
FastIOV: Fast Startup of Passthrough Network I/O
Virtualization for Secure Containers

Yunzhuo Liu1,2∗, Junchen Guo2∗, Bo Jiang1†, Yang Song2, Pengyu Zhang2,
Rong Wen2, Biao Lyu3,2, Shunmin Zhu4,2, Xinbing Wang1

1Shanghai Jiao Tong University 2Alibaba Cloud 3Zhejiang University 4Hangzhou Feitian Cloud
Shanghai, China Hangzhou, China Hangzhou, China Hangzhou, China
{liu445126256,bjiang,xwang8}@sjtu.edu.cn,alibaba_cloud_network@alibaba-inc.com

Abstract
Single Root I/O Virtualization (SR-IOV) technology has ad-
vanced in recent years and can simultaneously satisfy the
network requirements of high data plane performance, high
deployment density, and fast startup for applications in tradi-
tional containers. However, it falls short with secure contain-
ers, which have become the mainstream choice in multi-
tenant clouds. SR-IOV requires secure containers to use
passthrough I/O for higher data plane performance, which
hinders the container startup performance and prevents its
usage in time-sensitive tasks like serverless computing. In
this paper, we advocate that the startup performance of
SR-IOV enabled secure containers can be further boosted,
making SR-IOV suitable for building a Container Network
Interface (CNI) for secure containers. We first dissect the end-
to-end concurrent startup process and identify three key
bottlenecks that lead to the slow startup, including Virtual
Function I/O device set management, Direct Memory Access
memory mapping, and Virtual Function (VF) driver initializa-
tion. We then propose a CNI named FastIOV that addresses
these bottlenecks through lock decomposition, unnecessary
mapping skipping, decoupled zeroing, and asynchronous
VF driver initialization. Our evaluation shows that FastIOV
reduces the overhead of enabling SR-IOV for secure contain-
ers by 96.1%, achieving 65.7% and 75.4% reductions in the
average and 99th percentile end-to-end startup time.

∗Yunzhuo Liu and Junchen Guo are the co-first authors.
†Bo Jiang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1196-1/25/03
https://doi.org/10.1145/3689031.3696066

CCS Concepts: • Networks → Overlay and other logi-
cal network structures; Cloud computing; Data center
networks.

Keywords: Container Network, Passthrough I/O Virtualiza-
tion, SR-IOV, Secure Container, Overlay Network Startup
ACM Reference Format:
Yunzhuo Liu1,2∗, Junchen Guo2∗, Bo Jiang1†, Yang Song2, Pengyu
Zhang2,, Rong Wen2, Biao Lyu3,2, Shunmin Zhu4,2, Xinbing Wang1.
2025. FastIOV: Fast Startup of Passthrough Network I/O Virtual-
ization for Secure Containers. In Twentieth European Conference
on Computer Systems (EuroSys ’25), March 30-April 3, 2025, Rot-
terdam, Netherlands. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3689031.3696066

1 Introduction
Nowadays, mainstream cloud providers have been progres-
sively shifting from virtual machines to containers as their
new compute instances. The container-enabled cloud ser-
vices, such as NoSQL database, e.g., Azure Cosmos [6], and
serverless function compute, e.g., AWS Lambda [3], neces-
sitate network access to either serve incoming requests or
interact with other services like cloud storage. The container
network is required to achieve not only high data plane
performance but also high deployment density, i.e., a large
number of virtual network devices on a single server, and
fast startup [1, 20, 24, 35, 47, 51, 57, 60, 61].

Single Root I/O Virtualization (SR-IOV) [13] has emerged as
the best-performing approach to simultaneously satisfy the
above three requirements for traditional containers. First, SR-
IOV virtualizes a Network Interface Card (NIC) into multiple
virtual NICs named Virtual Functions (VFs). It is a hardware-
assisted device virtualization technology that allows con-
tainers to interact with the NIC resources more directly and
achieve near bare-metal data plane performance, while other
container network solutions, like software based Container
Network Interface (CNI), incur obvious overhead in through-
put and latency [2, 48, 49]. Second, the deployment density
of SR-IOV has also been greatly improved with the emerging
technologies, such as mdev [56], Intel Scalable IOV [17], and
HD-IOV [70]. The newest commercial NICs like Mellanox
CX-7 [18] and Intel IPU [16] have announced the vanilla
support of 1K VFs. Finally, the startup of SR-IOV for a tradi-
tional container is fast, as its main procedure is just moving

https://doi.org/10.1145/3689031.3696066
https://doi.org/10.1145/3689031.3696066
https://doi.org/10.1145/3689031.3696066


EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

10   20 50 100 200
Concurrency

0

10

20
Ti

m
e 

co
st

 (s
)

no-network SR-IOV

Figure 1. Overhead of enabling SR-IOV on secure con-
tainer startup time with concurrency up to 2001.

the pre-created Linux network interface of a VF on the host
into the network namespace of the container.
However, despite the commendable performance of SR-

IOV for traditional containers, it still falls short when ap-
plied to secure containers. Secure containers like Firecracker
[1], Kata [24], and RunD [35], have become the mainstream
choices in multi-tenant clouds where security is highly val-
ued. They run the container processes inside micro Virtual
Machines (microVMs) with trimmed and independent kernels
to provide better isolation against attacks such as privilege
escalation. Unlike traditional containers that can directly use
the pre-created Linux network interface of a VF, microVMs
require an extra virtualization process named passthrough I/O
to efficiently use the VF due to the existence of the indepen-
dent kernels. We find that the overhead of this virtualization
greatly hinders the startup performance of secure containers.
Fig. 1 illustrates the effect of enabling SR-IOV on the average
time of concurrently starting 10 ∼ 200 secure containers. We
observe that enabling SR-IOV incurs a significant time over-
head that increases with the concurrency. The time overhead
is 12.2s when the concurrency is 200, increasing the average
time by 305%. Such slow startup poses a significant obstacle
in developing a desirable secure container network solution
with SR-IOV.

In this work, we study the problem of achieving fast concur-
rent startup for SR-IOV enabled secure containers. By demysti-
fying the end-to-end concurrent startup procedure of SR-IOV
enabled secure containers, we identify several key bottle-
necks that have not been addressed before in low-density
scenarios. Then, we propose FastIOV, an enhanced SR-IOV
solution that tackles those bottlenecks and achieves ultra-
fast startup. Our contributions are summarized as follows.
• Measurement results (§3): We dive into the details of
the components, from the user-space CNI plugin and the

1We are actually showing the performance of the optimized version of SR-
IOV CNI that resolves an implementation flaw of driver rebinding in Kata,
as described in §5. The original version [23] performs much worse. The
concurrency setting is based on the statistics collected from Alibaba server-
less platform, which shows that over 200 container invocation requests can
arrive nearly simultaneously at one server [35].

container runtime to the kernel-space device driver and
OS modules. We identify three major bottlenecks related
to passthrough I/O are identified: Virtual Function I/O
(VFIO) device set (devset) management, Direct Memory Ac-
cess (DMA) memory mapping and VF driver initialization.
These bottlenecks are not coupled with any specific CNI or
secure container framework implementations. They con-
tribute more than 70% and 80% of the average and 99th
percentile container startup time, respectively. As far as we
know, we are the first to thoroughly analyze and elaborate
on the end-to-end concurrent startup process of SR-IOV
enabled secure containers.

• Optimization solutions (§4): Targeting the key bottle-
necks, FastIOV first decomposes the coarse-grained lock
design in VFIO devset management using a hierarchical
lock framework, which parallelizes VFIO device operations
while ensuring consistency (§4.2.1). Second, we identify
the causes of the inefficiency in DMA memory mapping
as the mapping of unnecessary memory regions and mem-
ory zeroing overhead. FastIOV tracks and skips the un-
necessary regions, and decouples memory zeroing from
mapping to enable lazy zeroing (§4.3). Finally, FastIOV
asynchronously executes VF driver initialization with con-
tainer application launching, effectively masking the over-
head (§4.2.2).

• Implementation and performance gain (§6):We im-
plement FastIOV with a portable Linux kernel module,
a CNI plugin, and other optimizations in the secure con-
tainer framework and OS modules. We conduct exten-
sive experiments and demonstrate that FastIOV reduces
the time overhead of enabling SR-IOV by 96.1%, leading
to 65.7% and 75.4% reductions in the average and 99th
percentile container startup time compared with vanilla
SR-IOV CNI [23]. We also evaluate FastIOV on four repre-
sentative serverless applications and show that FastIOV
reduces the average and the 99th percentile task comple-
tion time by 12.1%-53.5% and 20.3%-53.7%, respectively.

• Community contribution:We open source the imple-
mentation of FastIOV as well as its benchmarking tools
and dataset at https://github.com/AlibabaResearch/fasti
ov-eurosys25.

2 Background
2.1 SR-IOV and Passthrough I/O
Fig. 2 shows the architecture of SR-IOV with passthrough
I/O. The physical resources of an SR-IOV NIC are managed
by its Physical Function (PF), which is bound to the host OS
through the PF driver. The goal of SR-IOV is to divide the NIC
resources, such as registers and TX/RX queues, into multiple
isolated sets and generate multiple virtual NICs, referred to
as VFs. Traditional containers rely on the network drivers
of the shared host kernel to access the VFs. In contrast, se-
cure containers have independent guest kernels and manage

https://github.com/AlibabaResearch/fastiov-eurosys25
https://github.com/AlibabaResearch/fastiov-eurosys25


FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Guest OS

IOMMU Hypervisor

PHY / MAC

L2 Switch

TX
TX

RX
RX

BARs

TX
TX

RX
RX

BARs

TX
TX

RX
RX

BARs

NIC

…

VF 0 VF 1 VF n

DMA Engine PF Driver

VF Driver   TX/RX Buffers Interrupt Handler

Guest App 0MicroVM Guest App m…

Data Plane Control Plane
VFIO

PF

Guest OS

Figure 2. SR-IOV and passthrough I/O architecture.

the VFs through the network drivers of the guest kernels.
For higher performance, they utilize the passthrough I/O
technology to bypass the host network drivers and directly
access the VFs.
On the data plane of the passthrough I/O, the data trans-

mission is performed by the DMA engine in the NIC. DMA
utilizes Input/OutputMemoryManagement Unit (IOMMU) [15]
to translate memory addresses and directly move packets
between VF’s TX/RX queues and microVM’s TX/RX buffers.
The control plane of the passthrough I/O is managed by

the hypervisor, which configures the VFs through the PF
driver. To assign a VF to the guest, i.e., microVM, the VF is
first bound to a Linux driver named VFIO. The hypervisor in-
teracts with the VFIO driver to configure the corresponding
memory mapping to the IOMMU module. After the initial-
ization is completed, the guest can directly interact with the
device in subsequent data transmission, and only interrupt
signals are relayed through the hypervisor. It should be noted
that traditional containers typically do not require VFIO to
access the VFs. Only when userspace network drivers need
to directly manage the VFs, such as in DPDK [27] applica-
tions, do they require VFIO or alternative technologies like
UIO. If VFIO is adopted, traditional containers suffer similar
concurrent startup overhead as secure containers.

