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ABSTRACT

Peripapillary atrophy (PPA), a type of aberrant retinal symptom frequently present in older individuals or people
with myopia, might indicate the severity of glaucoma or myopia. It is particularly beneficial for diagnosis when
PPA is segmented e↵ectively in fundus images. Deep learning is now frequently used for PPA segmentation.
However, previous segmentation algorithms frequently mix up PPA with its neighboring tissue, the optic disc
(OD), and generate the incorrect PPA area even though PPA is not present in the fundus image. To address these
problems, we propose an improved segmentation network based on multi-task learning by combining detection
and segmentation of PPA. We analyze the shortcomings of widely used loss functions and define a modified
one to guide the training process of the network. We design a three-class segmentation task by introducing the
information of OD, forcing the network to learn the di↵erence of characteristics between OD and PPA. Evaluation
on a clinical dataset shows that our method achieves an average Dice coe�cient of 0.8854 in PPA segmentation,
outperforming UNet and TransUNet, two state-of-the-art methods, by 24.4% and 10.6%, respectively.
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1. INTRODUCTION

Peripapillary atrophy (PPA) is the atrophy of the retina and choroid. Fundus images are ocular records that can
reflect the structure of the retina. The macula, vessels, optic disc (OD), and optic cup are among the principal
structures that can be seen. Many eye diseases present abnormal symptoms on fundus images. For example,
the shape and size of PPA in fundus images can indicate the progression of eye diseases such as glaucoma and
pathological myopia. However, manual extraction of PPA areas in fundus images is time-consuming, so an
automatic and accurate segmentation of PPA can assist doctors in diagnosing diseases.

In recent years, deep learning models have shown excellent performance in medical image segmentation, such
as UNet.1 The follow-up works are primarily separated into three groups: a better model structure, combin-
ing complemental data, and appropriate optimization objectives that fit the actual tasks. Various studies have
designed novel structures to extract richer and more comprehensive features. Due to the inherent locality as-
sumption in convolution operations, CNN-based algorithms do not e↵ectively model explicit long-range relations.
SwinUNet2 and TransUNet3 merged Transformer4 into UNet to address this issue. HBA-UNet5 proposed a hi-
erarchical bottleneck attention to highlight retinal abnormalities. Some studies consider introducing additional
data to enhance the feature learning process of the model. He et al.6 and Li et al.7 introduced boundary masks to
smooth continuous surfaces. By combining a refined network trained by manually corrupted ground-truth mask,
Batra et al.8 improved the connectivity of segmentation. Most methods use Dice loss5 instead of cross-entropy
(CE) loss, or a hybrid loss3 to solve the problem of class imbalance in segmentation. To solve the problem of data
imbalance, Salehi et al.9 proposed Tversky loss. However, the current segmentation performance still su↵ers
from irregular borders, since OD is adjacent to PPA and their border is blurred. Furthermore, in non-diseased
fundus images, PPA might not be present. Another issue in PPA segmentation is how to prevent forecasting the
PPA area in healthy instances.
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Figure 1. The schematic of the proposed method. The input is a fundus image, then the features obtained from the
feature extractor are sent into the classification and segmentation module separately. The whole network output class
label and segmented mask to compute the loss of di↵erent tasks.

To address the problem above, we analyze the loss function in the training stage and find that Dice loss
implicitly expects that all samples have the segmentation target. This results in incorrect segmentation output
for non-target images. For samples without PPA, Dice loss cannot accurately assess the segmentation e↵ect of
the model. This phenomenon does not occur in OD segmentation because OD is the fundamental tissue and
always exists in fundus images. The blurred edge of the segmentation target often appears in medical images,
since the tissues or organs are highly similar. This leads to inaccurate segmentation close to the border.

In this paper, we design a new training method for PPA segmentation based on multi-task learning. And
we propose a novel loss function based on Dice loss and enable it to converge e↵ectively through a classification
loss. Therefore, we can improve the over-segmentation problem of non-target samples while maintaining the
existing segmentation performance among samples with the segmentation target. The information of OD is
also introduced to ameliorate the e↵ect of the blurred boundaries. The contributions of our approach can be
summarized as follows: (1) We tackle the barriers that existing methods produce over-segmentation in non-PPA
samples and segmentation errors in boundary pixels. (2) We theoretically analyze the problems of existing
methods and propose a novel multi-task learning method. (3) We show state-of-the-art performance on PPA
segmentation on a clinical dataset, especially with at least a 10.6% improvement over other methods.

