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Abstract—The omnipresence of information cascading process in mobile social networking applications makes the identification of a

small set S of influential users, which is widely believed to trigger the information outbreak, always an crucial issue in various

applications such as the mobile advertising and viral marketing. Formulated as Influence maximization (IM) in 2003, this NP-hard

problem has received a multitude of studies with diverse angles. However, these works often unable to provide reliable solutions, due to

the loss of an exact metric for evaluating users’ contributions on information cascading in the state-of-the-art sampling based IM

schemes. In this paper, we evaluate users in IM based on the collective influence (CI), a metric on the structural features of the users in

network graph that reflects the contributions of the users’ neighborhoods on shaping collective dynamics of the users over the whole

network. For conducting the influencer identification under probabilistic diffusion model based on the CI, we specify a quantified

structural feature of the most influential users from the scope of diffusion over the whole network, and reveal that the structural

influence power (CI value) of each user is a weighted cumulation of the diffusion probabilities from neighbors within certain hops.

Utilizing CI, we design a novel algorithm which identifies the influencers via iteratively choosing the users with top CI values. Moreover,

we point out that directly computing CI values requires to traverse the network which is originally represented by a high-dimensional

matrix, and leads to huge complexity of influencer identification. To improve scalability, we further trade precision for efficiency by

incorporating network embedding, a dimensionality reduction technology for networks, into algorithm design, and propose a minor

variant, where CI is jointly recapitulated by low-dimensional user representations and user degrees. The superiority of our algorithms is

empirically validated over 8 datasets, with an increment in influence size up to 50 percent and a comparable or even less running time

comparing with existing baselines.

Index Terms—Mobile social network, influence maximization, collective influence, network embedding
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1 INTRODUCTION

WITH the popularization of intelligent mobile devices,
diverse social networking medias (e.g., Twitter,

Wechat, Facebook, and TikTok) have developed their
mobile apps for enabling the instant diffusion of informa-
tions and contents among users, and thus give rise to the
mobile social networks [2], [3], [4], [5]. Due to the instant dif-
fusions in mobile social networks, and the resulting occur-
rence of rapid global-scale explosions of some informations
from a small set of seeds, the importance of viral spreading
has been widely recognized [6], [7], [8]. The seeds, or in
other words ‘superspreaders’, not only determine the infor-
mation diffusion scale, but also define the collective dynam-
ics of a large population [6]. Their identification is at the
heart of an abundance of applications, such as mobile
advertising [2], points-of-interest promotion [9], viral mar-
keting [8], [10], behavior adoption [11], and innovation dif-
fusion [12]. Due to the direct relevance of the identification
of ‘superspreaders’ and a wide range of applications, the
problem of locating ‘superspreaders’ in different settings is
becoming increasingly important in recent years [13].

The search for ‘superspreaders’ was first formulated by
Kempe et al. [14] in 2003 as Influence Maximization (IM) prob-
lem, an NP-hard problem whose essence is to pick a given
number of most influential users to maximize the influence
diffusion size. Since then, numerous approaches [15], [16],
[17] have been conceived to approximate the optimal solu-
tion from diverse perspectives, and try to balance between
the algorithm scalability and the performance of selected
seed users. The common methods in current seed selection
framework are designed to adopt a certain number of sam-
ples to estimate the expected influence diffusion size from
users, say the influences of them, and iteratively select the
user with the highest estimated influence among the non-
seed users in a greedy manner [16], [17], [18]. Existing
works claim that the above common method can achieve an
approximation ratio of ð1� 1

e � "Þ with probability ð1� dÞ
by adopting a sufficient size of samples [16], [17], [18]. How-
ever, not only is it difficult to determine the appropriate
sample size over the diverse mobile social networks with
heterogeneous sizes and topologies, but also adopting a
large size of samples is computationally challenging over
current mobile social networks with millions of users. Fur-
thermore, without an accurate estimation of influences of
users, the sampling based methods potentially miss some
‘superspreaders’, resulting in the loss of influence diffusion
size.

As it is difficult to reliably estimate the influence of users,
is there any other reliable metric to evaluate different users’
contributions on enlarging cascading scale? To this end, we
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note that the influences of users may correlate with the
structural features of them in network. For example, a hub
node of several communities, if getting influenced, poten-
tially further influences a large scale of nodes. On the con-
trast, a leaf node in a tree-like network has much weaker
power in the influence diffusion. With such insight, in this
paper, we seek to evaluate the influences of users in net-
work based on their structural features in network, and we
adopt the metric named Collective Influence (CI) in the influ-
ence evaluation. The concept of collective influence, which
is first proposed by Morone and Makse [19], measures the
significance of each node or the power of each node’s neigh-
borhood on shaping collective dynamics of the nodes over
the whole network, and is quantified by a cost function col-
lectively possessed by the node and its neighbors within
certain hops. CI has proved capable of capturing the power
of each node on shaping collective dynamics among all the
nodes from the structural features of them, and thus an
effective and reliable indicator of node’s strategic impor-
tance in a rising number of observations in diverse disci-
plines, including academic accomplishment evaluation [13],
economic assessment [20], and biology [21].

Inspired by the CI, which is a novel influence metric in sci-
ence community, we investigate the IM problem from the
structural features of nodes characterized by their neighbor-
hoods in mobile social network. Particularly, in the IM prob-
lem, the collective dynamic noted above refers to the state of
getting influenced, and we consider the Independent Cascad-
ing (IC) diffusion model, where each newly influenced user
has one single chance to activate his uninfluenced neighbors
with certain probabilities [14], [16], [17], [22]. Different from
[19] which solely focuses on the limit case to determine the
requiredminimum seed fraction for a network-wide outbreak,
we aim to design amore general algorithmwhich is applicable
to any given seed portion q due to budget concerns. In seed
selection, we measure user contribution to influence diffusion
by CI value, a metric quantifying the collective diffusion
power of the neighborhood centered around the user itself.

Different from traditional methods, the incorporation of
CI brings a few new challenges. To conduct IM based on CI,
one difficulty lies in exploring the exact formula of the CI
value under the probabilistic IC diffusion model to enable
the CI can reflect the contributions of users on cascading.
Moreover, how to efficiently quantify CI and perform CI-
based seed selection over today’s enormous networks (mil-
lion-scale or even larger) remains a challenging task.

To overcome the aforementioned challenges, we propose
completed solutions that embraces comprehensiveness and
scalability. By mapping the IM to optimal percolation, we
present that the most influential users are those who, if
seeded, canminimize the largest eigenvalue of a linear matrix
that stores the weighted topological interaction among users.
Derived from such feature, we elaborate the formula of such
largest eigenvalue via the power of each non-seed user in
influence diffusion which is expressed by the CI value of
them that takes the form as a cumulation of the diffusion prob-
abilities from themwithin a certain number of hops. Utilizing
CI,maximizing the potential influenced size ismost efficiently
conducted by iteratively seeding a given proportion of users
with the largest CI value. However, the computation of exact
CI value leads to prohibitive costs of seed selection due to

unavoidable traversals for the acquisition of global structural
knowledge, especially under large hops. In an effort to
enhance scalability while preserving as much the accuracy,
we introduce a novel collective influence embedding method
to depict each user’s CI with a low-dimensional latent repre-
sentation (a vector of d elements with d� jV j, jV j is the net-
work size). The key idea is to generate for each user the
collective influence context, a set of reachable neighbors with
distinct accumulatedweights randomly chosen fromdifferent
paths, and then to use those CI contexts as observations to out-
put the low-dimensional representations for the computation
of CI values via maximum likelihood estimation (MLE) that
returns provable error convergence. The CI embedding thus
facilitates the design of a scalable algorithmCIM-ESS that iter-
atively selects the user with the highest CI value generated by
the prescribed low-dimensional representations.

While unfolding the details of our solution in later sec-
tions, we summarize below its key contributions:

1) We are the first to study the collective influence based
IM under IC diffusion model, and for the first time
propose complete solution. Via optimal percolation,
we quantify the features for the “superspreaders”
from a full impact of seed portion q and the formula of
CI value that serves as a reliable metric to evaluate
users’ contributions on enlarging cascading scale. We
reveal that under IC model, the CI value of each user
takes the form as a cumulation of the diffusion proba-
bilities from the userwithin a certain number of hops.

2) To overcome the high complexity in computing CI
values over the network originally represented by a
high-dimensional matrix, we further propose the
CIM-ESS algorithm, which incorporates network
embedding technology into the CI based seed selec-
tion. The key is to reinterpret CI, originally com-
posed by edge weights and user degrees, with low-
dimensional latent representations of users.

