity when we take the supremum over G ∈ G. An example where we still
have finite B0 is provided by an infinite collection of gamma distributions with shape parameters
upper bounded by some αmax < ∞. Recall that a gamma distributionGα with unit mean and shape
parameter α > 0 has the following density,

G ′α (t ) =
αα

Γ(α )
tα−1e−αt , t > 0.

Hence,

sup
t>0

tG ′α (t ) =
αα

Γ(α )
sup
t>0

tαe−αt =
αα

Γ(α )

(
sup
t>0

te−t

)α

=
ααe−α

Γ(α )
,

and

B0 = sup
α :Gα ∈G

ααe−α

Γ(α )
≤ sup

0<α ≤αmax

ααe−α

Γ(α )
.

Since the function ααe−α /Γ(α ) is continuous and has limit 0 as α → 0, we obtain B0 < ∞. Note
that as α → ∞,

ααe−α

Γ(α )
∼
√

2πα → ∞,

so the boundedness of α is essential.

Corollary 5.5. AssumeCn ≤ β1n for some β1 ∈ (0, 1) and the popularity distribution is Zipf’s law

in Equation (11). Then Equation (54) holds if mΨ = 1 and Ψ has a continuous density. In particular,

(54) holds if all request processes are Poisson.

Proof. We check the assumptions of Proposition 5.2. Condition (C1) is assumed. Condition (P1)
holds for Zipfian popularity by Example 4.5. By Example 5.4, condition (R6) holds when mΨ = 1
and Ψ has a continuous density. �
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6 EXTENSION OF FAGIN’S RESULT

In this section, we derive expressions for the characteristic time and the aggregate hit probability
in the limit as the cache size and the number of contents go to infinity. This extends the results
of Fagin [13] for the independence reference model to the more general setting of independent
stationary and ergodic content request processes.

We first consider the case where mΨ = 1 and pn,i ∼ дn f (zn,i ) uniformly for some continuous
function f defined on (0, 1] and zn,i ∈ [ i−1

n
, i

n
], i.e., (R4) and (P2) hold. Recall that mΨ = 1 implies

the cdfs Gn,i are all from the same scale family; i.e., Gn,i (t ) = Ψ(λn,it ) for all n and i .
The following proposition gives the asymptotic expression ofTn , which will be used in the proof

of Proposition 6.3 and is also of independent interest. Note that Equation (55) is a generalization of
Equation (2.2) of Reference [13] and Equation (7) of Reference [16]. We have imposed the inessen-
tial condition f > 0 a.e. on [0, 1], which simplifies the statements and can be easily removed. The
proof is found in Section 6.1.

Proposition 6.1. Under assumptions (C2), (R4), and (P2), the following holds

Tn ∼
ν0

дnΛn
, (55)

where ν0 the unique real number in (0,∞) that satisfies∫ 1

0

Ψ̂(ν0 f (x ))dx = β0. (56)

Example 6.2. Consider Zipf’s law in Equation (11) with α ≥ 0. Then pn,i ∼ дn f (i/n) with f (x ) =
x−α and

дn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−α

n
, if α < 1;

1
n log n

, if α = 1;
1

ζ (α )nα , if α > 1.

It is easy to check that

max
1≤i≤n

�����дn f (i/n)

pn,i
− 1

����� =
�������дnn

α
n∑

j=1

j−α − 1

�������→ 0

as n → ∞, so (P2) holds. If (C2) and (R4) also hold, then Tn satisfies Equation (55). In particular, if

λn,i = i
−α , then дnΛn ∼ n−α and hence Tn ∼ ν0n

α . For Poisson request processes, Ψ̂(t ) = 1 − e−t ,
and we recover Equation (7) of Reference [16].

The following proposition gives the limiting aggregate hit probability, which generalizes Equa-
tion (2.3) of Reference [13]. The proof is found in Section 6.2.

Proposition 6.3. Assume (C2), (R4), and (P2) with дn = n
−1. Then,

HLRU
n →

∫ 1

0

f (x )Ψ(ν0 f (x ))dx , (57)

as n → ∞, where ν0 satisfies Equation (56).