2.2 Address Spaces and DMA Memory Mapping
Fig. 3 shows thememory address spaces of the SR-IOV device,
the host and the guest, in the context of passthrough I/O.
We use the packet receiving process via a VF as an example
to show how these address spaces are translated: (i) The
guest OS notifies the DMA engine in the NIC to write the
received packet to an I/O Virtual Address (IOVA). The IOVA
is often chosen to be identical to the Guest Physical Address
(GPA), where the guest OS intends to store the received
packets, to simplify the mappings between IOVAs and GPAs.
(ii) The DMA engine uses the IOMMU hardware to translate
the IOVA to the corresponding Host Physical Address (HPA)
and performs actual packet writes to the physical pages.

PagePagePagePagePagePage

IOVA

HPA

HVA

GPA

GVAGuest App

Guest OS

Hypervisor

Host OS

NIC

Guest OS Page Table

Host OS
Extended Page Table 

Intel VT-x

Host OS I/O Page Table
IOMMU

512MB

SoftMMU

0x00000000 0x1FFFFFFF

Page Page Page

512MB
0x00000000 0x1FFFFFFF

Figure 3. Address spaces and translations.

The translation is implemented by looking up the I/O Page
Table, which resides in the host memory and is maintained
independently for each guest. As mentioned in §2.1, the
table entries are configured by the VFIO driver when the
VF is assigned to the guest, and the configuration process is
referred to as DMA memory mapping. (iii) Upon completing
the packet writes, the DMA engine notifies the guest OS
that the data is ready by an interrupt relayed through the
hypervisor. (iv) The guest OS retrieves the packet using the
GPA, which is translated to the HPA by a hardware table
called Extended Page Table (EPT).

2.3 Network Startup Procedure of SR-IOV Enabled
Secure Containers

We investigate the source code of several widely deployed
projects including the container orchestrator (Kubernetes
[9]), container engine and runtime (Containerd [8], Kata
[24]), CNI plugins (SR-IOV CNI [23] and sriovdp [22]), hy-
pervisors (Kata-QEMU [24] and KVM [37]) and Linux kernel
[38], and summarize the network startup procedure of SR-
IOV enabled secure containers in Fig. 4.

Once the host OS has booted, the K8s agent, i.e., Kubelet,
calls the PF driver to pre-create a sufficient number of VFs.
The pre-creation involves configuring the hardware of the
SR-IOV enabled NIC and is often time-consuming. However,
the pre-creation is a one-time task, since the VFs will be re-
cycled when their assigned containers terminate. Therefore,
we do not consider their time overhead in our discussion of
the startup process in the rest of the paper. The life cycles of
containers are managed by the container engine, i.e., Con-
tainerd. When a container is invoked by Kubelet, Containerd
first creates the isolated Network NameSpace (NNS) for each
container and then successively calls the CNI plugin and
the container runtime for VF configuration. The CNI plugin
calls the PF driver to set up VF parameters, binds the VF
to the host network driver and then moves the VF to the
container NNS (cf. 𝑡𝑐𝑜𝑛𝑓 𝑖𝑔 in Fig. 4). The container runtime
checks the existence of the VF in the NNS and assigns it to



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

Kubelet

PF Driver

Containerd

SR-IOV CNI

Runtime

Hypervisor

VF Driver

Pre-create 
VFs

Config VF

Create 
NNS

Move VF 
to NNS

Check 
VF

Attach VF

VF Driver
Initialization

CRI

Host

…

…

…

MicroVM

Rebind VF
To VFIO

Bind VF
to Host Driver

ttotal

tconfig tattach

Figure 4. End-to-End network startup procedure of SR-IOV enabled secure containers.

the microVM (cf. 𝑡𝑎𝑡𝑡𝑎𝑐ℎ in Fig. 4). In the assigning process,
the container runtime first unbinds the VF from the host
network driver and rebinds it to the VFIO driver. Then, the
VFIO driver attaches the VF to the microVM, which includes
setting up the passthrough I/O as introduced in §2.1 and em-
ulating the VF as a PCIe device. Finally, the VF driver inside
the microVM initializes and configures the device as a Linux
network interface. As we will discuss in §5, it is unnecessary
and extremely inefficient to keep binding the VFs to the host
driver and then rebinding them to the VFIO driver, so we
modify the implementation to pre-bind the VFs to the VFIO
driver only once after they are pre-created, effectively re-
moving the two binding/rebinding stages marked by dashed
boxes in Fig. 4 from the startup process. We use the modified
implementation in all our measurements and evaluations.

It should be noted that the underlying logic of configuring
a VF and attaching it to the microVM is in fact the same as
that of enabling SR-IOV for a normal VM. However, com-
pared with the normal VM use case, container applications
have higher-volume invocations and shorter lifespans, lead-
ing to higher requirements and new bottlenecks in startup
time. This calls for further bottleneck identification and mo-
tivates our design for FastIOV.

3 Measurement and Motivation
3.1 Testbed for Startup Performance Measurement

Hardware setup. Our testbed uses servers that mirror the
configurations used by major cloud providers’ production en-
vironments. The specification includes: (i) CPU: Two NUMA-
capable Intel Xeon Gold 6348 sockets running at 2.60 GHz,
each housing 28 cores complemented by 80KB/1280KB/42MB
L1/L2/L3 Caches and with hyper-threading activated. (ii)
Memory: 256GB DDR4 with 3200MHz clock frequency. (iii)
NIC: A 25 GbE Intel E810 NIC that supports creating 256 VFs.
Note that we have also tested with another NIC, 200 GbE
Intel Mount Evans E2100 and observed similar results.
Software setup. The servers run CentOS 7 with Linux ker-
nel v6.4.0. We choose the widely deployed container engine

Containerd v1.7.3 [8], secure container runtime Kata Con-
tainers v3.2.0 [24], and SR-IOV CNI plugin v0.3 [23]. Like
Firecracker [1] and RunD [35], Kata is a microVM-based se-
cure container framework.MicroVM-based secure containers
can prevent exposing security-critical syscalls of the host ker-
nel to untrusted user code, and thus are preferred over other
security solutions that augment traditional containers with
kernel-level isolation mechanisms, such as AppArmor [52]
and Seccomp [53]. Compared with unikernel-based solutions
such as LightVM [45] and Solo5 [65], microVM-based secure
containers ensure full user code compatibility, making them
more applicable in cloud services. According to our measure-
ments in a concurrent work [42], Kata has the second fastest
startup among all mainstream open-source microVM-based
secure container frameworks, surpassed only by RunD. The
open-source version of Firecracker is much slower. We did
not use RunD because its open-source version crashes when
startup concurrency exceeds approximately 100 instances.
Kata Containers tailor the QEMU v6.2.0 hypervisor into a
lightweight version named Kata-QEMU [24]. The kernel of
the microVM is generated from Linux kernel v5.19.2, and the
image is generated from Ubuntu 20.04. For each secure con-
tainer, we allocate 0.5 vCPU and 512MB RAM through the
Kata-QEMU configuration, with 2MB sized hugepages en-
abled. We allocate one SR-IOV VF as the container’s virtual
NIC through the Containerd configuration.
Measurement methodology. In the startup time tests, we
use crictl command to concurrently create 200 microVMs
without any container applications inside, as enabling SR-
IOV only affects the startup process of the microVM. The
concurrency setting of 200 is based on the statistics collected
from the production environment of Alibaba serverless plat-
form [35]. When we evaluate the performance of FastIOV
on serverless applications in §6.6, we will report the task
completion time, i.e., the duration between the issuance of
the startup command and the completion of the container ap-
plication. To break down the timeline of the startup process,
we develop a logging tool and integrate it into the above
software components, such as Kata-QEMU and Linux kernel,



FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

to collect more fine-grained information. We ensure that the
logging operations are asynchronous and our tests show that
they incur almost no additional overhead in startup time.

3.2 Startup Bottleneck Identification for SR-IOV
Enabled Secure Containers

3.2.1 Measurement result. We break down the timeline
of the concurrent startup of 200 secure containers, and show
the most time-consuming steps in Fig. 5, where each hori-
zontal line corresponds to a different container, and different
colors mark different time-consuming steps. The statistics
are summarized in Tab. 1. We observe that 4-vfio-dev, i.e., the
opening of the VF from its VFIO device set, dominates the to-
tal time consumption, possibly experiencing severe serialized
operations. Other SR-IOV VF-related steps like DMA mem-
ory mapping (1-dma-ram and 3-dma-image, which represent
the mapping of the microVM RAM and system image mem-
ory, respectively) and the initialization of network interface
by the VF driver inside the microVM (5-vf-driver) also incur
obvious overhead. The remaining two steps, i.e., 0-cgroup
and 2-virtioFS, which refer to the initialization of the cgroups
and the shared file system for the secure container, are not
related to enabling SR-IOV. Note that the VF-related steps ac-
count for 70.1% of the average startup time. The percentage
increases to 80.8% when considering the long-tail latency
with the 99th percentile. These statistics reveal a great poten-
tial to accelerate the startup process. Next, we will analyze
the root causes of the observed major bottlenecks before
introducing our solutions in FastIOV.

3.2.2 Bottleneck 1: VFIO devset management. In the
VFIO driver, a devset is used to manage a group of VFIO
devices and control their reset behavior. A VFIO device that
supports slot-level device reset forms a devset on its own. It
can be reset without affecting others. Other VFIO devices
require bus-level reset, i.e., all devices attached to the same
bus are reset together. All such VFIO devices attached to
the same bus form a devset. When such a VFIO device is
to be reset, the VFIO driver ensures that all other affected
devices are also ready for reset. More specifically, it scans the
PCI bus to ensure that all devices on the same bus belong to
the current devset. It also checks the total open count of the
devset, i.e., the number of processes or threads that currently
keep the devices open, to ensure that no affected device is
currently being used.
As far as we know, slot-level reset capability is uncom-

mon on modern NICs. For instance, it is not supported by
the widely used Intel E810 NIC [28] or the recent Intel IPU
E2100 NIC [29]. Therefore, the VFs are typically maintained
in one devset with other VFIO devices on the same bus.When
attaching a VF to the microVM, one of the key steps is to
register it in the hypervisor. During registration, the hyper-
visor opens the VF through the VFIO driver, and obtains the
file descriptor and other relevant device information. The

0 5 10 15 20 25 30
Timeline (s)

0

50

100

150

200

Po
d 

In
de

x

0-cgroup
1-dma-ram
2-virtiofs

3-dma-image
4-vfio-dev
5-vf-driver

Figure 5. Breakdown of time-consuming steps2. 200 SR-
IOV enabled secure containers are launched concurrently.