2. METHOD

Current segmentation methods produce over-segmentation in non-PPA samples and are prone to segmentation
errors of pixels at the border. To address these issues, we propose a new training method based on joint-Dice loss
and multi-task learning, and adopt OD information to avoid the prediction error of pixels at the edge. Among
them, the joint-Dice loss can improve the segmentation performance, especially for samples without PPA, and
multi-task learning is the basis for ensuring the e↵ectiveness of joint-Dice loss. The model learns to categorize
every pixel into the background, OD, and PPA instead of explicitly segmenting background and target, which
is advantageous for learning discriminable characteristics. In the sections that follow, we first introduce the
network used, then we clarify the Dice loss constraint, and then we propose a brand-new end-to-end training
technique.

2.1 Framework

The schematic of the proposed method is illustrated in Fig. 1. Specifically, it consists of a feature extraction
network, a classification module, and a segmentation module. Given a fundus image as input, the feature
extractor can extract the high-level features for classification and the multi-resolution features for segmentation.
After passing the high-level features to the classification module, it can decide if an image contains PPA or not
by generating a classification probability. The classification probability is used to calculate the loss `C for the
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Figure 2. Detailed network structure. The network is a residual U-Net with ResNet50 as encoder and five upsampling
blocks which consist of the residual blocks and convolution layers. The final upsampling block removes residual operation
and is connected with a softmax layer to generate segmentation probabilities.

classification task. The multi-resolution features are sent into the segmentation module to obtain the predicted
PPA area. Based on the classification probabilities and segmentation labels output by the model, we can calculate
the proposed loss `joint�Dice for the segmentation task. Simultaneously, we adopt Cross-Entropy loss `CE to
guide the segmentation task.

Fig. 2 indicates the detailed structure of our network. HBA-UNet5 is the foundation upon which the network
architecture is developed. We employ a mechanism of multi-task learning and modify the output layer to
introduce OD information. The feature extraction network adopts ResNet5010 as the backbone. Fully connected
layers are connected with the feature extraction network to generate category probabilities, as the classifier.
Multi-resolution feature maps are fed into the segmentation module, which is a typical UNet-like decoder1 .
To obtain a richer feature representation, the model can integrate shallow characteristics with deep features
through skip connections. And the deepest feature map is passed into hierarchical bottleneck attention (HBA)
blocks to highlight retinal abnormalities that may be beneficial for PPA segmentation. The HBA block adopts
three attention mechanisms: channel, content, and relative-position attention. Then, by a series of upsampling
processes, the hidden features from di↵erent scales are decoded, and various resolution features are aggregated.
The convolution process is then employed to merge the concatenated features and alter the channel size. Finally,
the output of the final upsampling layer is sent into the softmax layer to generate three-category segmentation
probabilities for PPA and OD segmentation.

2.2 Loss Function

Without loss of generality, we perform the analysis under binary segmentation, and the formula can be transferred
to multi-class segmentation. The Dice coe�cient is a statistic proposed to measure the similarity of two sets.
Dice loss is inspired by the Dice coe�cient. We write the Dice loss for binary classification below:

`Dice = 1�
2
PN

i pigi + "
PN

i pi +
PN

i gi + "
, (1)

In the above, gi 2 {0, 1} specifies the label of ground-truth of pixel i and pi 2 [0, 1] denotes the model’s
predicted probability, where N indicates the total number of pixels in the image. In practice, " is employed to
guarantee the denominator is not equal to 0. Since in the training stage, each gi equals 0 for samples without
segmentation target, and pi belongs to [0, 1]. Considering this term

PN
i pi, the order of magnitude di↵erence

between correctly and incorrectly segmented results is small. The value of " is often small, which leads to the
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Table 1. PPA segmentation for di↵erent training methods tested on the clinical dataset. DICEppa: Dice coe�cient of
PPA for whole samples in testing data, Excluded DICEppa: Dice coe�cient of PPA excluded non-PPA samples, ACC:
the accuracy whether the PPA is detection correctly, Sen: the sensitivity of the detection results, Spe: the specificity of
the detection results. Values in parentheses represent standard deviation.

Network DICEppa Excluded DICEppa Acc Sen Spe

UNet1 0.7115 (0.3363) 0.8456 (0.1319) 0.8372 1.01.01.0 0.1250

R50 UNet1 0.7959 (0.3056) 0.8473 (0.1401) 0.8837 1.01.01.0 0.3750

Att-UNet13 0.6988 (0.3123) 0.8157 (0.1075) 0.8488 1.01.01.0 0.1875

HBA-UNet5 0.7763 (0.2969) 0.8394 (0.1724) 0.9070 1.01.01.0 0.5000

TransUNet3 0.8002 (0.3104) 0.8974 (0.1186) 0.8721 0.9857 0.3750

Swin-UNet2 0.7236 (0.3319) 0.8604 (0.0986) 0.8372 1.01.01.0 0.1250

Transfuse14 0.6572 (0.3085) 0.7646 (0.1420) 0.8488 1.01.01.0 0.1875

OursOursOurs 0.8854 (0.1860)0.8854 (0.1860)0.8854 (0.1860) 0.9020 (0.0786)0.9020 (0.0786)0.9020 (0.0786) 0.96510.96510.9651 1.01.01.0 0.81250.81250.8125

Dice loss approaching 1 under both correct segmentation and under-segmentation, and it is di�cult to separate
the loss in these two cases by just adjusting the value of ".