Proposition 6.3 considers a single class of contents in the sense that there is a single f and a
single Ψ for all contents. Consider the following generalization to a setting with multiple classes
of contents, which may arise from a situation where multiple service providers share a common
LRU cache. More precisely, consider J classes of contents, where class j has bjn contents8 with

8We assume bj n is an integer for ease of presentation, but this can easily relaxed by requiring class j to have a fraction bj

of the contents asymptotically.
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bj > 0 and
∑J

j=1 bj = 1. Instead of labeling contents by a single index i , we label them by a double

index so that (j,k ) is the kth content belonging to class j. Correspondingly, we have λn, j,k instead
of λn,i , and similarly for other quantities. For each class j,

(a) the inter-request distributions are from the same scale family; i.e.,Gn, j,k (x ) = Ψj (λn, j,kx )
for some continuous cdf Ψj with support in [0,∞) andmΨj

= 1;

(b) the content popularities pn, j,k ∼ n−1 fj (zn, j,k ) uniformly in k for zn, j,k ∈ [ k−1
bj n
, k

bj n
] and

continuous function fj defined on (0, 1] such that fj > 0 a.e. and limx→0+ fj (x ) ∈ [0,+∞],
i.e.,

max
1≤k≤nj

����� fj (zn, j,k )

npn, j,k
− 1

�����→ 0, as n → ∞; (58)

Note that (a) implies (R3) and (b) is the precise statement of (P3). We have the following gener-
alization of Proposition 6.3. The proof is found in Appendix B.

Proposition 6.4. Assume (C2), and conditions (a) and (b) above. Then,

HLRU
n →

J∑
j=1

bj

∫ 1

0

fj (x )Ψj (ν0 fj (x ))dx , (59)

as n → ∞, where ν0 is the unique real number in (0,∞) that satisfies

J∑
j=1

bj

∫ 1

0

Ψ̂j (ν0 fj (x ))dx = β0. (60)

6.1 Proof of Proposition 6.1

We need the following lemmas.

Lemma 6.5. The function

β (ν ) :=

∫ 1

0

Ψ̂(ν f (x ))dx

has the following properties,

(i) β (0) = 0, limν→∞ β (ν ) = 1;

(ii) β is continuous;

(iii) β is increasing in ν ;

(iv) β is strictly increasing at all ν such that β (ν ) < 1.

Proof. By Equation (3), Ψ̂(0) = 0, which implies in turn implies that β (0) = 0. Since

limt→∞ Ψ̂(t ) = 1, by the Bounded Convergence Theorem,

lim
ν→∞

β (ν ) =

∫ 1

0

lim
ν→∞

Ψ̂(ν f (x ))dx = 1.

This proves (i). (ii) follows from the continuity of Ψ̂ and the Bounded Convergence Theorem.

Let ν1 > ν2. Since f (x ) ≥ 0, it follows that Ψ̂(ν1 f (x )) ≥ Ψ̂(ν2 f (x )) and hence β (ν1) ≥ β (ν2). This
proves (iii).

If β (ν1) = β (ν2), then continuity of Ψ̂(ν f (x )) implies Ψ̂(ν1 f (x )) = Ψ̂(ν2 f (x )) for all x . If f (x ) >
0, then ν1 f (x ) > ν2 f (x ), and Equation (3) implies Ψ̄(ν2 f (x )) = 0, which, by monotonicity of Ψ̄,
implies Ψ̄(t ) = 0 for all t ≥ ν2 f (x ). Thus,

1 − Ψ̂(ν2 f (x )) =

∫ ∞

ν2f (x )
Ψ̄(t )dt = 0.
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It follows that Ψ̂(ν2 f (x )) = 1{f (x )>0} for all x ∈ (0, 1]. Since Ψ̂(ν2 f (x )) is continuous in x and f

is not identically zero, it follows that Ψ̂(ν2 f (x )) = 1, and hence β (ν2) = 1. Thus, β (ν1) > β (ν2) if
β (ν2) < 1, which completes the proof of (iv). �

Now, we prove Proposition 6.1.

Proof of Proposition 6.1. Recall mΨ = 1 implies Gn,i (x ) = Ψ(λn,ix ) and Ĝn,i (x ) = Ψ̂(λn,ix ).
We obtain from Equations (36) and (9),

Cn

n
=

1

n
Kn (Tn ) =

1

n

n∑
i=1

Ĝn,i (Tn ) =
1

n

n∑
i=1

Ψ̂(λn,iTn ) =
1

n

n∑
i=1

Ψ̂(pn,i ΛnTn ).