Step Proportion in
Average Time (%)

Proportion in
99th Percentile Time (%)

0-cgroup 2.9 2.3
1-dma-ram 13.0 11.1
2-virtiofs 13.3 13.6
3-dma-image 5.6 4.3
4-vfio-dev 48.1 59.0
5-vf-driver 3.4 4.1

Total (1, 3, 4, 5) 70.1 80.8

Table 1. Time proportions of time-consuming steps.
The VF-related steps (1, 3, 4, 5) account for over 70% and 80%
of the average and 99th percentile startup time.

opening of the VF increases its open count, and further af-
fects the global state, i.e., the total open count, of the devset.
To ensure the correctness of the states, the current design of
the VFIO driver utilizes one global mutex lock to make the
operations on the VFIO device and the operations involving
checking or updating the global state of the devset mutually
exclusive. However, such coarse-grained mutex lock also
serializes the opening operations on the different VFs
belonging to the same devset, and thus hinders the con-
current startup process of SR-IOV enabled secure containers.
This accounts for the nearly linear increase in the time cost
of 4-vfio-dev observed in Fig. 5.

3.2.3 Bottleneck 2: DMAmemorymapping. Apart from
the registration of the VFIO device, another key step in at-
taching a VF is the DMAmemory mapping. As introduced in
§2.1, the hypervisor meticulously configures the IOMMU to
establish the mapping for the microVM’s memory, ensuring
2Note that the fastest container takes 3.8s for its startup, due to the SR-IOV
enabled networking and the severe contention at high concurrency. The
milliseconds startup reported in related work [1, 24, 35] is measured at
low concurrency and without networks, which is also consistent with our
measurement in Fig. 1, where the fastest container startup takes 460ms at a
low concurrency of 10 and without network.



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

Retrieving

Zeroing

Pinning

Mapping

GPA

IOVA

HPA

000
010
110
0

000
000
000
0

111
110
001
0 1

101
101
010
0 1

001
010
111
0

000
000
000
0 1 1

000
110
000
0 1

111
111
111
0

000
110
110
0 1 1

000
010
110
0 1

011
110
011
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

000
000
000
0

RAM
Memory

RAM
Memory

Image
Memory

Image
Memory

P1

Physical 
Page

Data

Ref. Count

P2

P3

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

000
000
000
1

1

2

3

4

Figure 6. DMAmapping procedure. Four main steps (page
retrieving, zeroing, pinning, mapping) and 3 sub-bottlenecks.

that the DMA data transmission operations can be correctly
performed by the NIC. The DMA memory mapping process
can be summarized as three major steps: First, the physical
memory for the microVM is allocated in the host to obtain
the corresponding HPA. Then, the allocated physical mem-
ory is pinned in the system to keep it from being swapped
out, so that the corresponding HPA remains effective. Finally,
the mapping between HPA and IOVA is configured in the
page table in IOMMU. We further illustrate the steps in Fig. 6
and analyze the cause of overhead. In the figure, retrieving
and zeroing correspond to the first major step, pinning and
mapping correspond to the other two steps, respectively.
• Page retrieving: When allocating physical memory for the
DMA memory, the VFIO driver iteratively collects free
physical pages until the requested total size is satisfied.

• Page zeroing: Free pages can contain residual data, which
might lead to potential security issues in multi-tenant
clouds. Thus, the current physical memory allocation im-
plementation ensures that these retrieved physical pages
are filled with zeros to clear any sensitive information
before they are returned to the VFIO driver.

• Page pinning: Once all free pages are retrieved and ze-
roed, they are pinned by the VFIO driver: their reference
counts are increased to prevent them from being moved
or swapped out by the OS. This ensures that the HPAs of
the pages remain effective during DMA operations. The
mappings between the HPAs and GPAs are then generated
and maintained by the hypervisor.

• Page mapping: Then, the IOMMU’s page table is updated
to set up the IOVA-HPA mapping between the virtual ad-
dresses IOVA, which the device uses for DMA operations,
and the HPA of the pinned physical pages.
During the profiling of the DMA memory mapping pro-

cess, we find the following three key factors that make DMA
memory mapping a bottleneck in the startup process.

First, there exists unnecessary DMA memory map-
ping in the microVM (P1 in Fig. 6). The original design of
the VFIO driver and IOMMU performs DMA mapping for all
regions in the memory space of the microVM, as they assume
that all the regions have the possibility of being accessed
by DMA. However, we identify that the mapping of the mi-
croVM image memory region is unnecessary. The image con-
tains the system files of the microVM and a secure container
agent procedure used for managing container applications.
Its region is read-only and invisible to the container appli-
cations that launch DMA operations. In our measurement
setup, the microVM image uses 256MB of memory, and Tab. 1
shows that constructing the memory mapping of this region
constitutes 5.6% (3-dma-image) of the total time cost, but the
cost is avoidable.

Second, fragmented small physical pages incur high
retrieval costs (P2 in Fig. 6). When the VFIO driver it-
eratively collects free physical pages, the free pages with
continuous HPAs will be grouped together and operated as
a batch to reduce the time overhead caused by excessive
function calls. When physical pages experience more frag-
mentation, fewer pages will be batched, resulting in higher
retrieval costs. However, we find that such overhead is al-
ready effectively mitigated by simply enabling hugepages, a
common practice in the production environment, as it sig-
nificantly reduces the number of pages to retrieve. Thus this
cause of bottleneck is not a focus of our optimization.

Third, page zeroing incurs a significant time cost (P3
in Fig. 6). After reducing the retrieval cost by enabling
hugepages, we find that page zeroing contributes to over
93% of the total DMA memory mapping time. Such time cost
is not caused by any lock contention but purely by zeroing
operations. When SR-IOV is not enabled, no DMA mem-
ory mapping is performed, which allows the allocation of
physical pages to be deferred until the application accesses
the memory and triggers a page fault. As a consequence,
a page is zeroed only when it is read or written. We refer
to this technique as lazy zeroing, which avoids the zeroing
overhead during startup and precludes unnecessary zeroing
of unused memory. As IOMMU cannot handle page faults
during DMA operations, all physical pages need to be al-
located in advance when SR-IOV is enabled, as mentioned
in §3.2.3. Therefore, lazy zeroing based on on-demand page
allocation no longer works. Our key observation is that page
zeroing can be decoupled from physical page allocation in
DMA memory mapping, which allows for lazy zeroing for
SR-IOV enabled secure containers and motivates our design.

3.2.4 Bottleneck 3: VF driver initialization. After the
VFIO driver configures the VF and hands it over to the mi-
croVM, a two-step initialization proceeds to configure the VF
as a Linux network interface inside the microVM. First, the
VF driver (NIC driver) inside the microVM conducts PCI de-
vice enumeration to identify the device, registers the device



FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Passthrough I/O Setup

Page
Retrieving

Page
Zeroing

Page
Pinning

Page
Mapping

DMA Memory MappingDevice Opening
MicroVM Setup

VF1 VFNVF2

VF Driver
Initialization

Container 
APP 

Launch
…

FastIOV CNI Plugin (§ 5.1)

FastIOV System Optimization

Asynchronous
Execution
(§ 4.2.2)

Lock 
Decomposition

(§ 4.2.1)

Decoupled 
zeroing
(§ 4.3.2)

Unnecessary
Mapping Skipping

(§ 4.3.1)

Parallelizing Operations Accelerating DMA Memory Mapping

Network

Container APP

VF Driver

VF1

VF2

VFN

…devset
Image
Region

RAM
Region

Zeroing

Mapping Using…

Figure 7. FastIOV Overview.

as a network interface, configures its network parameters,
and updates its link status. Second, the daemon agent of
the secure container framework inside the microVM assigns
MAC and IP addresses to the interface. It takes a few hundred
milliseconds up to seconds for all these operations to com-
plete, and then the interface becomes available. This time cost
further increases with the container concurrency. As secure
container frameworks manage the initialization and other
setup procedures of the microVM in a serial fashion, it only
executes the subsequent setups after the interface becomes
available, causing non-negligible overhead to the startup
performance. Our design will show that such overhead can
be effectively mitigated with asynchronous execution.

4 Design
4.1 FastIOV Overview
Fig. 7 displays the key components of FastIOV, including lock
decomposition, unnecessary mapping skipping, decoupled
zeroing and asynchronous execution. The four optimizations
aim at addressing the bottlenecks analyzed in §3.2 to speed
up the concurrent startup process. The main workflow of
FastIOV is as follows.
When SR-IOV enabled secure containers are launched,

VFs are attached to microVMs concurrently. First, FastIOV
decomposes the coarse-grained lock in VFIO devset manage-
ment using a hierarchical lock framework (§4.2.1). By doing
so, FastIOV parallelizes the device opening operations dur-
ing VF registration while maintaining the state correctness
of VFIO devset. Then, when the VFIO driver performs DMA
memory mapping for the VFs, FastIOV tracks and skips the
unnecessary mapping region, i.e., microVM image memory
(§4.3.1). As for the remaining regions, FastIOV decouples
page zeroing from physical memory allocation to enable lazy
zeroing (§4.3.2), which avoids the zeroing time overhead dur-
ing startup as well as the zeroing of unused memory. Finally,
FastIOV asynchronously executes the initialization of the

Inter-Child

Independence

Intra-Child

Mutual Exclusion

Global
State

Parent-Child

Global
State

Global
State

Intra-Parent

(a) Independent and mutually
exclusive relations.

Parent
Node
rwlock

Global 
State

Access 
Global State:
  ac-write

(b) Implementing parent-child
lock with rw-lock and mutex.

Figure 8. Lock decomposition with parent-child lock

VF driver inside the microVM. FastIOV overlaps the initial-
ization with the launch of the container application to mask
the overhead (§4.2.2).

Next, we will introduce the optimizations in detail. As lock
decomposition and asynchronous execution are both aimed
at parallelizing operations for speedup, we put them in the
same category and introduce them first.

4.2 Parallelizing Operations
4.2.1 Lock decomposition in VFIO devset. The coarse
lock problem in VFIO devsets can be abstracted as follows. A
devset acts as a parent node and the VFIO devices belonging
to it act as child nodes. The parent node has a global state
that is related to the local states of its children. The current
design of VIFO driver implements only a global mutex lock
for the entire devset, so it requires the contention of the same
mutex lock whether it is to access the global state of the par-
ent or the local state of a child. When a heavy contention
occurs in inter-child operations, e.g., concurrently opening
multiple VFs, the system parallelism degrades significantly.
On the other hand, simply removing the global mutex lock
will compromise the state consistency in the multi-thread ac-
cessing procedure. Our insight is that we can decompose the
lock to enable independent inter-child operations and hence im-
prove the startup performance, while keeping other operations
mutually exclusive to ensure consistency.