3) Weperform extensive experiments on 8 social network
datasets, the biggest of which contains 4.8 million
nodes. Even by only acknowledging the structural
knowledge of immediate neighbors, CI-based seed
selection apparently outperforms competing methods
in terms of the influence diffusion size. Remarkably,
CIM-ESS always achieves the top influence diffusion
size in a near linear running time thanks to a parallel
implementation enabled by the low-dimensional
representations.

We organize the rest of this paper as follows: We review
the background and the related works on IM in Section 2.
The problem formulation is given in Section 3. In Section 4,
we explore the formula of the CI in the IM problem under
IC model, and give the CI based seed selection algorithm.
The collective influence embedding scheme is presented in
Section 5 which is followed by the experimental results in
Section 6. We conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORKS

In this section, we review the background of the Influence
Maximization (IM) problem and present the main idea as
well as the limitations of existing solutions.
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Given a mobile social network, the fundamental problem
for IM is to select the optimal seed users under the given
budget who can maximize the diffusion size. The budget
constrains the size of selected seeds. Kempe et al. [14] first
formalize the seed selection as a combinatorial optimization
problem. Specifically, they propose to firstly estimate the
final influenced size starting from a set of seed users, and
then select the optimal ones with the maximum estimated
influence. They further prove that the IM problem is NP-
hard. Most early works on IM (e.g., [14], [15]) estimate the
influenced size through generating certain times of Monte-
Carlo simulations of the IC diffusion model and taking the
average. Then a greedy algorithm is adopted to select the
users with the maximum expected influence. This method
costs an VðKjV jjEj � polyð"�1ÞÞ complexity and achieves an
approximation ratio of ð1� 1

e � "Þ [15] on the influenced size
with probability ð1� dÞ. One of the most efficient IM frame-
works currently is the Reverse Reachable Sets (RR-sets) [16],
[17], [22], which costs a time of OðKðjV j þ jEjÞlogn="2Þ for
achieving a ð1� 1

e � "Þ-approximate solution with probabil-
ity ð1� dÞ [17], [22]. The RR-set based methodology contains
two major steps: it first samples a number of nodes, and
then selects seeds who can expectedly influence the most
number of sampled nodes. Besides, some works [23], [24]
which seek for high efficiency of seed selection estimate the
influenced size of seed nodes based on the upper bounds
derived from eigen analysis.

Furthermore, there also emerge some other variants of
the IM problem. For instance, Nguyen et al. [16] consider
maximizing the outward influence which refers to the influ-
enced size minus seed size. The heterogeneous seeding
costs of different users are studied in [25]. [26] focus on
adaptively selecting seeds based on the diffusion feedbacks
from previous seeds, and [27] study the multi-round seed
selection to maximize the influenced size in a long run.

However, current sampling-based solutions usually miss
some “superspreaders” due to the variance in sampling, and
thus result in the loss of influence diffusion size. Recently,
Morone et al. [19], [28], [29] pioneer the concept of collective
influence, which regards one user’s influence on diffusion by
the structural features of them, to find theminimal set of influ-
ential users who can, if influenced, spread influence to the
whole network or, if immunized, prevent an outbreak of influ-
ence. In the diffusion model in [19], a node ui will get influ-
enced only if his ðdi � 1Þ neighbors get influenced, where di is
the degree of ui. Besides, there aremany other works focusing
on the effects of social network structure in diverse disci-
plines. For example, [30], [31] reveal the effects of social net-
work structure on the collective action and the cooperation in
large population. Centola et al. [32] explain the existence of
cultural diversity from the structural perspective, and Sohn
et al. [33] study how the social network structure affects the
opinion distribution among users. Inspired by such works,
we reinvestigate the IM problem to select the most influential
seeds under a new look at users’ influences from the novel
structural perspective.

3 PROBLEM FORMULATION

We model a mobile social network as a graph G ¼ ðV;EÞ,
where V ðjV j ¼ NÞ is the set of users and E is the set of

directed edges that represent the social links among users.
The topology of G is represented by an N �N matrix A,
where Aij ¼ 1 if there is an edge ði; jÞ from user ui to uj and
Aij ¼ 0 otherwise. We say uj is a neighbor of ui if Aij ¼ 1.
GðiÞ denotes the set of all the neighbors of ui. Each edge
ði; jÞ 2 E is associated with a weight wij which indicates the
probability that ui can successfully influence uj. Moreover,
we adopt the Independent Cascading (IC) model [14], [16],
[17], [22] to characterize the influence diffusion process
started from seed users.

Definition 1. (Independent Cascading (IC) model.) Initially,
a set of seed users gets influenced and other users are uninflu-
enced. Such seed users then start the influence diffusion process
in discrete steps. In each step, when a user ui newly gets influ-
enced, he then has a single chance to influence his each uninflu-
enced immediate neighbor uj successfully with probability wij

in the next step. Once a user gets influenced, he will remain
influenced until the end. The influence diffusion process stops
when there is no new user gets influenced. Then, the size of the
influenced users at the end is called as the size of users that
finally influenced by the seeds, as well as the influence of seeds.

In reality, the influencing probability wij can be estimated
from the interaction frequency or action logs of mobile
social network applications [16]. When an uninfluenced
user see a neighbor forwarding an information, he will pos-
sibly further forward such information and get influenced.
Since users in mobile social network usually do not re-
browse the informations they had browsed before, the IC
model sets that each newly influenced user has a single
chance to activate his uninfluenced neighbors. With the net-
work and diffusion models, we formulate the influence
maximization (IM) problem studied in this paper as follows.

Problem Formulation. Given a network G ¼ ðV;EÞ and the
seed fraction q, let QðS; qÞ denote the expected size of users
that finally influenced by a set S of qN seed users under the
IC model, the objective of the influence maximization (IM)
problem is identifying the seed set S to maximize QðS; qÞ.

Kempe et al. proved in [14] that the IM problem given
above is NP-hard. The common solution in the existing
studies on the IM problem (e.g., Monte-Carlo simulation
[14] and Reverse Reachable Sets [22]) evaluates the contribu-
tions of users on enlarging the influence diffusion size via
sampling, and iteratively selecting the users who can maxi-
mize the influenced size in a greedy manner. However, as
we noted before, over social networks with diverse sizes,
topologies and edge weights, not only is it difficult to deter-
mine the appropriate number of required samples for
guaranteeing the accuracy of influence estimation, but also
adopting excessive samples is computationally challenging
over current networks with millions of users.

To tackle this dilemma in the existing solutions on IM, in
this paper, we evaluate the influences of users relying on the
structural features of them instead of via sampling. The power
of each node on enlarging influence diffusion size derived
from structural feature is called as the Collective Influence (CI)
of the node. The concept of CI, which is first proposed by
Morone et al. in [19], generally specifies the power of each
node’s neighborhood on shaping collective dynamics of the
nodes over the whole network via the paths in network, and it
has different formulas in different applications. In the IM
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problem, the collective dynamic refers to the the state of get-
ting influenced.

Collective Influence (CI). The collective influence (CI) is the
metric we adopt in this paper to evaluate the contributions
of users on maximizing the influence diffusion size under
IC model from their structural features in network.

Challenges. The first challenge we meet lies on exploring
the formula of CI in the IM problem under IC diffusion
model. Furthermore, when we algorithmically select seed
users for maximizing the influenced size QðS; qÞ, another
challenge is how to efficiently compute the CI values of
users over large scale networks. Next, we move to address
the first challenge.

4 COLLECTIVE INFLUENCE BASED SEED

SELECTION

In order to evaluate the contributions of users on cascading
based on the structural features of them, we intend to char-
acterize the influence diffusion process under IC model via
the network structure and capture the structural features of
the “superspreaders” we need to identify (in Section 4.1).
Such features then provide the basis for exploring the for-
mula of the collective influence of users in the IM problem
under IC model (in Section 4.2).

4.1 Quantifying Features For Superspreaders

For capturing the features of “superspreaders”, aka most
influential users, we borrow the ideas of solutions in [19],
which maps finding the minimum required fraction of seeds
for a network-wide outbreak to the optimal percolation.

4.1.1 Mapping IM to the Optimal Percolation

Definition 2. (Optimal percolation.) The optimal percolation
is the problem of identifying the minimal set of core nodes
which, if removed, can minimize the size of the giant connected
component in a given network.

As presented in Definition 2, the optimal percolation identi-
fies the core nodes through minimizing the size of the giant
connected component in a given network. Similarly, under
the IC model, maximizing the expected influenced size
QðS; qÞ is equivalent to maximizing the probabilities of all
the users being influenced, as well as minimizing the proba-
bilities of not being influenced. In the following, we present
that, since sharing similar objectives, the IM problem can
also be mapped onto the optimal percolation.