Given any ϵ > 0, (27) yields that for sufficiently large n and i = 1, . . . ,n,

(1 − ϵ )дn f (zn,i ) ≤ pn,i ≤ (1 + ϵ )дn f (zn,i ). (61)

Let ν1 = lim supn→∞ дnΛnTn . Let {n� : � ≥ 1} be the indices of a subsequence that converges to
ν1, i.e. ν1 = lim�→∞ дn�Λn�Tn� . First, assume ν1 < ∞. For sufficiently large �,

(1 − ϵ ) (ν1 − ϵ ) f (zn�,i ) ≤ pn�,i Λn�Tn� ≤ (1 + ϵ ) (ν1 + ϵ ) f (zn�,i ).

Since Ψ̂ is non-decreasing, for sufficiently large �,

1

n�

n�∑
i=1

Ψ̂
(
(1 − ϵ ) (ν1 − ϵ ) f (zn�,i )

) ≤ Cn�

n�
=

1

n�

n�∑
i=1

Ψ̂(pn�,i Λn�Tn� )

≤ 1

n�

n�∑
i=1

Ψ̂
(
(1 + ϵ ) (ν1 + ϵ ) f (zn�,i )

)
.

Letting � → ∞ and using the definition of the Riemann integral, we obtain∫ 1

0

Ψ̂((1 − ϵ ) (ν1 − ϵ ) f (x ))dx ≤ lim
k→∞

Cn�

n�
= β0 ≤

∫ 1

0

Ψ̂((1 + ϵ ) (ν1 + ϵ ) f (x ))dx .

Since Ψ̂ is continuous, letting ϵ → 0 and using the Bounded Convergence Theorem, we obtain

β0 =

∫ 1

0

Ψ̂(ν1 f (x ))dx = β (ν1).

If ν1 = +∞, then repeating the above argument shows that

β0 ≥ β (ν )

for any ν , which would imply β0 ≥ limν→∞ β (ν ) = 1 by Lemma 6.5, a contradiction. Therefore, ν1

is finite and satisfies β (ν1) = β0. The same argument shows that ν2 = lim infn→∞ дnΛnTn satisfies
β0 = β (ν2). By Lemma 6.5, ν1 = ν2 = ν0, where ν0 ∈ (0,∞) is the unique root of β (ν ) = β0. It follows
that Equation (55) holds. �

6.2 Proof of Proposition 6.3

We will invoke Corollary 4.6 to show convergence. Assumption (R2) holds by Lemma A.1. Since
mΨ = 1 by (R4), (C2) implies (C1) for any β1 ∈ (β0, 1).

Now, we show that (P1) holds. Let A� = {x ∈ [0, 1] : f (x ) ≥ 1/�}. Since f > 0 a.e.,
lim�→∞ Leb (A� ) = Leb{x ∈ [0, 1] : f (x ) > 0} = 1, where Leb is the Lebesgue measure on [0, 1].
Thus, there exists an �0 such that Leb (Ac

�0
) ≤ (1 − κ1β0)/4. Let I = [(1 − κ1β0)/4, 1] and In,i =

[ i−1
n
, i

n
]. Since f is continuous, it is uniformly continuous on I by the Heine-Cantor Theorem.
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For all sufficiently large n, | f (x ) − f (zn,i ) | ≤ 1
2�0

if x ∈ In,i ∩ I . Therefore, for all sufficiently

large n,

1

n
f (zn,i ) =

∫
In,i

f (zn,i )dx ≥
∫

In,i∩I

[
f (x ) − 1

2�0

]
dx

≥
∫

In,i∩I∩A�0

(
1

�0
− 1

2�0

)
dx =

1

2�0
Leb (In,i ∩ I ∩A�0 ).

Summing over i , we obtain

P̄n (�κ1Cn�) ∼
n∑

i= �κ1Cn �+1

1

n
f (zn,σi

)

≥ 1

2�0

n∑
i= �κ1Cn �+1

Leb (In,σi
∩ I ∩A�0 )

=
1

2�0
Leb ���

���
n⋃

i= �κ1Cn �+1

In,σi

��� ∩ I ∩A�0

���
≥ 1

2�0

���Leb
���

n⋃
i= �κ1Cn �+1

In,σi

��� − Leb (I c ) − Leb (Ac
�0

)���
=

1

2�0

���
n∑

i= �κ1Cn �+1

Leb (In,σi
) − Leb (I c ) − Leb (Ac

�0
)���

≥ 1

2�0

(
n − �κ1Cn�

n
− 1

4
(1 − κ1β0) − 1

4
(1 − κ1β0)

)

=
1

4�0
(1 − κ1β0) > 0. (62)

We conclude that Equation (26) holds for 0 < γ < 1
4�0

(1 − κ1β0).