We propose an improved Dice loss that combines classification labels and probabilities. Based on the new
objective function, the model can be forced to discriminate whether non-target samples are correctly segmented.
We define the joint-Dice loss as:

`joint�Dice = (y + ŷ � yŷ) `Dice, (2)

where y 2 {0, 1} is the label reflecting the absence or presence of the segmentation target, and ŷ 2 [0, 1]
is the classification probability. For samples without segmentation target, `joint�Dice will be reducible to ŷ
since `Dice = 1 and y = 0. Therefore, under the new definition, `joint�Dice > 0.5 when correctly segmented,
`joint�Dice < 0.5 when incorrectly segmented. For samples with segmentation targets, `joint�Dice will degenerate
to `Dice, so the model will be forced to improve segmentation performance.

To obtain the ŷ above, we introduce a CE loss for another classification task, `C , which turns our optimization
goal to multi-task learning. To accelerate model learning and maintain robustness, we employ a hybrid loss of CE
loss, `CE , and the proposed loss, `joint�Dice , in the segmentation task. Finally, we optimize the loss function
as follows:

`total = �1`CE (p, g) + �2`joint�Dice (p, g, ŷ, y) + �3`C (ŷ, y) (3)

3. EXPERIMENTS AND RESULTS

3.1 Dataset and Implementation Details

The dataset we use is provided by Shanghai General Hospital, which contains 851 clinical data. This dataset is
collected from an epidemiology survey, and OD and PPA areas are pre-labeled by experts.

The input images were resized to 512×512 pixels. We used CLAHE11 to enhance the texture and contrast of
fundus images. We perform flip and rotation augmentation to the input during training. We divided the dataset
with 680 samples in the training set, 85 samples for validation and 86 samples for testing. The hyper-parameters
in loss function in Equation (3) were set as �1 = 0.25, �2 = 0.25, �3 = 0.5. The ResNet5010 backbone in
HBA-UNet5 was pre-trained on ImageNet12 . Models were trained with Adam optimizer with a learning rate of
0.0001, a momentum of 0.9, and a weight decay of 0.0001. The batch size was set as 4 and the default number
of training epochs was 500. The model was implemented using Keras and all experiments were conducted using
a single NVIDIA Geforce RTX 3090 GPU.
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Figure 3. Visualization of several methods in PPA segmentation. The original fundus images and ground truth are in
the first and second columns. The baselines and our method are in the next columns. We annotate the figure with the
presence of PPA in fundus images and Dice score for each result map.

3.2 Results

To evaluate the performance of our method and compare it against prior segmentation algorithms, we compare
the segmentation results from five compartments: Dice similarity coe�cient of PPA, Dice similarity coe�cient
of PPA on testing data that samples without PPA are removed, the accuracy of whether the PPA is detected
correctly, and the corresponding sensitivity and specificity. The state-of-the-art baselines we choose include:
UNet1 , R50 UNet,1 Att-UNet13 , HBA-UNet5 , TransUNet3 , Swin-UNet2 , and Transfuse14 . Among them,
the first four methods are based on pure convolutional neural networks, and the last three fuse Transformers4

and CNNs. All of them are trained on two-class segmentation tasks. The evaluation results are shown in Tab. 1.
From observation, our method outperforms state-of-the-art algorithms. We obtain a Dice coe�cient of PPA of
0.8854, by the improvement of 10.6% on TransUNet. The sensitivity is equal to 1 means that those methods
segment the PPA region for all fundus images with PPA. Our method obtains the best score in specificity. This
shows the applicability of the presented training method to the datasets including samples without segmentation
targets. Additionally, we take the samples without PPA out of the test set, the Dice score demonstrates that
our approach is continually improving. Though the loss function we designed primarily solves the segmentation
problem of non-PPA samples, the suggested technique benefits from the addition of the OD label information.