On one hand, in the optimal percolation, [19] uses vi!j to
denote whether ui belongs to the giant connected component
when his one neighbor uj is disconnected from the network,
and uses ni ¼ 0 (resp. ni ¼ 1) to indicate ui is removed (resp.
is present in network). Then, the node ui belongs to the giant
connected component under the condition that at least one of
its neighbor nodes except uj belongs to the giant connected
component. With this condition, over the locally-tree like net-
work, vi!j can be given by vi!j � ni 1�Pm2GðiÞnjð1�

�
vm!iÞÞ.

Moreover, the objective of optimal percolation thatminimizing
the size of the giant connect component is equivalent to mini-
mizing the sum

P
ði;jÞ2E vi!j [19].

On the other hand, for the influence maximization under
IC model studied in this paper, we use Ii ¼ 1 (resp. Ii ¼ 0)

to indicate ui is a seed (resp. is not a seed), and use Xt
i ¼ 1

(resp. Xt
i ¼ 0) to represent that ui is influenced (resp. is

uninfluenced) until the end of the time step t during the dif-
fusion under IC model. Moreover, the random variable Wt

ki

denotes whether the user uk influences his neighbor ui at
time step t successfully (Wt

ki ¼ 1) or not (Wt
ki ¼ 0). Then, for

the tth step ðt � 1Þ during the diffusion under IC model, we
have the following lemma.

Lemma 1. Let xt
i (resp. xt

i) denote the event Xt
i ¼ 1 (resp.

Xt
i ¼ 0), and let Pr xt

ix
t�1
i jxt

j

� �
denote the probability that a

non-seed user ui gets influenced in the tth step under the condi-
tion that his one neighbor uj has not been influenced, we have

Pr xt
ijxt�1

i ; xt
j

� �
¼

ð1� IiÞE 1�
Y

uk2GðiÞnuj
1�Xt�1

k Xt�2
k Wt

ki

� �
jxt�1

i ; xt
j

2
4

3
5:

(1)

The proof of Lemma 1 is in Appendix A in the supplemen-
tary material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/TMC.
2021.3092434. Recall the IC diffusion model in Definition 1,
once a user gets influenced, he can try to influence his uninflu-
enced neighbors in the next step. Then, the intuition of Eq. (1)
is that, under the IC model, when Ii ¼ 0 (ui is not a seed) and
uj is uninfluenced, ui gets influenced at step t in the condition
that at least one of its neighbor nodes except uj is influenced at
the ðt� 1Þth step but is not influenced by ui, and such neigh-
bor node then successfully influences ui. Furthermore, as the
objective of IM is maximizing the size of users that expectedly
get influenced during all the diffusion steps under IC model,
maximizing the expected influenced size QðS; qÞ is approxi-
mately equivalent to maximizing the sum of the probabilitiesP

t

P
ði;jÞ2E Pr xt

ijxt�1
i ; xt

j

� �
(The proof is in Appendix A, avail-

able online in the supplementarymaterial). Then, since IM has
similar objective with the optimal percolation (i.e., minimizingP
ði;jÞ2E vi!j and maximizing

P
t

P
ði;jÞ2E Pr xt

ijxt�1
i ; xt

j

� �
respectively) and Pr xtijxt�1

i ; xt
j

� �
has analogous formula with

vi!j, we can conclude that the IM problem under IC model
can bemapped to the optimal percolation.

With this mapping, we then quantify the features for the
most influential users in IM borrowing the solution for the
optimal percolation. [19], [21] present that the size of the
giant connected component in a given network decreases
with the decrease of the leading eigenvalue of the non-back-
tracking matrix, which is widely used for analyzing struc-
tural characteristics of networks [34] and will be introduced
later. Thus, the solution of the optimal percolation is identi-
fying the nodes who, if removed, can minimize the leading
eigenvalue of the non-backtracking matrix. The elements in
the non-backtracking matrix are defined over the non-back-
tracking paths of length 2 in network.

Definition 3. (Non-backtracking path.) Let ðk; hÞ denote a
directed edge from node uk to node uh. For two edges ðk; hÞ and
ði; jÞ, if i ¼ h and j 6¼ k, then ðk; hÞ ! ði; jÞ forms a non-
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backtracking path of length 2 in network. Furthermore, we say
ðu1; u2Þ ! ðu2; u3Þ ! . . .! ðul; ulþ1Þ forms a non-backtrack-
ing path of length l, if ui�1 6¼ uiþ1; 8i 2 ½l	.
Corresponding to the influence diffusion, the non-back-

tracking path specifies that each newly influenced user does
not return to influence the user that influenced him before.
Recalling the IC model in Definition 1, if ui gets influenced
from uk, then ui could further influence his uninfluenced
neighbors but does not return to influence uk. That is, under
the IC model, the influence actually diffuses via non-back-
tracking paths in the network. Such characteristic further
justifies our usage of the non-backtracking paths to charac-
terize the influence diffusion. Furthermore, the non-back-
tracking matrix M has a dimension of jEj � jEj. Each
element in M is defined over a pair of edges in the set E.
Specifically, for an element Mkhij, if the two edges ðk; hÞ !
ði; jÞ form a non-backtracking path,Mkhij quantifies the evo-
lution of the collective dynamic over the corresponding
non-backtracking path ðk; hÞ ! ði; jÞ. For example, in the
optimal percolation,Mkhij ¼ @vi!j

@vk!h
.

Next, we first provide the formula of the non-backtrack-
ing matrix M in the IM problem under IC model, and then
quantify the features for the most influential users in IM
based on the non-backtracking matrixM.

4.1.2 Formula of the Non-Backtracking MatrixM in IM

As the required collective dynamic in IM is the state of being
influenced, we let each element Mkhij in M characterize the
evolution of the probability of user ui ¼ uh getting influenced
via the non-backtracking path ðk; hÞ ! ði; jÞ during diffusion.
Specifically, recalling the formula of the influencing probabil-

ity Pr xt
ijxt�1i ; xt

j

� �
in Eq. (1), since under the IC model, as

E Wt
ki

� � ¼ wki � 1 is assumed in most IM works [16], [22], we

omit the high order components in the term E 1�Quk2GðiÞnuj

h
1�Xt�1

k Xt�2
k Wt

ki

� �
jxt�1

i ; xt
j	 and approximate Eq. (1) as

Pr xtijxt�1
i ; xt

j

� �
� ð1� IiÞ

X
uk2GðiÞnuj

E Xt�1
k Xt�2

k Wt
kijxt�1

i ; xt
j

h i

¼ ð1� IiÞ
X

uk2GðiÞnuj
Pr xt�1

k xt�2
k jxt�1

i ; xt
j

� �
wki:

(2)

Let vtij serve as the abbreviation of Pr xt
ijxt�1

i ; xtj

� �
and let

vt�1kij serve as the abbreviation of Pr xt�1
k xt�2

k jxt�1
i ; xt

j

� �
, we

rewrite Eq. (2) into

vtij ¼
X

uk2GðiÞnuj
ð1� IiÞvt�1kij wki �AijAkið1� 1fk¼jgÞ: (3)

Here, AijAki controls the existence of the two edges ði; jÞ
and ðk; iÞ, and ð1� 1fk¼jgÞ controls that ðk; iÞ ! ði; jÞ forms
a non-backtracking path. As the values of vtij and vt�1kij in
Eq. (3) both evolve with the seed set S, we take the value of
vtij as the function of vt�1kij ð8uk 2 GðiÞnujÞ.

With above diffusion process via non-backtracking paths,
we give below the formula of the non-backtracking matrixM,

whose elements characterize the influence diffusion under IC
model over the non-backtracking paths of length 2 in network.

Definition 4. (Formula of Non-backtracking matrix M in
IM.) For each element Mkhij, if ðk; hÞ ! ði; jÞ forms a non-

backtracking path, then Mkhij ¼
@vt

ij

@vt�1
khj

characterizes the evolu-

tion of the influencing probability vij via the non-backtracking
path ðk; hÞ ! ði; jÞ during the diffusion under IC model. With
vtij in Eq. (3), we have

M ¼
Mkhij . . .

..

. . .
.

 !
;Mkhij

¼ ð1� IiÞwkiAijAkh1fi¼hgð1� 1fk¼jgÞ; (4)

where we multiply the factor 1fi¼hg due to ui ¼ uh in non-
backtracking paths. Otherwise, if ðk; hÞ ! ði; jÞ do not form a
non-backtracking path, thenMkhij ¼ 0.

In the Definition 4 above, we use the partial derivative

Mkhij ¼
@vt

ij

@vt�1
kij

to quantify that, when the conditional probabil-

ity vt�1kij of uk getting influenced first varies with the seed set
S, how vt�1kij further varies the conditional probability vtij of
ui getting influenced. That is, M controls the diffusion via
the non-backtracking paths of length 2 after seeding a cer-
tain number of users. Moreover, for the powers of M, say
Ml, taking the second power as an example, we have

M2
khxy ¼

P
ij MkhijMijxy ¼

P
ij

@vt
ij

@vt�1
kij

@vtþ1xy

@vt
ijy

, which characterizes

the evolution of the influencing probability vxy via the non-
backtracking path ðk; hÞ ! ði; jÞ ! ðx; yÞ in two-hop diffu-
sion. That is, the powers of M controls the multi-hop diffu-
sion via the non-backtracking paths.