Therefore, Equation (32) holds by Corollary 4.6. Then, Equation (57) follows from Equation (32)
and the following lemma.

Lemma 6.6. Under the assumptions of Proposition 6.3,

HTTL
n (Tn ) →

∫ 1

0

f (x )Ψ(ν0 f (x ))dx , as n → ∞. (63)

Proof. Recall that Gn,i (x ) = Ψ(λn,ix ). We obtain from Equations (20), (21), and (34),

HTTL
n (Tn ) =

n∑
i=1

pn,i Ψ(λn,iTn ) =
n∑

i=1

pn,i Ψ(pn,i ΛnTn ).

From Equations (55) and (61) the following inequalities hold, for any ϵ > 0 and n large enough,

(1 − ϵ ) (ν0 − ϵ ) f (zn,i ) ≤ pn,i ΛnTn ≤ (1 + ϵ ) (ν0 + ϵ ) f (zn,i ).
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The monotonicity of Ψ then yields

1 − ϵ
n

n∑
i=1

f (zn,i )Ψ
(
(1 − ϵ ) (ν0 − ϵ ) f (zn,i )

) ≤ HTTL
n (Tn )

≤ 1 + ϵ

n

n∑
i=1

f (zn,i )Ψ
(
(1 + ϵ ) (ν0 + ϵ ) f (zn,i )

)
.

(64)

Letting n → ∞ and using the definition of the Riemann integral, we obtain

lim inf
n→∞

HTTL
n (Tn ) ≥ (1 − ϵ )

∫ 1

0

f (x )Ψ((1 − ϵ ) (ν0 − ϵ ) f (x )dx , (65)

and

lim sup
n→∞

HTTL
n (Tn ) ≤ (1 + ϵ )

∫ 1

0

f (x )Ψ((1 + ϵ ) (ν0 + ϵ ) f (x ))dx . (66)

The existence of the integrals comes from the fact that 0 ≤ Ψ ≤ 1 and the integrability of f over
[0, 1], which follows from the first inequality in Equation (61) by the following:

1 =

n∑
i=1

pn,i ≥ (1 − ϵ )
1

n

n∑
i=1

f (zn,i ) → (1 − ϵ )

∫ 1

0

f (x )dx .

Since Ψ is continuous and
∫ 1

0
f (x )dx < ∞, letting ϵ → 0 in Equations (65) and (66) yields Equa-

tion (63) by the Dominated Convergence Theorem. �

7 CONCLUSIONS

In this article, we developed an approximation for the aggregate and individual content hit proba-
bility of an LRU cache based on a transformation to the TTL cache for the case that content requests
are described by independent stationary and ergodic processes. This approximation extends one
first proposed and studied by Fagin [13] for the independent reference model and provides the
theoretical basis for approximations introduced in Reference [17] for content requests described
by independent renewal processes. We showed that the approximations become exact in the limit
as the cache size and the number of contents go to infinity. Last, we established the rate of con-
vergence for the approximation as number of contents increases.

Future directions include investigation for tighter bounds on the convergence rate and exten-
sion of these results to other cache policies, such as FIFO and random, and to networks of caches
perhaps using ideas from References [3, 8, 28]. In addition, it is desirable to relax independence
between different content request streams.

APPENDIXES

A EQUICONTINUITY

Lemma A.1. A finite family of continuous cdfs is equicontinuous, so that (R4)=⇒(R3)=⇒(R2).

Proof. Let the family of cdfs be F = {F1, . . . , F J }. Fix ϵ . There exists a Lj ∈ (0,∞) such that

Fj (−Lj ) < ϵ and 1 − Fj (Lj ) < ϵ . (67)

Let L = max1≤j≤ J Lj ∈ (0,∞). Being continuous, Fj is uniformly continuous on [−2L, 2L] by the
Heine-Cantor Theorem. Thus, there exists a δ j ∈ (0,L) such that

|Fj (x1) − Fj (x2) | < ϵ, (68)

for x1,x2 ∈ [−2L, 2L] such that |x1 − x2 | < δ j .
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Let δ = min1≤j≤ J δ j ∈ (0,L). Consider any x1 > x2 with |x1 − x2 | < δ . There are three cases.