We distinguish four types of relations between operations
according to the data they access: (i) inter-child operations
access the local states of different child nodes, (ii) intra-child
operations access the local state of the same child node, (iii)
intra-parent operations access the global state of the par-
ent node, (iv) parent-child operations access the global state
of the parent node and the local states of a child node, re-
spectively. As shown in Fig. 8a, inter-child operations are
independent and can be performed in parallel, while opera-
tions of the other three types should be mutually exclusive
and performed in serial.



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

To achieve the above requirements, we propose a hier-
archical lock decomposition framework built on two Linux
kernel locks, read/write lock (rwlock) and mutex, as shown
in Fig. 8b. In this framework, the parent node is equipped
with a global rwlock and each child node 𝑖 is equipped with
a local mutex𝑖 . When accessing the global state, one needs
to acquire the rwlock write permission (denoted by ac-write).
When accessing the 𝑖-th local state, one needs to acquire
both the rwlock read permission (denoted by ac-read) and
mutex𝑖 (denoted by ac-mutex𝑖 ).

We can show that the proposed lock decomposition frame-
work indeed satisfies the requirements. Here we consider the
case of inter-child operations. The other cases can be shown
in a similar fashion and omitted. Suppose two inter-child op-
erations on local state 𝑖 and local state 𝑗 occur concurrently.
Since two ac-reads are independent according to the defi-
nition of rwlock, and ac-mutex𝑖 and ac-mutex𝑗 are naturally
independent, these operations can be executed in parallel.

Although inventing a new Linux kernel lock can also sat-
isfy the requirements, we believe that reusing off-the-shelf
kernel locks keeps the design simple and ensures effective-
ness. Moreover, we believe this lock decomposition frame-
work can be promoted to other scenarios rather than just
being used in the VFIO devset.

4.2.2 Asynchronous execution in VF driver initializa-
tion. We make two observations regarding the initialization
process of the VF driver, where the network driver inside the
microVM initializes and sets up the VF as a Linux network
interface. First, the network interface is not utilized until
the container application is launched and begins execution
inside the microVM. Second, the initialization of the network
interface is independent of the other startup stages. This
allows the initialization to be executed asynchronously and
in parallel with other stages, in particular the launching of
container application in the microVM. The launching pro-
cess involves transferring container images from the host
to the microVM via the shared file system and creating the
container process. Our empirical measurements show that
with a high container concurrency of 200, this process can
span several seconds, which is enough to mask the initial-
ization time. We adapt the secure container framework to
initialize the network interface asynchronously and employ
the framework’s daemon agent inside the microVM to peri-
odically check the status of the network interface, ensuring
the network is available as the application begins execution.

4.3 Accelerating DMA Memory Mapping
4.3.1 Skipping unnecessary mapping region. FastIOV
tracks and skips the unnecessary DMA memory mapping,
i.e., microVM image memory, to reduce overhead. Before
the hypervisor, e.g., QEMU, enumerates the DMA memory
regions and calls the VFIO driver to perform DMA memory
mapping, FastIOV notifies the hypervisor of the information

of the image memory region, i.e., its name and size. The
hypervisor then skips DMAmemory mapping for this region
and falls back into its non-DMA memory managing logic.

4.3.2 Decoupling zeroing from mapping. For the re-
maining regions that are not skipped, i.e., the RAM of the mi-
croVM, FastIOV decouples the page zeroing operation from
physical memory allocation to enable lazy zeroing. Recall
that lazy zeroing means that the physical pages are zeroed
only when they are actually read or written. The high-level
idea is to intercept the memory access to physical pages con-
ducted by the microVM, and perform page zeroing when the
page is read or written for the first time. We identify three
key challenges in achieving this goal.

• First, when amicroVMaccesses a physical page, it bypasses
the hypervisor and relies instead on the hardware-assisted
module EPT (previously introduced in §2.1) for address
translation. How can we intercept this process and zero
the physical pages before their usage?

• Second, if we intercept every memory access to check
whether the physical pages are accessed for the first time,
it will be very costly and significantly degrade memory
performance. How can we avoid such overhead?

• Third, there exist exceptions where the first memory ac-
cess to a physical page is not conducted by the microVM.
Specifically, the hypervisormaywrite to the physical pages
before starting the microVM, and the para-virtualization
components like the shared file system, i.e., virtioFS, may
write to the physical pages before the microVM reads from
them. In such cases, the relevant physical pages should
be zeroed before being used by the hypervisor or para-
virtualization components, and require no further zeroing
before the first access by the microVM. How do we deal
with such exceptions to ensure the correctness of zeroing?

The rest of §4.3.2 presents detailed designs and shows how
FastIOV solves the above problems.
EPT fault based memory access interception and lazy
zeroing. After digging into the details of the EPT address
translation mechanism, we find that the entries in the EPT
are constructed by an EPT fault right before the correspond-
ing physical pages are read or written for the first time by
the microVM. The EPT fault carries the information of the ac-
cessed physical pages and is perceived by KVM, a hypervisor
module. This gives us the opportunity to intercept the infor-
mation and perform lazy zeroing. Recall that when the mi-
croVM is launched, the VFIO driver performs DMA memory
mapping, which allocates physical memory for the microVM.
As shown in Fig. 9, the physical memory allocation generates
the HVA-HPA mapping inMemory Management Unit (MMU)
of the host ( 1○). Also, during the launch of the microVM,
KVM maintains the GPA-HVA mapping ( 2○). When the mi-
croVM accesses a GPA for the first time, it looks it up in the
EPT, only to find that there is no matching entry ( 3○). Then



FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

PagePage

HPA

HVA

GPA

Pages

EPT

KVM

MMU

FastIOV

2

1

3 EPT miss

4 EPT fault 
(GPA info)

HPA 
translate
5

Insert
GPA-HPA
6

Intercept

Zero

Guest OS

Hypervisor

Host OS

Figure 9. EPT fault based interception and lazy zeroing.

the microVM triggers an EPT fault, which sends KVM an
EPT violation signal containing the GPA information ( 4○).
KVM then translates the GPA to HVA, and utilizes the MMU
to translate the HVA to HPA ( 5○). Finally, KVM inserts the
GPA-HPA mapping entry into the EPT ( 6○), which is now
ready for use by the microVM.

By intercepting the HPA information in the KVM, we can
perform lazy zeroing during the EPT fault for the correspond-
ing physical page. The EPT fault is triggered solely upon the
microVM’s initial access to a physical page, ensuring that
subsequent accesses to the same page bypass interception,
thereby significantly reducing the impact on memory perfor-
mance. Our evaluation in §6.5 will show that the overhead
incurred is negligible.
Ensuring the correctness of lazy zeroing. We identify
that there are two exceptional scenarios where a physical
page requires no further zeroing before the first access by
the microVM.
• Hypervisor data write. Before launching a microVM,
the hypervisor writes to the memory allocated to it in
order to perform the necessary setup, including loading
read-only regions like BIOS and kernel into the memory.
Such writes are performed directly without involving the
EPT. After launching, when the microVM tries to access
these memory regions for the first time, e.g., to execute
kernel code, it will trigger an EPT fault and cause FastIOV
to incorrectly zero the data written by the hypervisor,
leading to a system crash.

• Para-virtualization based data transfer. Devices can
utilize para-virtualization protocols, such as the widely
used virtio protocol, to exchange data between the mi-
croVM and the host through shared buffers. A typical ex-
ample is virtioFS, which is a shared file system that
allows the container inside the microVM to access the des-
ignated files on the host. When the microVM reads a file,
it first writes the addresses of the file and a shared buffer
into a vring, which is itself a shared buffer. The backend
of virtio on the host fetches the addresses from the vring,

writes the file data into the shared buffer, and notifies the
microVM to read it. If the microVM has not accessed the
buffer memory before, the read operation will trigger an
EPT fault, which will cause FastIOV to incorrectly zero
the requested file data before reading it.

To ensure the correctness of lazy zeroing, FastIOV tackles
the above two problems by maintaining an instant zeroing
list and triggering proactive EPT faults, respectively.
The instant zeroing list is a white list of physical pages

that are not managed by FastIOV and are zeroed instantly
when allocated. Read-only memory regions, such as the BIOS
and kernel memory, are determined before the start of the
microVM, and the hypervisor registers them to the instant
zeroing list maintained by FastIOV. The exclusion of those
regions from its management may limit the gain of FastIOV.
However, our test shows that with a normal Linux kernel,
those regions take up only about 9.4% of the total memory
for a microVM with 512MB of memory. The percentage de-
creases with a larger allocated memory, as the size of the
excluded regions remains fixed. Thus, FastIOV can still ef-
fectively reduce DMA memory mapping time by optimizing
the page zeroing of the remaining regions.
To address the exception caused by para-virtualization

based data transfer, FastIOV proactively triggers EPT faults
when the microVM writes the address of a shared buffer to
vring, so that FastIOV correctly clears the corresponding
physical pages before the backend of virtio on the host writes
the file data back into the buffer. Such proactive EPT faults
are triggered by performing a data read to the first byte of
each page of the buffer.
Theoretically, there is a third exception scenario where

a physical page requires no further zeroing before the first
access by the microVM, which is the NIC DMA data write.
Similar to virtio, the DMA data exchange between the NIC
and the microVM is through a ring buffer managed by the
microVM NIC driver. If the microVM has not accessed the
buffer memory before the NIC writes data to it, EPT faults
will be triggered when the microVM tries to read the buffer,
which incorrectly zero the data. However, the NIC being
the first to write the DMA buffer never truly happens when
applications use VFs through standard NIC drivers, as the
drivers themselves zero the DMA buffer immediately after
allocation, which will have already triggered EPT faults. This
can actually be made more efficient by changing the zeroing
operation to performing a data read to only the first byte of
each page of the buffer like what we do with virtio.

5 Implementation
The implementation of FastIOV includes a portable Linux
kernel module named fastiovd, a FastIOV CNI plugin,
and severalmodifications in the hypervisors, container frame-
works and host/guest kernel modules. Fig. 10 illustrates their
detailed functionalities and the statistics of Lines of Code



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

Guest

Host

Kernel
User

Kernel
User

Managed by Cloud 
Client

Managed by Cloud 
Vendor

Module Lang. LoC
KVM +VFIO C 684
fastiovd C 396
FastIOV CNI Go 261
Kata Runtime Go 260
virtioFS driver C 23
Kata Agent Rust 17

LoC Statistics Table

FastIOV CNI

Kata Runtime QEMU

fastiovd
[Lazy Zeroing]

KVMVFIO

VF driver
Kata Agent

Serverless
APP

Serverless 
APP

virtioFS

Dummy 
Device 
Parsing

Lock 
Decomposition

EPT Fault
Interception

Instant 
Zeroing List

Asynchronous 
Execution

Proactive
EPT Fault 

Unnecessary 
Mapping 
Skipping

Figure 10. Implementation of FastIOV.