Further, referring to the optimal percolation which finds
the core nodes by minimizing the leading eigenvalue of the
non-backtracking matrix [19], we also characterize the fea-
ture of the most influential users based on the leading eigen-
value of M. From the formula of M, we can also see that if a
user ui is selected as a seed, all the elements related to ð1�
IiÞ in M then become zero. Thus seeding a set of users
results in the decrease of the leading eigenvalue of M. In
this paper, we use �ðS; qÞ to denote the leading value of M
after seeding a set S of qjV j users.

4.1.3 Feature of the Most Influential Users in IM

With the formula of the non-backtracking matrix M in IM
given in Definition 4, here, we will show that the most influ-
ential qjV j users in IM are those who, if seeded, can mini-
mize the leading eigenvalue �ðS; qÞ ofM.

Concretely, as illustrated before, the objective of the IM
problem is maximizing the expected influenced size QðS; qÞ
and is approximately equivalent to maximizing the value ofP

t

P
ði;jÞ2E vtij. Let ZðS1; q1Þ ¼ ½. . . ; vij; . . .	T denote the initial

values of vijð8ði; jÞ 2 EÞ after seeding a set S1 of users with
the size of q1N . Then, if seeding one more user um =2 S1, the
values of vmnð8un 2 GðmÞÞ all become 1. We take such varia-
tions of the values of vmnð8un 2 GðmÞÞ after seeding um =2 S1

as a noise � added to ZðS1; q1Þ.
Moreover, as the power Ml of M characterizes the evolu-

tion of vijð8ði; jÞ 2 EÞ during the diffusion over network,
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the increment of the expected diffusion size after seeding um

can be quantified by a polynomial of Ml�. Thus, we have
QðS1 [ um; q1 þ 1

jV jÞ �QðS1; q1Þ /Ml�. Then, since the inner
product of the increment Ml� can be approximated by
�T ðMlÞTMl� � �ðS1; q1Þ2l�T �, there is

QðS1 [ um; q1 þ 1

jV jÞ �QðS1; q1Þ / �ðS1; q1Þl:

Furthermore, we prove in Appendix A, available online
in the supplementary material that, for two seed sets S1 

S2, if um =2 S1 [ S2, then QðS1; q1Þ � QðS2; q2Þ and QðS1 [ um;
q1 þ 1

jV jÞ �QðS1; q1Þ � QðS2 [ um; q2 þ 1
jV jÞ �QðS2; q2Þ. Then,

since QðS1 [ um; q1 þ 1
jV jÞ �QðS1; q1Þ / �ðS1; q1Þl, we have

�ðS1; q1Þl � �ðS2; q2Þl and �ðS1; q1Þ � �ðS2; q2Þ. Thus, a larger
expected influence diffusion size emerges with a smaller
leading eigenvalue, and we can conclude that maximizing
QðS; qÞ is equivalent to minimizing the leading eigenvalue
�ðS; qÞ of the non-backtracking matrixM.

Feature of the most influential users. Based on the analysis
above, we conclude that, in the IM problem, the most influ-
ential qjV j seed users who can maximize the influenced size
QðS; qÞ are the users who, if seeded, can minimize the lead-
ing eigenvalue �ðS; qÞ of the non-backtracking matrix M.
Such feature enables us to evaluate the contributions of
users on maximizing the influence diffusion size by their
contributions on minimizing the leading eigenvalue.

4.2 Formula of Collective Influence (CI) in IM
Problem

As we can evaluate users’ contributions on cascading from
their contributions to the leading eigenvalue ofM, in the fol-
lowing, we first give the formula of the leading eigenvalue
and then, based on which, quantify the formula of collective
influences (CIs) of users.

4.2.1 Formula of the Leading Eigenvalue

We compute the leading eigenvalue of M based on the
power method. Let B0 ¼ 1 denote an initial jEj-dimensional
vector, and let l denote the order of the power. Referring
[19] which computes the leading eigenvalue as the starting
point of a series that serves as exact solution for optimal per-
colation, we have

� � lim
l!1

BT
0M

2lB0

BT
0B0

" #1
2l

¼ lim
l!1

ðBT
0M

lÞðMlB0Þ
BT
0 B0

" #1
2l

: (5)

ðBT
0M

lÞ and ðMlB0Þ are jEj-dimension vectors, and their ele-
ments are indexed by the sequences fkhg; 8ðk; hÞ 2 E.

Since BT
0B0 is a constant that equals jEj, we then transfer

quantifying users’ contributions to the leading eigenvalue
to quantifying their contributions to the value of BT

0 ðMÞ2lB0.
Consequently, we can quantify the CI value of each user as
his contribution to the value of BT

0 ðMÞ2lB0.
Further, we uncover in Lemma 2 that each user’s contri-

bution to the value of BT
0 ðMÞ2lB0 is structurally determined

by a Ball of radius l centered at this user. An example of the
ball is given in Fig. 1. Ballðk; lÞ denotes the ball of radius l
centered at node uk, and consists of the nodes that uk can

reach through a non-backtracking path with the length not
larger than l. In addition, @Ballðk; lÞ is the frontier of the ball
Ballðk; lÞ and consists of the nodes that uk can reach via a
non-backtracking path of length l. We use pðk; iÞ to denote
the non-backtracking path from uk to ui.

Lemma 2. The inner product BT
0M

2lB0 is equal to

BT
0M

2lB0

¼
X
uk2V

Ik
X

uh2@Ballðk;lÞ
Pðx;yÞ2pðk;hÞwxyIxIy
� �ðdh � 1ÞIh;

given the initial vector B0 ¼ 1. Here, Ix is the abbreviation of
ð1� IxÞ and dh denotes the degree of user uh.

Proof. We prove Lemma 2 by the induction of the formulas
of the right and left vectors in BT

0M
2lB0, i.e., B

T
0M

l and
MlB0. When l ¼ 1, the first order right vector isMB0. Tak-
ing the formula of M in Eq. (4) into MlB0, the khth ele-
ment inMlB0 is equal to

MB0jkh ¼
X
ij

Mkhij ðB0 ¼ 1Þ

¼
X
ij

ð1� IiÞAijAkh1ihð1� 1kjÞwki

¼
X
hj

ð1� IhÞAhjAkhð1� 1kjÞwkh

¼ Akhwkhð1� IhÞ
X
j;j 6¼k

Ahj

¼ Akhwkhð1� IhÞðdh � 1Þ:

(6)

Similarly, for the first order left vector BT
0M, we have

BT
0Mjkh ¼

X
ij

Mijkh ¼
X
ij

ð1� IkÞAijAkh1jkð1� 1ihÞwik

¼ ð1� IkÞAkh

X
i;i 6¼h

Aikwik:

(7)

Combining Eqns. (6) and (7), we have

BT
0M

2B0 ¼
X
kh

IiIkIh
X
ik;i 6¼h

Aikwik

 !
Akhwkhðdh � 1Þ;

where Ii ¼ ð1� IiÞ.
Furthermore, assume the lth order left vector has the

form

Fig. 1. An example of ball. Ballð1; 1Þ; Ballð1; 2Þ; Ballð1; 3Þ respectively
denote the set of nodes that u1 can reach with in 1; 2; 3 hops. On the fron-
tiers, @Ballð1; 1Þ ¼ fu2; u3; u4g, @Ballð1; 2Þ ¼ fu5; u6; u7; u8g and @Ball
ð1; 3Þ ¼ fu9; u10; u11; u12g. The path from u1 to u9 is pð1; 9Þ ¼ fð1; 2Þ;
ð2; 5Þ; ð5; 9Þg, where we use ð1; 2Þ to denote the edge from u1 to u2 and
so on.
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BT
0M

ljkh ¼ AkhIkIh
X

i:dði;kÞ¼l;h =2 pði;kÞ
Pðx;yÞ2pði;kÞwxyIxIy
� �

;

(8)

where pði; kÞ is the non-backtracking path with length l
between ui and uk. Then, for the ðlþ 1Þth left vector,
where BT

0M
lþ1 ¼ ðBT

0M
lÞM, we have

BT
0M

lþ1jkh ¼
X
ab

ðBT
0M

lÞjabMabkh

¼
X
ab

AabIaIb
X

i:dði;aÞ¼l;b =2 pði;aÞ
Pðx;yÞ2pði;aÞwxyIxIy
� �0

@
1
A�

ð1� IkÞwabAkhAab1fb¼kgð1� 1fa¼hgÞ
¼AkhIkIh

X
i:dði;kÞ¼lþ1;h =2 pði;kÞ

Pðx;yÞ2pði;kÞwxyIxIy
� �

;

which shows that the formula of the left vector given in
Eq. (8) also holds in the case of ðlþ 1Þ.