We also show a visualization comparison of the segmentation results of the di↵erent training methods, as
shown in Fig. 3. The top three rows in this figure show examples of images with noise, low-contrast images, and
images with blurred edges respectively. Results suggest that our technique, when compared to other methods, can
better segment PPA because the pixels near the boundary between PPA and OD are segmented more accurately.
In order to illustrate the boost of our algorithm for non-PPA samples, we show the examples in the last two
rows. Our approach produces accurate segmentation results, whereas other baselines typically provide erroneous
segmentation masks even when PPA is absent from fundus images.

We conduct the ablation investigation to assess the e↵ects of OD information, joint-Dice loss, and multi-task
learning on PPA segmentation (see Tab. 2). The addition of OD information can enhance both the segmentation
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Table 2. Ablation results. OD: Whether OD segmentation is combined, MTL: whether multi-task learning is adopted,
Joint-Dice: whether modified Dice loss is used.

OD MTL Joint-Dice DICEppa Excluded DICEppa Acc Sen Spe

⇥ ⇥ ⇥ 0.7763 (0.2969) 0.8394 (0.1724) 0.9070 1.01.01.0 0.5000
p

⇥ ⇥ 0.7853 (0.3186) 0.8934 (0.1133) 0.8721 1.01.01.0 0.3125
p p

⇥ 0.8406 (0.2517) 0.8899 (0.1058) 0.9302 1.01.01.0 0.6250

⇥
p p

0.8556 (0.2423) 0.8940 (0.1229) 0.9302 0.9857 0.6875
p p p

0.8854 (0.1860)0.8854 (0.1860)0.8854 (0.1860) 0.9020 (0.0786)0.9020 (0.0786)0.9020 (0.0786) 0.96510.96510.9651 1.01.01.0 0.81250.81250.8125

accuracy of samples with PPA as well as the model’s ability to discriminate between samples with and without
PPA. The multi-task learning technique mainly brings improvement in the correct segmentation of samples
without PPA. The joint-dice loss is associated with multi-task learning, which can enhance the model’s accuracy
in segmenting data without PPA. In a word, the ablation experiments show that each part we employ improves
the segmentation of PPA.

In addition, we provide further experiments to demonstrate the benefits of multi-task learning-based seg-
mentation approaches over multi-step segmentation methods. We first train a ResNet50 network to detect the
presence of PPA in fundus images. Then, for samples with PPA, the fundus image is submitted to the segmen-
tation network to extract the PPA area, whereas for data without PPA, the segmentation map is a matrix of all
zeros. TransUNet3 which has the best performance among baseline. From Tab. 3, we observe that our proposed
one-step method is better than the two-step method. This is because errors are passed cumulatively in two-step
algorithms. The errors in the first step will further a↵ect the segmentation results in the second step.

3.3 Discussion

We explore how the algorithm has improved based on the variation in training loss. There will be false negatives
and positives when we directly train ResNet50, a classification network utilizing cross-entropy loss, to detect
PPA on the fundus images. This is a result of the restricted amount of data and the fact that classification labels
o↵er less information than segmentation labels. In contrast, the model will strive to strike a compromise between
those tasks if we use multi-task learning, using Dice loss for segmentation and cross-entropy loss for classification.
Although it can prevent the issue of false negatives, it will result in the over-segmentation of samples with no PPA.
We first analyze the reduction of false negatives. These samples will be misjudged when only the classification
task is adopted. With the addition of the segmentation task, the loss under the segmentation task will guide the
model to learn more correct features. For some samples without PPA, the classifier can classify them correctly,
but their Dice loss approaches 1. It will mislead the model and cause over-segmentation. This results in a drop in
specificity from 0.8125 to 0.6250. In our training methods, we propose a new loss function to avoid the problem
of Dice loss, so both segmentation and classification are improved.

Table 3. Comparison between one-step and two-step methods.

Description Network DICEppa Acc Sen Spe

one-step TransUNet 0.8002 (0.3104) 0.8721 0.9857 0.3750

two-step TransUNet+ResNet 0.8719 (0.2245) 0.9419 0.9714 0.81250.81250.8125

one-step OursOursOurs 0.8854 (0.1860)0.8854 (0.1860)0.8854 (0.1860) 0.96510.96510.9651 1.01.01.0 0.81250.81250.8125

4. CONCLUSIONS

In this work, we introduce a novel PPA segmentation method based on multi-task learning that incorporates
PPA detection and segmentation, to address the challenge with non-target samples in the dataset for PPA
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segmentation. We also introduce OD information to force the network to distinguish between the PPA and
OD. Our training method is simple and highly e↵ective. We have confirmed its e↵ectiveness through theoretical
analysis and experimental illustration. The results show that it achieves state-of-the-art performance on a clinical
dataset.
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