(i) If x1,x2 ∈ [−2L, 2L], then Equation (68) holds for all j.
(ii) If x1 > 2L, then x2 > L, since |x1 − x2 | < δ < L. Thus, |Fj (x1) − Fj (x2) | = Fj (x1) −

Fj (x2) ≤ 1 − Fj (Lj ) < ϵ by Equation (67), and this holds for all j.
(iii) If x2 < −2L, then x1 < −L, since |x1 − x2 | < δ < L. Thus, |Fj (x1) − Fj (x2) | =≤ Fj (−Lj ) < ϵ

by Equation (67), and this holds for all j.

Therefore, F is equicontinuous. �

B PROOF OF PROPOSITION 6.4

The proof parallels those of Proposition 6.1 and 6.3 except for the last step. The following lemma
generalizes Lemma 6.5.

Lemma B.1. The function

β J (ν ) :=

J∑
j=1

bj

∫ 1

0

Ψ̂j (ν fj (x ))dx

has the following properties:

(i) β J (0) = 0, limν→∞ β J (ν ) = 1;

(ii) β J is continuous;

(iii) β J is increasing in ν ;

(iv) β J is strictly increasing at all ν such that β J (ν ) < 1.

Proof. By Equation (8), Ψ̂j (0) = 0, which implies β J (0) = 0. Since limx→∞ Ψ̂j (x ) = 1, by the
Bounded Convergence Theorem,

lim
ν→∞

β J (ν ) =

J∑
j=1

bj

∫ 1

0

lim
ν→∞

Ψ̂j (ν fj (x ))dx = 1.

This proves (i). (ii) follows from the continuity of Ψ̂j and the Bounded Convergence Theorem.

Let ν1 > ν2. Since fj (x ) ≥ 0, it follows that Ψ̂j (ν1 fj (x )) ≥ Ψ̂j (ν2 fj (x )) and hence β J (ν1) ≥ β J (ν2).
This proves (iii).

If β J (ν1) = β J (ν2), then continuity of Ψ̂j (ν fj (x )) implies that Ψ̂j (ν1 fj (x )) = Ψ̂j (ν2 fj (x )) for all
x . If fj (x ) > 0, then ν1 fj (x ) > ν2 fj (x ), and Equation (3) implies Ψ̄j (ν2 fj (x )) = 0, which, by mono-
tonicity of Ψ̄j , implies Ψ̄j (t ) = 0 for all t ≥ ν2 fj (x ). Thus,

1 − Ψ̂j (ν2 fj (x )) =

∫ ∞

ν2fj (x )
Ψ̄j (t )dt = 0.

It follows that Ψ̂j (ν2 fj (x )) = �{fj (x )>0} for all x ∈ (0, 1]. Since Ψ̂j (ν2 fj (x )) is continuous in x and

fj is not identically zero, it follows that Ψ̂j (ν2 fj (x )) = 1. Since this is true for all j, it follows that
β J (ν2) = 1. Thus, β J (ν1) > β J (ν2) if β J (ν2) < 1, which completes the proof of (iv). �

The following proposition generalizes Proposition 6.1.

Proposition B.2. Under the assumptions in Proposition 6.4 but with the condition (b) that pn, j,k ∼
n−1 fj (zn, j,k ) generalized to pn, j,k ∼ дn fj (zn, j,k ), we have

Tn ∼
ν0

дnΛn
, (69)

where ν0 satisfies Equation (60).
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Proof. Recall Gn, j,k (x ) = Ψj (λn, j,kx ) implies Ĝn, j,k (x ) = Ψ̂j (λn, j,kx ). We obtain from Equa-
tions (36) and (9),

Cn

n
=

1

n
Kn (Tn ) =

1

n

J∑
j=1

bj n∑
k=1

Ĝn, j,k (Tn ) =
1

n

J∑
j=1

bj n∑
k=1

Ψ̂j (λn, j,kTn ) =
1

n

J∑
j=1

bj n∑
k=1

Ψ̂j (pn, j,k ΛnTn ).