Accordingly, the formula of the lth order right vector
is

MlB0

¼IkIhAkhwkh

X
i:dðh;iÞ¼l;k =2 pðh;iÞ

Pðx;yÞ2pðh;iÞwxyIxIy
� �ðdi � 1Þ:

Together with the formulas of the elements in BT
0M

l and
MlB0, we obtain the formula of BT

0M
2lB0 in Lemma 2. tu

Recalling Section 4.1, the most influential users are those
who, if seeded, can minimize the leading eigenvalue of
M. Then, as the leading eigenvalue is computed as � �

liml!1
BT
0 M

2lB0

BT
0
B0

� � 1
2l

and BT
0 B0 is a constant, minimizing the

leading eigenvalue of M is equivalent to minimizing the
term BT

0M
2lB0. By this, based on the formula of BT

0M
2lB0

given in Lemma 2, we are ready to give the formula of CI,
which we adopt to evaluate the contributions of users on
maximizing the influenced size.

4.2.2 Formula of Collective Influences in IM

From Lemma 2, BT
0M

2lB0 is the sum of the polynomialX
uh2@Ballðk;lÞ

Pðx;yÞ2pðk;lÞwxyIxIy
� �ðdh � 1ÞIh;

of all the non-seed nodes. Thus, to minimize the value of
BT
0M

2lB0, the most effective way is seeding the user with
the largest value ofX

uh2@Ballðk;lÞ

�
Pðx;yÞ2pðk;lÞwxyIxIy

�ðdh � 1ÞIh:

Given the initial network where no user has been seeded,
the contribution of each user ui for the value of BT

0M
2lB0

can be evaluated asX
uh2@Ballðk;lÞ

�
Pðx;yÞ2pðk;hÞwxy

�ðdh � 1Þ:

Replace uk and uh by ui and uj, we obtain the formula of the
collective influence of user ui as below.

Formula of the Collective Influence (CI) in IM. In the IM
problem under IC model, let l denote the power when com-
puting the leading eigenvalue of M, the collective influence
(CI) of each user ui is equal to

CIlðiÞ ¼
X

uj2@Ballði;lÞ
ðPðx;yÞ2pði;jÞwxyÞðdj � 1Þ: (9)

Here, ðx; yÞ 2 pði; jÞ denotes the edges on the non-backtrack-
ing path pði; jÞ, wxy is the influencing probability on edge
ðx; yÞ in IC model, and dj denotes the degree of uj. Then l
controls the radius of the ball Ballði; lÞ considered in the
computation of CI values.

Remark. The formula of the collective influence given in
Eq. (9) quantifies the power of each user’s neighborhood
within l hops on shaping network collective dynamics,
which specifically refers to the influence diffusion in this
paper. In addition, the effect of the parameter l on the CI
based seed selection will be analyzed in Section 4.2.3.

Fig. 2 presents a mini example of the formula of CI given
in Eq. (9). The CI value of user ui with radius l combines the
reaching probabilities of ui to the users on the frontier of
Ballði; lÞ and the degrees of such users. Specifically, when
l ¼ 0, there are di paths starting from ui and their endpoints
are still node ui. Since the probability of ui influencing him-
self is obviously equal to 1 (wii ¼ 1), CI0ðiÞ ¼ di � 1 � ðdi � 1Þ.
Notably, we can take ðPðx;yÞ2pði;jÞwxyÞ as the weight of edges
in the path pði; jÞ and ðdj � 1Þ as the weight of endpoint uj.
With the weights of paths, the CI value of a node ui given in
the Eq. (9) can also be figured out as:

CIlðiÞ ¼The weighted sum of the non-backtracking paths

starting from ui with length l:

4.2.3 Effect of Parameter l on Seed Selection

Now, we move to explore the effect of the parameter l on the
seed selection? Since maximizing QðS; qÞ is equivalent to
minimizing �ðS; qÞ as we presented in Section 4.1.3, we
explore the effect of l via their performance on decreasing
the leading eigenvalue of M to a given threshold 1. The rea-
son behind is that if increasing the value of l can improve
the performance of seed selection, then we can decrease
�ðS; qÞ to a given threshold by seeding less users under
larger l. Here, we use qc to denote the minimum required
seed fraction to make �ðS; qÞ ¼ 1.

Fig. 2. An example of collective influence (CI). For u1, we have @Ball

ð1; 1Þ ¼ fu2; u3; u4; u5g and @Ballð1; 2Þ ¼ fu5; u6; u7; u8; u9g. According to

the CI formulation in Eq. (9), CI1ð1Þ ¼
P5

j¼2 wijðdj � 1Þ and CI2ð1Þ ¼P9
j¼5ðPðx;yÞ2pð1;jÞwxyÞðdj � 1Þ. Also, CI1ð4Þ ¼

P
uj2@Ballð4;1Þ w4jðdj � 1Þ.

Specifically, CI0ðiÞ ¼ diðdi � 1Þ.
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Referring to the approximation formula of the leading

eigenvalue in Eq. (5), if the term �̂ ¼
P

ui2V CIlðiÞ
jEj ¼ 1, then

the leading eigenvalue of M is equal to 1. When l ¼ 0,

CI0ðiÞ ¼
P

i diðdi � 1Þ and �̂ is initially equal to �̂ ¼P
ui2V diðdi�1Þ
jEj . When l > 0, �̂ ¼

P
ui2V CIlðiÞ
jEj . The formula of �̂

tells us that the value of qc depends on the degree distribu-
tion of the network. Since it is generally hard to obtain the
closed form expression of degree distribution in an arbitrary
network, in the present work we derive the asymptotic for-
mula of qc on three common network models, i.e., Erdos-
Renyi (ER) model, power-law degree distributed model and
Stochastic Block Model (SBM) with multiple equal-sized
communities. Then, in the Lemmas 3, 4 and 5 as below, we
give the values of qc under l ¼ 0 and l ¼ 1 over such three
common network models for exploring the effect of parame-
ter l on seed selection.

Lemma 3. In an ER graph where each pair of nodes are connected
at random with a given probability p. We have qc ¼ Q 1�ð 1

wh�
3ffiffi
h
p Þ ðl ¼ 0Þ and qc ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h
ð1� 1

whÞ
q� �

ðl ¼ 1Þ. Here, w denotes

the weights of edges in G and h ¼ Np.

Lemma 4. Given a network with the power-law degree distribu-
tion, i.e., P ðd ¼ xÞ ¼ a � x�g , qc scales as qc ¼ Q Kð1�gÞ

� � ðl ¼
0Þ and qc ¼ Q K

1�g
g�2

� �
ðl ¼ 1Þ. Here, K ¼ Qð1Þ; K > 1, and

2 < g < 3.

Lemma 5. The SBM characterizes networks into C equal-sized
communities, and if two nodes belongs to a same community,
they connect at random with probability p, otherwise, with

probability q. The qc for such SBM network scales as qc ¼
Q 1� 1

wh� 3ffiffi
h
p

� �
(l ¼ 0) and qc ¼ Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h
ð1� 1

whÞ
q� �

(l ¼ 1) .

Here, h ¼ N
C pþ ðN � N

CÞq.
The proofs for Lemmas 3, 4 and 5 are provided in Appen-

dix A, available online, in the supplementary material. Com-
paring the values of qc derived under l ¼ 0 and l ¼ 1, we can
see thatwe can use fewer seedusers tomake �ðS; qÞ � 1 under
l ¼ 1, indicating that the seed users selected under l ¼ 1 are
more influential. The reason behind is that the larger l renders
the CI values more structural information, and enables us to
evaluate the influences of users more exactly. In Section 6, we
further experimentally justify that the seeds selected under
the larger value of l have the better performance on influence
diffusion. Thus the larger l can help us select the better qN
seed users for the IMproblem.

Algorithm 1. CIM-SS Algorithm

Input: Graph G ¼ ðV;EÞ, Radius l;
Output: Seed set S;

1: S ¼ ; ;
2: while jSj < qjNj do
3: Compute CIlðiÞ ð8ui 2 V nSÞ (Eq. (9));
4: S� ¼ argmaxu2V nSCIlðiÞ;
5: Remove S� from G;
6: S ¼ S [ S�;
7: end
8: return S.