(LoC). Note that FastIOV is deployable because all of those
new modules and modifications are within the management
of the cloud vendor. Several details are presented below.

Lazy zeroing implementation. First, we disable the origi-
nal page zeroing operation in the VFIO kernel module, and
maintain in fastiovd a two-tier hash table containing the
information of the physical pages to be lazy zeroed. The
first-tier key uses the process ID (PID) as the independent
identifier for each microVM, and its value is the pointer
to the secondary hash table maintained for that microVM.
The second-tier key is the HPA and its value contains de-
tailed page information. Second, we modify the KVMmodule
to trigger lazy zeroing before it inserts the EPT entry dur-
ing an EPT fault. The KVM notifies fastiovd of the page
triggering the EPT fault. If it is in the two-tier hash table,
fastiovd will zero the page, remove it from the hash ta-
ble, and notify KVM upon completion. Besides the above
lazy zeroing logic, we also maintain a background thread
in fastiovd, which periodically scans the two-tier hash
table, zeroes the remaining pages, and then removes them
from the table. Such background clearing in fact overlaps
the zeroing with other startup stages to reduce the EPT fault
time to further improve container application performance.

FastIOVCNI plugin implementation. The vanilla SR-IOV
CNI plugin [23] shown in Fig. 4 is designed for traditional
containers. It causes a VF to bind to the host network driver
and then rebind to the VFIO driver every time a secure con-
tainer is launched, which incurs high overhead. We find that
the only reason for binding a VF to the host network driver
when launching a secure container is to generate a Linux net-
work interface, which serves two functions. First, the Kata
runtime identifies the VF by detecting the interface. Second,
the CNI performs network operations like IP configurations
on the interface, which then passes the configurations to the
Kata runtime when it is detected. Therefore, to free VFs from
binding to host network drivers, we create dummy Linux
network interfaces to fulfill the above two functions instead.
This allows us to bind the VF to the VFIO driver only once

after the server’s booting. This simple optimization greatly
reduces the startup time of vanilla SR-IOV CNI, from sev-
eral minutes to 16.2 seconds when concurrently starting 200
containers. However, we regard this binding problem as an
implementation drawback that may depend on the specific
container framework, Kata containers in this case. We apply
the above optimization to the vanilla SR-IOV CNI in our
evaluation for a fair comparison.

6 Evaluation
6.1 Experimental Setup
Testbed setup.We conduct two categories of experiments
that evaluate FastIOV’s network startup performance and
overall performance with serverless application benchmarks,
respectively. The former runs on a single test server, while
the latter on two directly connected test servers acting as
the application server and the storage server, respectively.
All test servers mentioned above have the same hardware
and software configurations as specified in §3.1.
Baselines. We compare FastIOV with the following base-
lines to validate the effectiveness of our designs.
• No network: The startup without enabling network. This
represents a lower bound for optimizing network startup.

• Vanilla: The original implementation of SR-IOV CNI [23]
without optimization for passthrough I/O but with the fix
for the implementation drawback for a fair comparison.

• FastIOV variants: In order to evaluate the effectiveness
of each of our four optimization designs, i.e., Lock decom-
position, Asynchronous execution, unnecessary mapping
Skipping and Decoupled zeroing, we remove them from
FastIOV one at a time and get four variants named FastIOV-
L, FastIOV-A, FastIOV-S and FastIOV-D, respectively. A
larger performance degradation of a variant compared
with FastIOV demonstrates a higher effectiveness of the
removed optimization design.

• Memory pre-zeroing methods: Memory Pre-zeroing
is a popular technique proposed by HawkEye [55] that
performs page zeroing during memory idle time to achieve
faster page faults. It has also been utilized by the open-
source community to speed up DMA memory mapping
and accelerate the booting of passthrough I/O enabled
VMs. The performance of this baseline is affected by the
fraction of memory pre-zeroed during memory idle time.
To evaluate its performance across different scenarios, we
set the fraction to 10%, 50% and 100%, and represent them
by Pre10, Pre50, and Pre100, respectively.

• Software CNI: Besides the SR-IOV baselines, we also
compare FastIOV to a software CNI in §6.4 aiming at illus-
trating the bottleneck differences between the two types.
We choose the basic software CNI IPvtap, because (i) it
shares similar virtual network device implementation with
popular software CNIs like Flannel [12] and Calico [10],
but has faster startup due to its lack of support for more



FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

No-N
et

Van
illa

Pre
10

Pre
50

Pre
10

0

Fas
tio

v-L

Fas
tio

v-A

Fas
tio

v-S

Fas
tio

v-D
Fas

tio
v

0
5

10
15
20

Ti
m

e 
co

st
 (s

)
Others VF-related

Figure 11. Average startup time. Concurrency = 200

5 10 15 20 25
Time cost (s)

0.00

0.25

0.50

0.75

1.00

CD
F

No-Net
Vanilla
Pre10

Pre50
Pre100
Fastiov-L

Fastiov-A
Fastiov-S

Fastiov-D
Fastiov

Figure 12. Startup time distribution. Concurrency = 200

advanced network features; and (ii) it is the basic soft-
ware CNI with the fastest startup for secure containers
according to our measurements in a concurrent work [42].

6.2 Startup Performance
We compare FastIOV with other baselines by measuring the
startup time with 200 concurrently invoked secure contain-
ers. Fig. 11 displays the average time and the breakdown
into two parts, VF-related and others. VF-related refers to the
time of the four VF-related stages previously introduced in
§3.2 and others represents the remaining part of the time. We
draw the following three key conclusions from the results.
First, FastIOV significantly outperforms the vanilla SR-

IOV CNI in both the average and long-tail time cost. Fas-
tIOV reduces the average startup time by 65.7% compared
to vanilla. Specifically, FastIOV reduces the time overhead
directly related to VF operations by 96.1%, significantly mit-
igating the effect of enabling VF on the startup of secure
containers. Moreover, the time distribution in Fig. 12 shows
that FastIOV also reduces the 99th percentile startup time of
vanilla by 75.4%, largely improving the long-tail performance.
In addition, FastIOV achieves a startup time close to that
of No-Net, with the average and the 99th percentile startup
time being 39.1% and 11.6% higher, respectively. In contrast,
the corresponding figures of vanilla are substantially larger,
i.e., 305.2% and 354.5%.

Second, each of our optimization techniques makes an ob-
vious contribution to the time reduction achieved by FastIOV.
Compared with Vanilla, FastIOV-L, FastIOV-A, FastIOV-S and
FastIOV-D reduce the average time by 21.8%, 40.3%, 58.2%,
and 43.7%, respectively, all smaller than the 65.7% reduction
achieved by the intact FastIOV. This shows that removing
any of the optimization techniques obviously degrades the
gain, thereby proving the effectiveness of each optimization.

Third, FastIOV outperforms thememory pre-zeroingmeth-
ods and further reduces the average time by 56.4% compared
with Pre100. The performance of pre-zeroing strongly de-
pends on the fraction of memory pre-zeroed during memory
idle time. In practice, cloud vendors tend to maintain a high
level of memory utilization for more revenue. For example,

AWS uses a bin-pack algorithm for this purpose, and its av-
erage server memory utilization ranges from 84.6% to 100%,
with a median of 96.2% [63]. This leaves short memory idle
time and can further limit the performance of pre-zeroing.

6.3 Impacting Factors

Concurrency. Fig. 13a shows the impact of varying concur-
rency. It reports the startup time distribution with container
concurrency increasing from 10 to 200 and each allocated
512MB of memory. We observe that FastIOV is effective
across all concurrency, achieving time reductions ranging
from 46.7% to 65.6%. The reduction is more obvious with a
higher concurrency, as the lock contention in VFIO devset
becomes more severe with more concurrently invoked VFs.

Resource allocation. Fig. 13b shows the impact of varying
per-container resource requirement. More precisely, it shows
the time distribution of concurrently starting 50 containers
with memory allocation for each container increasing from
512MB to 2GB. We observe an obvious increase of 60.5% in
the average startup time of vanilla as the memory allocation
increases to 2GB, while only 21.5% with FastIOV. This is be-
cause the optimization of FastIOV onDMAmemorymapping
makes its startup time less sensitive to allocated memory.
With a larger memory allocation, the effectiveness of the
unnecessary mapping skipping optimization decreases, as
the ratio of the skipped memory regions becomes relatively
smaller. However, the overall reduction ratio achieved by
FastIOV still increases. This is because the skipping optimiza-
tion is not the primary source of the achieved speedup, as
shown by the comparison of FastIOV and FastIOV-S in Fig. 11.
A larger memory allocation increases the performance gain
achieved by FastIOV ’s optimization on DMA memory map-
ping, which outweighs the decreased gain of the skipping
optimization, and thus leads to a higher reduction ratio.

Fully loaded server. As mentioned before, cloud vendors
like AWS tend to schedule containers to maximize the uti-
lization of server resources, i.e., memory and CPU. Here,
we consider a scenario that tries to partially capture this



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

10 20 50 100200
Concurrency

0

10

20

30

Ti
m

e 
co

st
 (s

)
Vanilla Fastiov

(a) Varying concurrency.

0.5 1 1.5 2
Memory (GB)

2
4
6
8

10
12

Ti
m

e 
co

st
 (s

)

Vanilla Fastiov

(b) Varying resource.

10 20 50 100200
Concurrency

10

20

30

Ti
m

e 
co

st
 (s

)

Vanilla Fastiov

(c) Fully loaded server.

Figure 13. Impacting factors.

0 2 4 6 8 101214
Timeline (s)

0
50

100
150
200

Po
d 

In
de

x

0-addCNI
1-cgroup

2-virtiofs
3-agent

(a) FastIOV

0 2 4 6 8 101214
Timeline (s)

0
50

100
150
200

Po
d 

In
de

x

0-addCNI
1-cgroup

2-virtiofs
3-agent

(b) IPvtap

Figure 14. Comparison with software CNI.

behavior. We vary the concurrency, and for each given con-
currency, we evenly divide all the resources of the server
among the concurrent containers. Note that fewer contain-
ers means more allocated resources for each. The startup
time distribution in Fig. 13c shows that FastIOV achieves
large time reductions across all settings, even with low con-
currency. In fact there is an increase in the time reduction
ratio, from 65.7% to 79.5% as the concurrency decreases from
200 to 10. This is because a lower concurrency reduces the
time of the other startup steps unrelated to SR-IOV, while
the optimization of DMA memory mapping is unaffected, as
the total allocated memory stays unchanged.