Given any ϵ > 0, Equation (58) yields that for sufficiently large n and j = 1, . . . , J , k = 1, . . . ,bjn,

(1 − ϵ )дn fj (zn, j,k ) ≤ pn, j,k ≤ (1 + ϵ )дn fj (zn, j,k ). (70)

Let ν1 = lim supn→∞ дnΛnTn . Let {n� : � ≥ 1} be the indices of a subsequence that converges to
ν1, i.e. ν1 = lim�→∞ дn�Λn�Tn� . First, assume ν1 < ∞ for all j. For sufficiently large �,

(1 − ϵ ) (ν1 − ϵ ) fj (zn�,i ) ≤ pn�, j,k Λn�Tn� ≤ (1 + ϵ ) (ν1 + ϵ ) fj (zn�,i ).

Since Ψ̂j is non-decreasing, for sufficiently large �,

1

n�

J∑
j=1

bj n�∑
k=1

Ψ̂j

(
(1 − ϵ ) (ν1 − ϵ ) fj (zn�,i )

)
≤

Cn�

n�
=

1

n�

J∑
j=1

bj n�∑
k=1

Ψ̂j (pn�,i Λn�Tn� )

≤ 1

n�

J∑
j=1

bj n�∑
k=1

Ψ̂j

(
(1 + ϵ ) (ν1 + ϵ ) fj (zn�,i )

)
.

Letting � → ∞ and using the definition of the Riemann integral, we obtain

J∑
j=1

bj

∫ 1

0

Ψ̂j ((1 − ϵ ) (ν1 − ϵ ) fj (x ))dx ≤ lim
�→∞

Cn�

n�
= β0 ≤

J∑
j=1

bj

∫ 1

0

Ψ̂j ((1 + ϵ ) (ν1 + ϵ ) fj (x ))dx .

Since Ψ̂j is continuous, letting ϵ → 0 and using the Bounded Convergence Theorem, we obtain

β0 =

J∑
j=1

bj

∫ 1

0

Ψ̂j (ν1 fj (x ))dx = β J (ν1).

If ν1 = +∞, then repeating the above argument shows that

β0 ≥ β J (ν )

for any ν , which would imply β0 ≥ limν→∞ β J (ν ) = 1 by Lemma B.1, a contradiction. Therefore, ν1

is finite and satisfies β J (ν1) = β0. The same argument shows that ν2 = lim infn→∞ дnΛnTn satisfies
β0 = β J (ν2). By Lemma B.1, ν1 = ν2 = ν0, where ν0 ∈ (0,∞) is the unique root of β J (ν ) = β0. It
follows that Equation (69) holds. �

The following lemma generalizes Lemma 6.6.

Lemma B.3. Under the assumptions of Proposition 6.4,

HTTL
n (Tn ) →

J∑
j=1

bj

∫ 1

0

fj (x )Ψj (ν0 fj (x ))dx . (71)

Proof. Recall that Gn, j,k (x ) = Ψj (λn, j,kx ). We obtain from Equations (20), (21), and (34),

HTTL
n (Tn ) =

J∑
j=1

bj n∑
i=1

pn, j,k Ψj (λn, j,kTn ) =

J∑
j=1

bj n∑
i=1

pn, j,k Ψj (pn, j,k ΛnTn ).
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Given any ϵ > 0, for all sufficiently large n, Equation (70) and the following hold:

(1 − ϵ ) (ν0 − ϵ ) fj (zn, j,k ) ≤ pn, j,k ΛnTn ≤ (1 + ϵ ) (ν0 + ϵ ) fj (zn, j,k ). (72)

The monotonicity of Ψj then yields

1 − ϵ
n

J∑
j=1

bj n∑
k=1

fj (zn, j,k )Ψj

(
(1 − ϵ ) (ν0 − ϵ ) fj (zn, j,k )

)
≤ HTTL

n (Tn )

≤ 1 + ϵ

n

J∑
j=1

bj n∑
k=1

fj (zn, j,k )Ψj

(
(1 + ϵ ) (ν0 + ϵ ) fj (zn, j,k )

)
.