4.3 Collective Influence Based Seed Selection

4.3.1 Algorithm Design

With the formula of CI, a naive idea for seed selection based
on node CI is iteratively selecting users with the highest CI
value as shown in Algorithm 1. In each iteration, Algorithm 1,
called CIM-SS, first selects the user with the highest CIlðiÞ as
the new seed, and updates the CI value of each user with
Eq. (9) after removing the new seed from network. The ratio-
nale of removing new seed from network is that, recalling
Lemma2, if userui is seeded, then Ii ¼ 0, indicating that seed-
ing ui is equivalent to removing it from the network when
computing BT

l Bl. Notably, as we remove the user from the
network after selecting a seed and then update the CI values
of remaining users to select the following seeds, we can avoid
the overlap among the influences of seeds.

4.3.2 Performance Analysis

When quantifying CI above, we do not take into account the
circles, which refer to the non-backtracking paths where a
same node shows up more than once. In social networks,
when considering the non-backtracking paths with length l,
the contributions of the circles scale as a fraction of Q 1

N

� �
[15].

Thus the CI formula we give in Eq. (9) is actually aQ 1
N

� �
-mul-

tiplicative error estimation.Moreover, since the leading eigen-
value �ðS; qÞ is a monotonic and submodular function of S as
shown in Proposition 1, such greedy seed selection algorithm
for the NP-hard problem has an approximation ratio of
1� 1

e

� �
. Together with the estimation error of CI, the approxi-

mation ratio of CIM-SS algorithm is 1�Q 1
N

� �� �
1� 1

e

� �
.

Proposition 1. The leading eigenvalue �ðS; qÞ is a monotonic
and submodular function.

The proof of Proposition 1 is in Appendix A, available
online, in the supplementary material. Furthermore, the com-
plexity of Algorithm 1 is mainly focused on two tasks: the one
is iteratively selecting seed users and the other is computing
and updating users’ CIs. In each iteration, the first task costs a
complexity ofOðjV jlog jV jÞwhen ranking the remaining users
by their CI values. Thus, the first task costs a complexity of
OðjSjjV jlog jV jÞ. In the second task, Algorithm 1 needs to tra-
verse all the edges and nodes that ui can reach within l hops
to compute the reaching probabilities via each path with
length l. Under the IC model, we define Pðx;yÞ2pði;jÞwxy as the
reaching probability via path pði; jÞ and it is different for dif-
ferent paths. However, referring to the famous “Six Degrees
of Separation” theory [35], any user can reach almost all the
other users through a few hops. Fig. 3 further justifies the the-
ory.We present the numbers of the users that a given user can
reach over two famous social networks LiveJournal andWiki-
pedia in Fig. 3, from which we can see that a source user can
reach almost all the other users through 4 to 5 hops. This phe-
nomenon means Algorithm 1 needs to traverse almost all of
the nodes and edges in the network for computing one CI
value. Thus computing and updating the CIs costs a complex-
ity of O

�jSjjV jðjEj þ jV jÞ�. Combing the two tasks together,
we summarize in the following corollary the complexity.

Corollary 1. (Complexity of Algorithm 1.) Algorithm 1 has a
complexity of O jSjjV jðjV j þ jEjÞð Þ.
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Corollary 1 suggests that the complexity of Algorithm 1
goes up to the third power of network size. Such high com-
plexity of Algorithm 1 motivates us to seek for more effi-
cient solutions to improve the scalability of CI based seed
selection over large scale social networks.

5 EMBEDDING COLLECTIVE INFLUENCE
MAXIMIZATION SCHEME

Our solution for improving the scalability is presenting an
embedding collective influence maximization scheme
which embeds the network into a low-dimensional space,
and then conducts the seed selection over the low-dimen-
sional representations of users.

Notably, the network is originally represented by a graph
G ¼ ðV;EÞ, which is then represented by an N �N matrix.
Such original network representation results the challenge of
high complexity in many classical network analysis based
tasks, such as clustering, link prediction and classification
[36]. The network embedding, which embeds network into a
low-dimensional space, is a popular and general technology
for coping with the challenge of high complexity [36], [37]. In
this paper, relying on the metric of collective influence, we
will present how to incorporate the network embedding tech-
nology into the task of influencemaximization.

The key of the network embedding here is learning the
low-dimensional representations of users, at the same time,
preserving the CIs in the original network. Originally, each
user is represented by an N-dimensional vector. As shown
in Fig. 4, the specific objective of the network embedding
task in this paper is learning the d-dimensional ðd� NÞ
representation vector of each user (i.e., F : v 2 V ! Rd)
such that the low-dimensional representations can charac-
terize the CI value, which is originally represented by

CIlðiÞ ¼
X

uj2@Ballði;lÞ
ðPðx;yÞ2pði;jÞwxyÞðdj � 1Þ; (10)

in the original network, as

CIlðiÞ /
X

uj2V nui
FðuiÞTFðujÞðdj � 1Þ: (11)

Since we intend to characterize the CIs based on the low-
dimensional representations FðuiÞ ðui 2 V Þ of users, we call
the low-dimensional representation learning in this paper as
collective influence embedding, and present the methodolo-
gies in Section 5.1. With the low-dimensional user representa-
tions, we reformulate the IM problem as the Embedding IM
problem for seeking scalable solutions.

Embedding IM Problem. Given a network with N users
where the users are represented by FðuiÞ ð1 � i � NÞ, the
aim of the Embedding IM problem is selecting a set S of qN
seed users to maximize the influenced size QðS; qÞ.

Coping with the Embedding IM problem, we propose the
CIM-ESS algorithm which purses the CI based seed selec-
tion over FðuiÞ ð1 � i � NÞ in Section 5.2. The CIM-ESS
algorithm can solve the Embedding IM problem with high
efficiency. Next, we first move to the methods of collective
influence embedding.

5.1 Collective Influence Embedding

We give the outline of the collective influence embedding in
Fig. 5. The input is the original social network and the CI for-
mulation in Eq. (10). Comparing with Eq. (10) and Eq. (11),
obviously, we need to correlate the reaching probabilities (e.g.,
ðPðx;yÞ2pði;jÞwxyÞ) in Eq. (10) with users’ low-dimensional repre-
sentations. However, as illustrated before, it is time-consum-
ing to compute the exact value of the reaching probabilities in
the original network. Our solution is generating observations
from a distribution parameterized by the reaching probabili-
ties among users. As the observations need to identify the
users belonging to the Ball of a given user and distinguish the
reaching probabilities via different paths, we call the observa-
tions as collective influence contextswhich are denoted by Y. The
generatingmethod forYwill be unfolded in Section 5.1.1.

Furthermore, since we intend to characterize the reaching
probabilities by the low-dimensional representations, the col-
lective influence contexts can also be taken as the observations
generated from a distribution parameterized by the low-
dimensional representations of users. Such relation enables us
to conduct the low-dimensional representation learning via
maximizing the likelihood P ðY jFðu1Þ;Fðu2Þ; . . . ;FðuNÞÞ (Sec-
tion 5.1.2). In addition, through the convergence analysis in
Section 5.1.3,we prove that the output low-dimensional repre-
sentations converge to themaximizer of such likelihood.

5.1.1 Generating Collective Influence Context

We utilize a random walk approach to generate the observa-
tions from the reaching probabilities among users. In network

Fig. 3. The number of reachable nodes versus hops. We show the num-
ber of reachable nodes starting from two different nodes with the degree
being 5 and 50. Fig. 4. A sketch of collective influence embedding. When l ¼ 1, the CI

value of u1 originally equals CI1ð1Þ ¼
P5

j¼2 w1jðdj � 1Þ. The collective
influence embedding is learning the d-dimensional representations
FðuiÞ of users, which satisfy CI1ð1Þ ¼

P5
j¼2 Fðu1ÞTFðujÞðdj � 1Þ.

Fig. 5. Outline of collective influence embedding.
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embedding, random walk is widely used to capture the struc-
tural regularities [37], information spread [38] and local com-
munity structure [39] in networks. Here, we adopt the random
walk to capture the reaching probabilities among users, and
conduct the random walk through non-backtracking paths in
network. Specifically, given a source user ui, the randomwalk
randomly chooses one neighbor uj of ui to visit with the proba-
bility proportional to the weight wij. When the random walk
arrives at uj, it then chooses one of uj’s neighbor ukðuk 6¼ uiÞ to
visit with the probability proportional to the weight wjk. One
randomwalk stops when the length of the sequence of the vis-
ited nodes meets a preset threshold L. Specially, when a ran-
domwalk arrives at a node with no other edges other than the
one such randomwalk arrived from,wewill terminate the ran-
dom walk . We conduct R random walks starting from each
user inG. Note that if the reaching probability from ui to um is
larger than that from ui to uj, ui and um may coexist in more
randomwalk sequences than ui and uj.