6.4 Bottleneck Differences with Software CNI
We compare FastIOV with the software CNI IPvtap to illus-
trate how the startup bottlenecks of a software CNI differ
from those of an SR-IOV based solution. The software CNI
emulates the physical network devices of microVMs, and
thus obviates the time-consuming passthrough I/O setup
procedure. A comparison of Fig. 11 and Fig. 14 shows that
IPvtap has faster startup than vanilla SR-IOV, although with
a much worse data plane performance. On the other hand,
Fig. 14 shows that FastIOV achieves 41.3% and 31.8% lower
total and average startup time than IPvtap.
The deficiency of IPvtap results mostly from two parts:

(i) the creation and configuration of the virtual network de-
vice (denoted by addCNI ), and (ii) the host resource isolation
(denoted by cgroup). Through detailed measurements, we
identify that the severe lock contentions in kernel network
calls and cgroup operations bring in much overhead [42]. In
contrast, SR-IOV CNIs attach VFs to the secure container
without creating any additional virtual network device. Thus,
with FastIOV optimizing the time-consuming passthrough
I/O setup, an SR-IOV based solution is more capable of
achieving ultra-fast concurrent startup for secure containers.

6.5 Impact on Memory Access Performance
To evaluate the effect of FastIOV on the memory access per-
formance, we use an open-source tool Tinymembench [59]
to test the memory throughput and latency within the se-
cure container. To obtain the throughput, the tool performs
memcpy operations on 2048-byte data blocks for 5 seconds

10 20
Time cost (s)

0.0

0.5

1.0

CD
F

Vanilla Fastiov

(a) Image

10 20 30
Time cost (s)

0.0

0.5

1.0

CD
F

Vanilla Fastiov

(b) Compression

10 20 30
Time cost (s)

0.0

0.5

1.0
CD

F

Vanilla Fastiov

(c) Scientific

20 30 40
Time cost (s)

0.0

0.5

1.0

CD
F

Vanilla Fastiov

(d) Inference

Figure 15. Serverless application performance.

and repeats the process for 10 times. To obtain the latency, it
performs the random byte reading for 10 million times. The
results show that FastIOV achieves memory access perfor-
mance comparable to vanilla, with a degradation in memory
throughput and an increase in latency within 1%. Since Fas-
tIOV only intercepts the EPT page fault once upon the initial
memory access, it does not affect subsequent memory oper-
ations and thus causes negligible performance degradation.

6.6 Performance in Serverless Applications

Benchmark applications. To evaluate the overall speedup
brought by FastIOV on serverless applications, we choose
four representative tasks, i.e., Image, Compression, Scientific
and Inference, from the widely adopted SeBS [14] serverless
benchmark. Image resizes an input image to a thumbnail of
size 100x100. Compression zips an input file of 9.7MB. Sci-
entific performs a breadth-first search to traverse a graph
of 100000 nodes. Inference utilizes ResNet-50 model for Ima-
geNet classification task. Each application first downloads
input data from the storage server through the VF assigned
to its secure container before performing the computation.



FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

10 20 50 100 200
Concurrency

0

10

20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(a) Image

10 20 50 100 200
Concurrency

0

10

20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(b) Compression

10 20 50 100 200
Concurrency

0

10

20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(c) Scientific

10 20 50 100 200
Concurrency

0
10
20
30
40

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(d) Inference

0.5 1 1.5 2
Memory (GB)

0
5

10
15
20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(e) Image

0.5 1 1.5 2
Memory (GB)

0
5

10
15
20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(f) Compression

0.5 1 1.5 2
Memory (GB)

0
5

10
15
20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(g) Scientific

0.5 1 1.5 2
Memory (GB)

0
5

10
15
20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(h) Inference

10 20 50 100 200
Concurrency

0

10

20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(i) Image

10 20 50 100 200
Concurrency

0

10

20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(j) Compression

10 20 50 100 200
Concurrency

0

10

20

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(k) Scientific

10 20 50 100 200
Concurrency

0
10
20
30
40

Ti
m

e 
co

st
 (s

)

0
20
40
60
80

Ra
tio

 (%
)

Vanilla Fastiov R-ratio

(l) Inference

Figure 16. Performance of FastIOV on serverless applications with varying concurrency (a∼d), varying resource
allocation (e∼h), or fully loaded server (i∼l). R-ratio: time reduction ratio achieved by FastIOV compared with Vanilla.

Overall performance. Fig. 15 illustrates the task comple-
tion time distribution of running the four serverless appli-
cations on 200 concurrently launched containers. The task
completion time refers to the duration from the issuance of
the startup command to the completion of the container ap-
plication. Compared to vanilla, FastIOV achieves reductions
of 12.1%-53.5% and 20.3%-53.7% in the average and the 99th
percentile task completion time across all applications. We
notice that the reduction ratio decreases from application
Image to Inference, which is attributed to the fact that the
task execution time increases from Image to Inference, reduc-
ing the portion that container startup takes up in the total
time. This suggests that the benefits of FastIOV are more
pronounced with shorter-lived applications.

Impacting factors. Similar to §6.3, we evaluate the perfor-
mance of FastIOV on serverless applications with varying
concurrency, varying resource allocation, and also in the case
of a fully loaded server. Fig. 16 shows the average task com-
pletion time and the time reduction ratio achieved by FastIOV.
The overall trend is similar to that in §6.3: (i) with a fixed
per container resource allocation, FastIOV achieves higher
performance gain at a higher concurrency (Fig. 16a∼d); (ii)
at a fixed concurrency, FastIOV achieves higher performance
gainwith larger per container resource allocation (Fig. 16e∼h);
(iii) with a fully loaded server, FastIOV achieves obvious time
reduction across all applications and concurrency settings,
which is most pronounced at lower concurrency (Fig. 16i∼l).

Compared to §6.3, there is a notable difference when we
vary the resource allocation per container: with more re-
source allocation, the task completion time of FastIOV re-
mains unchanged (cf. Fig. 16e and f) or even decreases (cf.
Fig. 16g and h). This is because the increased resource allo-
cation shortens the task execution time and thus reduces the
task completion time for FastIOV. This demonstrates that
FastIOV enables applications to more effectively reap the
benefits of increased resource allocation.

7 Discussion of Limitation
Enabling FastIOV for new types of SR-IOV devices, such
as RDMA NICs or NVMe storage, requires their drivers to
ensure that the buffer memory is already EPT faulted when
the device is the first to access the memory. This is to avoid
the same issue with virtio as explained in §4.3.2. This should
require only simple changes in the drivers like what we
did to the virtio frontend that performs a data read to the
first byte of each page of the memory to proactively trig-
ger EPT faults, or less efficiently, like the zeroing performed
by the drivers of standard NICs. However, this can become
problematic if the device driver is closed-source and not mod-
ifiable by cloud providers. A potential solution and future
research direction is to resort to the vDPA technology [36].
VDPA extends SR-IOV and enables the guest to use standard
open-source virtio driver to perform data transfer instead of
vendor-specific drivers. However, its effect on the concurrent
startup performance requires further investigation.



EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

8 Related Works

CNI enhancements. The cloud-native community has been
developing plenty of widely-used CNI plugins like Flan-
nel [12], Calico [10] and Cilium [11]. The state-of-the-arts
mainly choose them as baselines and try to optimize their
data plane performance using techniques like pipeline paral-
lelism [32], resource allocation optimization[31] or VXLAN
enhancement [7, 72]. Relatively fewer works have recog-
nized the significance of the startup performance [47, 61],
and those works only optimize the startup of software-based
CNIs for traditional containers. PCPM [47] pre-creates the
virtual network devices and network configurations as pause
containers, and dynamically attaches them to newly launched
containers. However, when using SR-IOV for secure contain-
ers, the startup bottleneck does not lie in the creation of the
VFs but in the attaching process. Particle [61] identifies the
startup bottleneck of using the veth-based software CNI as
the NNS moving, and resolves this problem by sharing the
NNS. However, NNS moving is not a key bottleneck when
using secure containers either with SR-IOV based CNIs (§3.2)
or software based CNIs [42].

SR-IOV enhancements. Due to the good data plane perfor-
mance with the high throughput and low latency, SR-IOV
outperforms other forms of network I/O virtualization and
has been widely adopted in various applications [2, 21, 43,
48, 49]. Many existing works make a step further to enhance
SR-IOV’s performance. They make up for the lack of live
migration [26, 54, 66, 68], improve the deployment density
[17, 19, 56], avoid the performance degradation caused by
frequent transmission interrupts [25, 34] and enhance the
logic isolation and performance isolation for multi-tenancy
scenarios [30, 69]. However, none of these works recognizes
the demand for improving the concurrent startup perfor-
mance of SR-IOV enabled networking. HD-IOV [70] is a
recent work that mainly focuses on improving the deploy-
ment density, resource flexibility, and driver compatibility
of SR-IOV. While it also accelerates VF initialization, it does
not consider the concurrent startup of VFs and hence fails
to address the key bottlenecks unique to concurrent startup
scenarios, such as contention for the global VFIO lock.

Passthrough I/O optimizations. An important line of
works regarding passthrough I/O is the optimization of the
IOMMU module [4, 5, 41, 44, 62, 64]. Among those works,
the most relevant to our FastIOV are the designs of virtual
IOMMU [4, 62, 64]. vIOMMU [4] identifies that the page pin-
ning operation of DMA memory mapping in IOMMU pro-
hibits memory over-commitment. It introduces an IOMMU
emulation layer to delay the mapping establishment and per-
formmapping when a memory region is actually accessed by
DMA. coIOMMU [62] relieves the performance degradation
problem of vIOMMU by decoupling the DMA mapping and

page pinning process. V-Probe [64] further solves the intru-
siveness problem in coIOMMU’s design by adopting an eBPF
based design. The delayed DMA memory mapping in those
virtual IOMMUs can reduce the startup cost of passthrough
I/O. However, such reduction is coupled with the enabling of
memory-overcommitment, which is not always the preferred
option in multi-tenant clouds [39]. By comparison, our Fas-
tIOV decouples the root cause of overhead, i.e., page zeroing,
from memory mapping to accelerate the startup, making it
more flexible and applicable whether overcommitment is
enabled or not.

VM/Container concurrency improvements. The major-
ity of related works in this category focus on optimizing
the startup performance of traditional containers. They re-
duce startup time by accelerating container image distribu-
tion [33, 40], introducing a specific checkpoint or general
template-based runtime [20, 51], or providing warm startup
solutions with technologies such as workload prediction and
adaptive pooling [58, 67, 71]. Another series of works op-
timizes the startup of microVMs or VMs using techniques
such as kernel trimming [1, 35, 46], cgroup pre-creation [35],
hypervisor lock [50] and control plane redesign [46]. Those
works focus on optimizing the non-network part of the
startup, and are orthogonal to our work.