Letting n → ∞ and using the definition of the Riemann integral, we find

lim inf
n→∞

HTTL
n (Tn ) ≥ (1 − ϵ )

J∑
j=1

bj

∫ 1

0

fj (x )Ψj ((1 − ϵ ) (ν0 − ϵ ) fj (x )dx , (73)

and

lim sup
n→∞

HTTL
n (Tn ) ≤ (1 + ϵ )

J∑
j=1

bj

∫ 1

0

fj (x )Ψj ((1 + ϵ ) (ν0 + ϵ ) fj (x ))dx . (74)

The existence of the integrals comes from the fact that 0 ≤ Ψj ≤ 1 and the integrability of fj over
[0, 1], which follows from the first inequality in Equation (70) by the following:

1 =

J∑
j=1

bj n∑
k=1

pn, j,k ≥ (1 − ϵ )
1

n

J∑
j=1

bj n∑
k=1

fj (zn, j,k ) → (1 − ϵ )

J∑
j=1

bj

∫ 1

0

fj (x )dx . (75)

Since Ψj is continuous and
∫ 1

0
fj (x )dx < ∞, letting ϵ → 0 in Equations (73) and (74) yields Equa-

tion (71) by the Dominated Convergence Theorem. �

Proof of Proposition 6.4. Thanks to Lemma B.3 and the value of ν0 given in Proposition B.2
that satisfies (60), we only need to show the convergence of HLRU

n to HTTL
n (Tn ) as n → ∞. For that,

we invoke Corollary 4.6. We use Remark 2 and show that Equation (39) holds under the conditions
of Proposition 6.4. Repeating the proof of Equation (71), we obtain

HTTL
n ((1 + x )Tn ) →

J∑
j=1

bj

∫ 1

0

fj (y)Ψj ((1 + x )ν0 fj (y))dy, (76)

as n → ∞. Fix ϵ > 0. Summing Equation (72) over j and k and letting дn = 1/n yields, for n large
enough,

(1 − ϵ )
1

n

J∑
j=1

bj n∑
k=1

f (zn,i,k ) ≤
J∑

j=1

bj n∑
k=1

pn, j,k = 1 ≤ (1 + ϵ )
1

n

J∑
j=1

bj n∑
k=1

f (zn,i,k ).

Letting n → ∞, we obtain, by the definition of the Riemann integral,

(1 − ϵ )

J∑
j=1

bj

∫ 1

0

fj (y)dy ≤ 1 ≤ (1 + ϵ )

J∑
j=1

bj

∫ 1

0

fj (y)dy,

from which, we conclude that

1 =

J∑
j=1

bj

∫ 1

0

fj (y)dy. (77)
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Since μn (T ) = 1 − HTTL
n (T ), subtracting Equation (76) from (77) yields

μn ((1 + x )Tn ) →
J∑

j=1

bj

∫ 1

0

fj (y)Ψ̄j ((1 + x )ν0 fj (y))dy := μ (x ).

Note that μ is continuous by the continuity of fj , Ψj and the Dominated Convergence Theorem. If
μ (0) > 0, then there exists x0 > 0 such that μ (x0) ≥ μ (0)/2 > 0. Thus, for sufficiently large n and
T ≤ (1 + x0)Tn ,

μn (T ) ≥ μn ((1 + x0)Tn ) ≥ μ (x0)/2 ≥ μ (0)/4 > 0.

Since Cn ≤ ΛnTn by Equation (29) with n2 = 0, the above inequality yields Equation (39) with
ϕ = μ (0)/4, provided that μ (0) > 0.

Now, we show that μ (0) > 0. Suppose μ (0) = 0. Then,∫ 1

0

fj (y)Ψ̄j (ν0 fj (y))dy = 0,

for each j. Since fj (y) > 0 a.e. on (0, 1] and Ψ̄j (·) ≥ 0 for each j, it follows that Ψ̄j (ν0 fj (y)) = 0
a.e. on (0, 1] for each j. Hence, by Equation (3) withmΨj

= 1 for each j,

β J (ν0) =

J∑
j=1

bj

∫ 1

0

Ψ̂j (ν0 fj (x ))dx =

J∑
j=1

bj

∫ 1

0

∫ ν0fj (x )

0

Ψ̄(y)dydx = 0,

which contradicts the result obtained in Proposition B.2 that β J (ν0) = β0 ∈ (0, 1). Therefore, μ (0) >
0, which completes the proof. �

Remark 4. A proof similar to that of Proposition 6.3 can be done if we let Ψ = max1≤j≤ J Ψj

and restrict the range of β0 to β0 < mΨ =
∫ ∞

0
min1≤j≤ J Ψ̄j (x )dx (see Section 2.1), a quantity that

is in general strictly less than one. This restriction on β0 is a consequence of condition (C1). It is
also worth noting that, since Proposition 6.4 reduces to Proposition 6.3 when J = 1, the proof of
Proposition 6.4 provides an alternative proof of Proposition 6.3.
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