The advantage of randomwalk is that it can not only incor-
porate the reachable users in the balls with different values of
radius l, but also distinguish the heterogeneous reaching
probabilities among different pairs of users via the coexisting
times among them in the random walk sequences. Thus, the
random walk can well capture the reaching probabilities
among users. Next, we present how to extract the collective
influence contextY from theRjV j randomwalk sequences.

The context Y is the set of the collective influence context
of each user ui, say Yi. Concretely, Yi consists of the users
that line up behind ui in all the rjV j random walk sequen-
ces. For example, let r1 ¼ fu1; u2; . . . ; uLg be one random
walk sequence starting from user u1, then u2; . . . ; uL are
added into Y1. In addition, given one sequence ri ¼ fui; u1;
uj . . . ; uLgði 6¼ 1Þ that does not start from u1, we also add
uj . . . ; uL into Y1. Different from the sampling methods
adopted in current IM solutions, we generate the contexts of
users also from the collective perspective. Specifically, con-
sider the case that uj 2 Yi, um =2 Yi and um 2 Yj, we then
also incorporate um into context Yi. As the random walk
preferentially crosses the edges with higher weights, the
larger the influence from ui to uj, the more times that uj will
appear in Yi. Also, if a node ui has larger collective influence
CIlðiÞ, then Yi will contain a larger size of nodes. We use sij,
say coexisting times between ui and uj, to denote the times
that uj appears in Yi, and formalize the context Yi of ui as
the set of the coexisting times between ui and others, i.e.,

Yi ¼ fðu1; si1Þ; . . . ; ðui�1; siði�1ÞÞ; ðuiþ1; siðiþ1ÞÞ; . . . ; ðuN; siNÞg:

5.1.2 Low-Dimensional Representation Learning

With the collective influence context Y, the goal of the repre-
sentation learning is to learn the low-dimensional represen-
tations of users that can maximize the likelihood P

�
Y jF

ðu1Þ;Fðu2Þ; . . . ;FðuNÞ
�
. To this end, we need to figure out a

probability distribution parameterized by the representa-
tions FðuiÞð8ui 2 V Þ for the collective influence context Y.
For this, we define FðuiÞ ¼ fui; xig, where ui denotes the
representation of user ui as the source and xi is the representa-
tion of ui as the target.We then aim at utilizing the inner prod-
uct hui; xji to represent the reaching probability from uito uj.

Here, we further define xi as the preset vector generated from
Nð0; IÞ. By this, we can have diverse destination vectors of dif-
ferent users, and further reduce the problem of representation
learning to learning the estimators ûið8ui 2 V Þ of the source
vectors uið8ui 2 V Þ. Our scheme is also compatible with other
generationmethods of the destination vector xi.

Distribution of Context Y. We take each coexisting time sij
as a random variable distributed around the value of hui; xji,
i.e., sijjxj  Nðhui; xji; s2Þ, where s2 is assumed as the vari-
ance of the observation noise in random walk. In practice,
the variance s2 can be determined from the context Y. We
present how to compute variance s2 in Appendix B, avail-
able online, in the supplementary material. We adopt the
Gaussian distribution here is for convenient computation
and analysis. Furthermore, we correlate 8Yi 2 Y with the
representations uið8ui 2 V Þ via the following mixture of
regression model

YijFðu1Þ; . . . ;FðuNÞ  1

N

X
uj2V nui

Nðhui; xji; s2Þ; (12)

for jointly learning the estimators ûi of low-dimensional rep-
resentations uið1 � i � NÞ through maximizing the likeli-
hood P ðYijFðu1Þ; . . . ;FðuNÞÞ as follows.

EM Solutions. We conduct the learning of ûi ð8ui 2 V Þ
based on the Expectation-Maximization (EM) algorithm,
which is considered as one of the most effective approaches
for Maximizing Likelihood Estimation (MLE). The main
idea of the EM is iteratively maximizing a log likelihood to
obtain new parameters, and reevaluating the value of the
log likelihood under the new parameters. The updating pro-
cedure is as follows. Given the updated representation ut�1i

at the ðt� 1Þth iteration, the tth iteration in EM algorithm
consists of the following E (expectation)-step and M(maxi-
mization)-step:

E-step: Computing the log likelihood, say L u0ijut�1i

� �
,

under the existing parameter ut�1i . With the mixture of
regressions model, we assume each coexisting times inYi is
drawn i.i.d. from the mixture probability density in Eq. (12).
Then, we define the likelihood function Lðu0ijut�1i Þ as

L u0ijut�1i

� � ¼ 1

N

XN
j¼1

XN
j0¼1

P xj0 jsij; ut�1i

� �
logP xj0 ; sijju0i

� �0
@

1
A:

(13)

Here, P xj0 jsij; ut�1i

� �
denotes the posterior probability that

the coexisting times sij is generated from the distribution
parametrized by xj0 and ut�1i , and is given by

P xj0 jsij; ut�1i

� �

¼ wut�1
i
ðxj0 ; sijÞ ¼

exp � ðsij�hu
t�1
i

;xj0 iÞ2
2s2

	 

PN

j0¼1 exp �
ðsij�hut�1i

;xj0 iÞ2
2s2

	 
 :
(14)

Taking Eq. (14) and the formula of P xj0 ; sijju0i
� �

into Eq. (13),
we further simplify the likelihood Lðu0ijut�1i Þ as
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L u0ijut�1i

� � ¼ � 1

N

XN
j¼1

XN
j0¼1

wut�1
i
ðxj0 ; sijÞ

sij � hu0i; xj0 i
� �2

2s2

0
@

1
A:

(15)

It can be observed from From Eq. (15) that, by maximizing
Lðu0ijut�1i Þ, we can reduce the deviation ðsij � hu0i; xjiÞ2, and
maximize the likelihood P ðYijFðu1Þ; . . . ;FðuNÞÞ. Also, in
function L u0ijut�1i

� �
, the value of wut�1

i
ðxj0 ; sijÞ attaches higher

weights to the terms with smaller deviations, and thus ena-
bles the MLE to be convergent.

M-step: Updating the parameter ui by maximizing the
likelihood L u0ijut�1i

� �
. In the tth iteration, let the updated

parameter uti ¼MYi
ðut�1i Þ ¼ argmaxu0

i
2RdLðu0ijut�1i Þ, given the

formula of Lðu0ijut�1i Þ in Eq. (15), we have

uti ¼MYi
ðut�1i Þ ¼

PN
j¼1
PN

j0¼1 wut�1
i
ðxj0 ; sijÞxj0sijPN

j¼1
PN

j0¼1 wut�1
i
ðxj0 ; sijÞhxj0 ; xji

: (16)

The EM algorithm iteratively conducts the above E-step
and M-step until the parameters converge or the iterating
timesmeet a preset threshold. Assuming there are T iterations
in EMalgorithm, the output ofwhich is ûi ¼ uTi ¼MYi

ðuT�1i Þ.
In summary, the CI embedding is conducted by first gen-

erating the collective influence contexts Y, and then maxi-
mizing the likelihood of Y via EM algorithm. To ensure the
reproducibility of our work, we also algorithmically present
the procedures of the CI embedding scheme, generating
context Y and computing variance s2 in Appendix B, avail-
able online, in the supplementary material.

5.1.3 Performance Analysis of Representation

Learning

We now move to justify that the learned representations
ûið8ui 2 V Þ can maximize the likelihood of context Y. To be
more precise, we prove that the estimator ûið8ui 2 V Þ con-
verges to the maximizer uið8ui 2 V Þ for the likelihood
P
�
Yi jFðu1Þ;Fðu2Þ; . . . ;FðuNÞ

�
. For simplification, in the

following of this section, we omit the subscript i and use u

to represent ui since the performance analysis is the same
for the representation learning of each user.

For the maximizer of likelihood, say u, [40] introduces the
self consistency property on the EM based MLE, i.e., u ¼
argmaxu02RdLðu0juÞ. Since MYi

ðut�1i Þ ¼ argmaxu0
i
2RdLðu0ijut�1i Þ,

the self consistency property suggests that jju �MYðuÞjj2 ¼
0. With this property, Theorem 1 presents that under certain
condition, the updated estimator ut will be closer to the
maximizer u after each iteration.

Theorem 1. (Convergence of the representation learning.)
Given the mixture of regressions model in Eq. (15) with a suffi-

ciently large signal-to-noise ratio (SNR) jju
�jj2
s2

, there is a con-
stant � 2 ð0; 1Þ that, in each iteration,

jjMYðutÞ � ujj2 � �jjut � ujj2; (17)

holds for all ut if jjut � ujj2 � jjujj22 .

Proof. (Sketch.) As mentioned in Eq. (16), the EM operator

Mð�Þ has the form MYi
ðut�1i Þ ¼

PN

j¼1
PN

j0¼1 wut�1
i
ðxj0 ;sijÞxj0 sijPN

j¼1
PN

j0¼1 wut�1
i
ðxj0 ;sijÞhxj0 ;xji

.