9 Conclusion
In the context of secure containers, SR-IOV enabled net-
working achieves a high data plane performance, a high
deployment density, but a poor concurrent startup perfor-
mance. We identify three key bottlenecks that cause the slow
startup: (i) the contention for the coarse lock in VFIO devset
management, (ii) the DMAmemory mapping, and (iii) the VF
driver initialization process. To address these bottlenecks, we
propose a solution named FastIOV with optimization meth-
ods including lock decomposition, unnecessary mapping
skipping, decoupled zeroing, and asynchronous VF driver
initialization. We implement FastIOV as a portable kernel
module and an optimized CNI plugin, along with several
modifications in the infrastructures managed by the cloud
vendor. Compared to vanilla SR-IOV CNI, FastIOV reduces
the VF-related startup time by 96.1%, the end-to-end startup
time by 65.7%, and the task completion time of common
serverless applications by 12.1%-53.5%.

Acknowledgments
We are sincerely grateful to our shepherd Reto Achermann
and all anonymous reviewers for their valuable comments
and suggestions. This work was supported in part by the
National Natural Science Foundation of China (No. 62072302,
61960206002), the Key R&D Program of Zhejiang Province
(No. 2023R5202) and Alibaba Innovation Research Project
(No. 2022010307).



FastIOV: Fast Startup of Passthrough Network I/O Virtualization for Secure Containers EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020.
Firecracker: Lightweight Virtualization for Serverless Applications. In
Proceedings of USENIX NSDI. USENIX, Santa Clara, USA, 419–434.

[2] Giuliano Albanese, Robert Birke, Georgia Giannopoulou, Sandro
Schönborn, and Thanikesavan Sivanthi. 2021. Evaluation of Network-
ing Options for Containerized Deployment of Real-Time Applications.
In Proceedings of IEEE International Conference on Emerging Technolo-
gies and Factory Automation. IEEE, Vasteras, Sweden, 1–8.

[3] Amazon. 2023. AWS Lambda. https://www.aliyun.com/product/fc.
[4] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, Assaf Schuster, et al. 2011.

vIOMMU: Efficient IOMMU Emulation. In Proceedings of USENIX ATC.
USENIX, Portland, USA, 1–14.

[5] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU:
Strategies for Mitigating the IOTLB Bottleneck. In Proceedings of
ACM/IEEE ISCA. ACM, Saint-Malo, France, 256–274.

[6] Azure. 2023. Azure Cosmos DB. https://azure.microsoft.com/en-
us/products/cosmos-db.

[7] Sunyanan Choochotkaew, Tatsuhiro Chiba, Scott Trent, and Marcelo
Amaral. 2022. Bypass Container Overlay Networks with Transparent
BPF-driven Socket Replacement. In Proceedings of IEEE International
Conference on Cloud Computing. IEEE, Barcelona, Spain, 134–143.

[8] CNCF Community. 2024. Containerd: An Industry-Standard Container
Runtime with An Emphasis on Simplicity, Robustness and Portability.
https://containerd.io/.

[9] CNCF Community. 2024. Kubernetes: An Open-Source System for
Automating Deployment, Scaling and Management of Containerized
Applications. https://kubernetes.io/.

[10] Calico Community. 2024. Calico CNI Project. https://github.com/pro
jectcalico/calico.

[11] Cilium Community. 2024. Cilium CNI Project. https://github.com/cil
ium/cilium.

[12] Flannel Community. 2024. Flannel CNI Project. https://github.com/f
lannel-io/flannel.

[13] PCI-SIG Community. 2024. PCI Special Interest Group. http://www.
pcisig.com/home.

[14] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Pod-
stawski, and Torsten Hoefler. 2021. SeBS: A Serverless Benchmark
Suite for Function-as-a-Service Computing. In Proceedings of ACM/IFIP
International Middleware Conference. ACM, Virtual Event, 64–78.

[15] Intel Corporation. 2023. Intel® Virtualization Technol-
ogy for Directed I/O Architecture Specification Revision
4.1. https://www.intel.com/content/www/us/en/content-
details/774206/intel-virtualization-technology-for-directed-i-o-
architecture-specification.html.

[16] Intel Corporation. 2024. Intel Infrastructure Processing Unit (Intel
IPU) SoC E2100 Product Brief. https://www.intel.com/content/www/
us/en/content-details/818147/intel-infrastructure-processing-unit-
intel-ipu-soc-e2100-product-brief.html.

[17] Intel Corporation. 2024. Scalable I/O Virtualization Technical Spec-
ification. https://cdrdv2-public.intel.com/671403/intel-scalable-io-
virtualization-technical-specification.pdf.

[18] NVIDIA Corporation. 2024. NVIDIA CONNECTX-7 400G ETHER-
NET. https://www.nvidia.com/content/dam/en-zz/Solutions/network
ing/ethernet-adapters/connectx-7-datasheet-Final.pdf.

[19] NVIDIA Corporation. 2024. Scalable Function Overview. https://gith
ub.com/Mellanox/scalablefunctions/wiki.

[20] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting. In
Proceedings of ACM ASPLOS. ACM, Lausanne, Switzerland, 467–481.

[21] Brice Ekane, Tu Dinh Ngoc, Boris Teabe, Daniel Hagimont, and Noel
De Palma. 2022. FlexVF: Adaptive Network Device Services in A

Virtualized Environment. Future Generation Computer Systems 127
(2022), 14–22.

[22] Abdul Halim et al. 2024. Network Device Plugin for Kubernetes. https:
//github.com/k8snetworkplumbingwg/sriov-network-device-plugin.

[23] Ye Yin et al. 2024. SR-IOV CNI Plugin Project. https://github.com/hus
tcat/sriov-cni.

[24] Open Infrastructure Foundation. 2024. Kata Containers: the Speed of
Containers, the Security of VMs. https://katacontainers.io/.

[25] HaiBing Guan, YaoZu Dong, Kun Tian, and Jian Li. 2013. SR-IOV
based Network Interrupt-Free Virtualization with Event based Polling.
IEEE JSAC 31, 12 (2013), 2596–2609.

[26] Wei Lin Guay, Sven-Arne Reinemo, Bjørn Dag Johnsen, Tor Skeie, and
Ola Torudbakken. 2012. A Scalable Signalling Mechanism for VM
Migration with SR-IOV over Infiniband. In Proceedings of IEEE ICPADS.
IEEE, Singapore, 384–391.

[27] Intel. 2024. Data PlaneDevelopment Kit (DPDK). http://www.dpdk.org
[28] Intel. 2024. Intel® Ethernet Controller E810. https://www.intel.com/

content/www/us/en/products/details/ethernet/800-controllers/e810-
controllers/docs.html.

[29] Intel. 2024. Intel® Infrastructure Processing Unit (Intel® IPU) Adapter
E2100. https://www.intel.com/content/www/us/en/products/details/n
etwork-io/ipu/adapter-e2100.html.

[30] Xinhao Kong, Jingrong Chen,Wei Bai, Yechen Xu, Mahmoud Elhaddad,
Shachar Raindel, Jitendra Padhye, Alvin R Lebeck, and Danyang Zhuo.
2023. Understanding RDMA Microarchitecture Resources for Perfor-
mance Isolation. In Proceedings of USENIX NSDI. USENIX, Boston, USA,
31–48.

[31] Kyungwoon Lee, Kwanhoon Lee, Hyunchan Park, Jaehyun Hwang,
and Chuck Yoo. 2022. Autothrottle: Satisfying Network Performance
Requirements for Containers. IEEE Transactions on Cloud Computing
11 (2022), 2096–2109.

[32] Jiaxin Lei, Manish Munikar, Kun Suo, Hui Lu, and Jia Rao. 2021. Paral-
lelizing Packet Processing in Container Overlay Networks. In Proceed-
ings of ACM EuroSys. ACM, Virtual Event, 1–16.

[33] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor
Hsu. 2020. DADI: Block-Level Image Service for Agile and Elastic
Application Deployment. In Proceedings of USENIX ATC. USENIX,
Virtual Event, 727–740.

[34] Jian Li, Shuai Xue, Wang Zhang, Ruhui Ma, Zhengwei Qi, and Haib-
ing Guan. 2017. When I/O Interrupt Becomes System Bottleneck:
Efficiency and Scalability Enhancement for SR-IOV Network Virtual-
ization. IEEE Transactions on Cloud Computing 7, 4 (2017), 1183–1196.

[35] Zijun Li, Jiagan Cheng, Quan Chen, Eryu Guan, Zizheng Bian, Yi Tao,
Bin Zha, Qiang Wang, Weidong Han, and Minyi Guo. 2022. RunD: A
Lightweight Secure Container Runtime for High-density Deployment
and High-Concurrency Startup in Serverless Computing. In Proceed-
ings of USENIX ATC. USENIX, Carlsbad, USA, 53–68.

[36] Cunming Liang and Tiwei Bie. 2018. vdpa: vhost-mdev as a New vhost
Protocol Transport. In KVM Forum.

[37] Linux Kernel Organization. 2024. Kernel Virtual Machine. https:
//linux-kvm.org/page/Main_Page.

[38] Linux Kernel Organization. 2024. The Linux Kernel Archives. https:
//www.kernel.org/.

[39] Fangming Liu and Yipei Niu. 2023. Demystifying the Cost of Serverless
Computing: Towards A Win-Win Deal. IEEE TPDS 35 (2023), 59–72.

[40] Haifeng Liu, Wei Ding, Yuan Chen, Weilong Guo, Shuoran Liu, Tian-
peng Li, Mofei Zhang, Jianxing Zhao, Hongyin Zhu, and Zhengyi
Zhu. 2019. CFS: A Distributed File System for Large Scale Container
Platforms. In Proceedings of ACM SIGMOD. ACM, Amsterdam, The
Netherlands, 1729–1742.

[41] Ming Liu, Tao Li, Neo Jia, Andy Currid, and Vladimir Troy. 2015. Un-
derstanding the Virtualization "Tax" of Scale-out Pass-through GPUs
in GaaS Clouds: An Empirical Study. In Proceedings of IEEE HPCA).
IEEE, Burlingame, USA, 259–270.

https://www.aliyun.com/product/fc
https://azure.microsoft.com/en-us/products/cosmos-db
https://azure.microsoft.com/en-us/products/cosmos-db
https://containerd.io/
https://kubernetes.io/
https://github.com/projectcalico/calico
https://github.com/projectcalico/calico
https://github.com/cilium/cilium
https://github.com/cilium/cilium
https://github.com/flannel-io/flannel
https://github.com/flannel-io/flannel
http://www.pcisig.com/home
http://www.pcisig.com/home
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/818147/intel-infrastructure-processing-unit-intel-ipu-soc-e2100-product-brief.html
https://www.intel.com/content/www/us/en/content-details/818147/intel-infrastructure-processing-unit-intel-ipu-soc-e2100-product-brief.html
https://www.intel.com/content/www/us/en/content-details/818147/intel-infrastructure-processing-unit-intel-ipu-soc-e2100-product-brief.html
https://cdrdv2-public.intel.com/671403/intel-scalable-io-virtualization-technical-specification.pdf
https://cdrdv2-public.intel.com/671403/intel-scalable-io-virtualization-technical-specification.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://github.com/Mellanox/scalablefunctions/wiki
https://github.com/Mellanox/scalablefunctions/wiki
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/k8snetworkplumbingwg/sriov-network-device-plugin
https://github.com/hustcat/sriov-cni
https://github.com/hustcat/sriov-cni
https://katacontainers.io/
http://www.dpdk.org
https://www.intel.com/content/www/us/en/products/details/ethernet/800-controllers/e810-controllers/docs.html
https://www.intel.com/content/www/us/en/products/details/ethernet/800-controllers/e810-controllers/docs.html
https://www.intel.com/content/www/us/en/products/details/ethernet/800-controllers/e810-controllers/docs.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/adapter-e2100.html
https://www.intel.com/content/www/us/en/products/details/network-io/ipu/adapter-e2100.html
https://linux-kvm.org/page/Main_Page
https://linux-kvm.org/page/Main_Page
https://www.kernel.org/
https://www.kernel.org/


EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands Yunzhuo Liu et al.

[42] Yunzhuo Liu, Junchen Guo, Pengyu Zhang, Bo Jiang, Xiaoqing Sun,
Yang Song, Wei Ren, Zhiyuan Hou, Biao Lyu, Rong Wen, Shunmin
Zhu, and Xinbing Wang. 2024. Understanding Network Startup for
Secure Containers in Multi-Tenant Clouds: Performance, Bottleneck
and Optimization. In Proceedings of ACM IMC. ACM, Madrid, Spain,
1–16.

[43] Diego Rossi Mafioletti, Cristina Klippel Dominicini, Magnos Mar-
tinello, Moises R. N. Ribeiro, and Rodolfo da Silva Villaça. 2020. PIaFFE:
A Place-as-you-go In-Network Framework for Flexible Embedding of
VNFs. In Proceedings of IEEE ICC. IEEE, Virtual Event, 1–6.

[44] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. 2015.
rIOMMU: Efficient IOMMU for I/O Devices that Employ Ring Buffers.
In Proceedings of ACM ASPLOS. ACM, New York, USA, 355–368.

[45] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) than your Container. In Proceedings of
ACM SOSP. ACM, Shanghai, China, 218–233.

[46] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter and Safer than Your Container. In Proceedings of
ACM SOSP. ACM, Shanghai, China, 218–233.

[47] Mohan, Anup and Sane, Harshad and Doshi, Kshitij and Edupuganti,
Saikrishna and Nayak, Naren and Sukhomlinov, Vadim. 2019. Agile
Cold Starts for Scalable Serverless. In Proceedings of USENIX HotCloud.
USENIX, Renton, USA, 1–6.

[48] T.P. Nagendra and R. Hemavathy. 2023. Unlocking Kubernetes Net-
working Efficiency: Exploring Data Processing Units for Offloading
and Enhancing Container Network Interfaces. In Proceedings of IEEE
Global Conference for Advancement in Technology. IEEE, Bengaluru,
India, 1–7.

[49] Dinh Tam Nguyen, Ngoc Lam Dao, Van Thuyet Tran, Khac Thuan
Lang, Thanh Tu Pham, Phi Hung Nguyen, Cong Dan Pham, Tuan Anh
Pham, Duc Hai Nguyen, and Huu Thanh Nguyen. 2022. Enhancing
CNF Performance for 5G Core Network Using SR-IOV in Kubernetes.
In Proceedings of IEEE International Conference on Advanced Commu-
nication Technology. IEEE, Pyeongchang, Korea, 501–506.

[50] Vlad Nitu, Pierre Olivier, Alain Tchana, Daniel Chiba, Antonio Bar-
balace, Daniel Hagimont, and Binoy Ravindran. 2017. Swift Birth and
Quick Death: Enabling Fast Parallel Guest Boot and Destruction in the
Xen Hypervisor. ACM SIGPLAN Notices 52, 7 (2017), 1–14.

[51] Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
Proceedings of USENIX ATC. USENIX, Boston, USA, 57–70.

[52] Linux Kernel Organization. 2024. AppArmor-Linux kernel Security
Module. https://apparmor.net.

[53] Linux Kernel Organization. 2024. SECure COMPuting with filters. ht
tps://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt.

[54] Zhenhao Pan, Yaozu Dong, Yu Chen, Lei Zhang, and Zhijiao Zhang.
2012. CompSC: Live Migration with Pass-through Devices. In Pro-
ceedings of ACM SIGPLAN/SIGOPS Conference on Virtual Execution
Environments. ACM, London, UK, 109–120.

[55] Ashish Panwar, Sorav Bansal, and K Gopinath. 2019. Hawkeye: Effi-
cient Fine-Grained OS Support for Huge Pages. In Proceedings of ACM
ASPLOS. ACM, Providence, USA, 347–360.

[56] Bo Peng, Haozhong Zhang, Jianguo Yao, Yaozu Dong, Yu Xu, and
Haibing Guan. 2018. MDev-NVMe: A NVMe Storage Virtualization
Solution with Mediated Pass-Through. In Proceedings of USENIX ATC.

USENIX, Vancouver, Canada, 665–676.
[57] Shixiong Qi, Sameer G. Kulkarni, and K.K. Ramakrishnan. 2020. Assess-

ing Container Network Interface Plugins: Functionality, Performance,
and Scalability. IEEE Transactions on Network and Service Management
18, 1 (2020), 656–671.

[58] Rohan Basu Roy, Tirthak Patel, and Devesh Tiwari. 2022. Icebreaker:
Warming Serverless Functions Better with Heterogeneity. In Proceed-
ings of ACM ASPLOS. ACM, Lausanne, Switzerland, 753–767.

[59] Siarhei Siamashka. 2024. Tinymembench. https://github.com/sysprog
21/tinymembench.

[60] Kun Suo, Junggab Son, Dazhao Cheng, Wei Chen, and Sabur Baidya.
2021. Tackling Cold Start of Serverless Applications by Efficient and
Adaptive Container Runtime Reusing. In Proceedings of IEEE Interna-
tional Conference on Cluster Computing. IEEE, Virtual Event, 433–443.

[61] Shelby Thomas, Lixiang Ao, Geoffrey M. Voelker, and George Porter.
2020. Particle: Ephemeral Endpoints for Serverless Networking. In
Proceedings of ACM SoCC. ACM, Virtual Event, 16–29.

[62] Kun Tian, Yu Zhang, Luwei Kang, Yan Zhao, and Yaozu Dong. 2020.
coIOMMU: A Virtual IOMMU with Cooperative DMA Buffer Tracking
for Efficient Memory Management in Direct I/O. In Proceedings of
USENIX ATC. USENIX, Virtual Event, 479–492.

[63] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking behind the Curtains of Serverless Plat-
forms. In Proceedings of USENIX ATC. USENIX, Boston, USA, 133–146.

[64] Yaohui Wang, Ben Luo, and Yibin Shen. 2023. Efficient Memory
Overcommitment for I/O Passthrough Enabled VMs via Fine-grained
Page Metadata Management. In Proceedings of USENIX ATC. USENIX,
Boston, USA, 769–783.

[65] DanWilliams and Ricardo Koller. 2016. Unikernel Monitors: Extending
Minimalism outside of the Box. In Proceedings of USENIX HotCloud.
USENIX, Denvor, USA, 71–76.

[66] Xin Xu and Bhavesh Davda. 2017. A Hypervisor Approach to Enable
Live Migration with Passthrough SR-IOV Network Devices. ACM
SIGOPS Operating Systems Review 51, 1 (2017), 15–23.

[67] Yanan Yang, Laiping Zhao, Yiming Li, Huanyu Zhang, Jie Li, Mingyang
Zhao, Xingzhen Chen, and Keqiu Li. 2022. INFless: A Native Serverless
System for Low-Latency, High-Throughput Inference. In Proceedings
of ACM ASPLOS. ACM, Lausanne, Switzerland, 768–781.

[68] Jie Zhang, Xiaoyi Lu, and Dhabaleswar K Panda. 2017. High-
Performance Virtual Machine Migration Framework for MPI Applica-
tions on SR-IOV Enabled InfiniBand Clusters. In Proceedings of IEEE
IPDPS. ACM, Orlando, USA, 143–152.

[69] Yiwen Zhang, Yue Tan, Brent Stephens, and Mosharaf Chowdhury.
2022. Justitia: Software Multi-Tenancy in Hardware Kernel-Bypass
Networks. In Proceedings of USENIX NSDI. USENIX, Renton, USA,
1307–1326.

[70] Zongpu Zhang, Jiangtao Chen, Banghao Ying, Yahui Cao, Lingyu Liu,
Jian Li, Xin Zeng, JunyuanWang, Weigang Li, and Haibing Guan. 2024.
HD-IOV: SW-HW Co-designed I/O Virtualization with Scalability and
Flexibility for Hyper-Density Cloud. In Proceedings of ACM EuroSys.
ACM, Athens, Greece, 834–850.

[71] Zhuangzhuang Zhou, Yanqi Zhang, and Christina Delimitrou. 2023.
Aquatope: QoS-and-Uncertainty-Aware Resource Management for
Multi-Stage Serverless Workflows. In Proceedings of ACM ASPLOS.
ACM, Vancouver, Canada, 1–14.

[72] Danyang Zhuo, Kaiyuan Zhang, Yibo Zhu, Hongqiang Harry Liu,
Matthew Rockett, Arvind Krishnamurthy, and Thomas Anderson. 2025.
ONCache: A Cache-Based Low-Overhead Container Overlay Network.
In Proceedings of USENIX NSDI. USENIX, Philadelphia, USA, 1–16.

https://apparmor.net
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://github.com/sysprog21/tinymembench
https://github.com/sysprog21/tinymembench

	Abstract
	1 Introduction
	2 Background
	2.1 SR-IOV and Passthrough I/O
	2.2 Address Spaces and DMA Memory Mapping
	2.3 Network Startup Procedure of SR-IOV Enabled Secure Containers

	3 Measurement and Motivation
	3.1 Testbed for Startup Performance Measurement
	3.2 Startup Bottleneck Identification for SR-IOV Enabled Secure Containers

	4 Design
	4.1 FastIOV Overview
	4.2 Parallelizing Operations
	4.3 Accelerating DMA Memory Mapping

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 Startup Performance
	6.3 Impacting Factors
	6.4 Bottleneck Differences with Software CNI
	6.5 Impact on Memory Access Performance
	6.6 Performance in Serverless Applications

	7 Discussion of Limitation
	8 Related Works
	9 Conclusion
	Acknowledgments
	References