By taking the expectation of the operatorMð�Þ over the dis-
tribution of the pair ðY;XÞ 2 R�Rd, we have MYðutÞ ¼
E½wutðY;XÞYX	. Define the notations that DwðX;YÞ ¼
wutðX;YÞ � wuðX;YÞ andD ¼ ut � u, Eq. (17) is equivalent to

jjE DwðX;YÞYX½ 	jj2 � �jjDjj2:
Note that Y ¼ hX; ui þ v, given any ~D, Eq. (17) can be fur-
ther transferred to

E DwðX;YÞYX½ 	; ~D
D E

� �jjDjj2jj~Djj2;

E DwðX;YÞhX; uihX; ~Di
h i

þ E DwðX;YÞvhX; ~Di
h i

� �jjDjj2jj~Djj2:

In Appendix C, available online, in the supplementary
material, we respectively prove that E

�
DwðX;YÞhX; ui

hX; ~Di� � �
2 jjDjj2jj~Djj2 and E

�
DwðX;YÞvhX; ~Di� � �

2 jjDjj2jj
~Djj2. Thus, with the upper bounds of such two terms, we
can obtain the conclusion in Theorem 1. tu
Since û ¼ uT ¼MYðuT�1Þ, by Theorem 1, we have

jjû � ujj2 ¼ jjuT � ujj2 ¼ jjMYðuT�1Þ � ujj2 � �jjuT�1 � ujj2
� �2jjuT�2 � ujj2 � . . . � �T jju0 � ujj2:

Thus the learned low-dimensional representations converge
to the maximizer of the likelihood after sufficient iterations.

Algorithm 2. CIM-ESS Algorithm

Input: Fðu1Þ; . . . ;FðuNÞ, User degrees d1; . . . ; dN ;
Output: Seed set S;

1: //Offline computing phase
2: for 1 � i � N do
3: CIðiÞ ¼ 0;
4: for 1 � j � N do
5: Compute CIðiÞ ¼ CIðiÞ þ hui; xjiðdj � 1Þ;
6: end
7: end
8: //Online selecting phase
9: S ¼ ;;
10: while jSj � qN do
11: s� ¼ argmaxvi2V nSCIðiÞ, S ¼ S [ s�;
12: ui�  source vector of s�;
13: for each j : hui� ; xji > 0 do
14: for each i : hui; xji > 0 do
15: hui; xji ¼ max ðhui; xji � hui� ; xjiÞ; 0

 �
;

16: Update CIðiÞ;
17: end
18: end
19: end
20: return S.

5.2 Embedding CI Based Seed Selection

We algorithmically present the seed selection over low-
dimensional representations in Algorithm 2 called CIM-ESS
algorithm.With the learned low-dimensional representations,
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we are able to compute the collective influences of users with-
out the traverse of the network. At the beginning, CIM-ESS
computes the CI values for each user, e.g., CIðiÞ, based on the
low-dimensional representations. Then CIM-ESS iteratively
selects the user with the highest value of CIðiÞ as seed until
the seed set size meets qN . After seeding one user, CIM-ESS
updates the value of hui; xji by hui; xji ¼ max ðhui; xji�


hui� ; xjiÞ; 0g and then updates the CIs based on the updated
inner products. Here, we update the value of hui; xji by
hui; xji ¼ max ðhui; xji � hui� ; xjiÞ; 0

 �
is for avoiding the

overlap among the influences of seeds and keeping the coex-
isting times hui; xji nonnegative.

Lemma 6 presents that CIM-ESS can purse the CI based
seed selection with much less complexity comparing with
CIM-SS. Regrettably, due to the errors of the estimated CI
values, we are unable to provide the quantified perfor-
mance guarantee of CIM-ESS.

Lemma 6. The complexity of CIM-ESS scales as OðdjSjjV j2Þ,
where dðd� jV jÞ is the dimension of user representations.

Proof. In the offline phase, CIM-ESS computes the inner
products among the jV j d-dimensional vectors. Then the
complexity of the offline phase is OðdjV j2Þ. During the
online phase, in each iteration, CIM-ESS adopts a nested
For loop to update the estimated CI values of users and
costs a complexity of OðdjV j2Þ. In addition, each iteration
costs a complexity of OðjV jlog jV jÞ to sort the users by
their updated CI values. Since there are qjV j ¼ jSj itera-
tions in the online phase, the complexity of the online
phase is upper bounded by O djSjðjV j2 þ jV jlog jV jÞ

� �
. In

summary, the complexity of CIM-ESS is OðdjSjjV j2Þ. tu
Remark. Although the collective influence embedding

incurs more complexity, this is a one-shot task. Whereas the
seed selection needs to be conducted formultiple times in real
applications, such as the multi-round IM [26] and the loca-
tion-aware IM that promotes different points of interests in
different IM campaigns [9]. Thus, we propose the collective
influence embedding scheme to improve the efficiency of
seed selection in IM.

5.3 A Summary of Sections 4 and 5

In this paper, we study the problem of identifying a given
size of seed users which can maximize the influence diffu-
sion over the given mobile social network. For addressing
the drawbacks of previous sampling based solutions, we
take the collective influence (CI) as the metric, which evalu-
ates the contributions of users on influence diffusion from
their structural features. We uncover in Section 4 that, under
the independent cascading diffusion model, the collective
influence of each user ui can be formulated as the weighted
sum of non-backtracking paths starting from ui, as pre-
sented in Eq. (9). Moreover, since directly computing the CI
values needs to repeatedly traverse the whole network and
thus induces huge complexity, we propose the collective
influence embedding scheme in Section 5, for learning the
low-dimensional representations of users that can charac-
terize their collective influences over original network. The
low-dimensional user representations then enables us to
efficiently compute the CI values and select the seed users.

Remark. The percolation theory originally considers the
networks where nodes are arranged in a regular grid like
pattern [41]. We here map the IM problem under IC model
into the optimal percolation with the assumption of locally-
tree like network. Such assumptions on structural regularity
may affect the performance of our solutions, when applied
into dense social networks. We evaluate our solutions on
several common social network datasets in Section 6.

6 EXPERIMENTS

Wewill experimentally examine the performance of our sol-
utions to IM problem. Specifically, we study the following
four issues: (1) Are the seeds who can bring larger drops to
the leading eigenvalue of M really more influential? (2) Do
the two algorithms, i.e., CIM-SS and CIM-ESS outperform
the current IM solutions on the effectiveness which is mea-
sured by the influence diffusion size of selected seed users?
(3) Can the low-dimensional representations of users accu-
rately capture the collective influences among them? (4)
How is the structural feature of the seeds selected based on
the CI. Next, we first introduce the experimental settings.

6.1 Experimental Settings

Dataset. We use 8 network datasets in experiments, as
shown in Table 1, for evaluating our proposed solutions on
influence maximization. Specifically, the Livejoural, Twitter
and Epinions are real social networks where the nodes rep-
resent users and the edges represent social links among
them, and are downloaded from the open social network
dataset collection SNAP [42]. The Wikipedia dataset is also
downloaded from SNAP, where the nodes represent articles
in Wikipedia and the edges represent hyperlinks among
them. The Citation network dataset is from the open aca-
demic dataset collection Acenap [43], and contains 1:5M
papers (nodes) in the Machine Learning area and the cita-
tion relations (edges) among them. The three synthetic net-
works are respectively generated as ER model, power-law
degree distribution (PL) and Stochastic Block Model (SBM).
Since we generate each synthetic network under four differ-
ent settings, we do not list the edge sizes in Table 1.

Baselines. We compare the CIM-SS and CIM-ESS algo-
rithms with the following four baselines.

(1) IMM [22]: IMM is one of the most popular IM solutions
based on the Reverse Reachable sets (RR-sets) framework.
The main idea of the IMM lies in first sampling a sufficient
number of RR-sets for the influenced size estimation, and

TABLE 1
Statistics of Datasets

Datasets # of Nodes # of Edges Description

LiveJournal 4.85M 69M Real social network
Wikipedia 1.79 M 28.5M Wikipedia hyperlinks
Twitter 81K 1.8M Real social network
Epinions 75K 0.5M Real social network
Citation 1.5M 7M Paper citations
ER 100K / ER network
PL 10K / Power-law
SBM 100K / Stochastic block

808 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 22, NO. 2, FEBRUARY 2023

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on February 10,2023 at 08:06:34 UTC from IEEE Xplore.  Restrictions apply. 



then iteratively selecting seed users who can cover the most
number of RR-sets.

(2) SKIM [18]: The main idea of the SKIM is repeatedly
sampling the RR-sets from the network, and iteratively
selecting the users who can firstly cover a preset number of
RR-sets as the seeds.

(3) K-core: A popular percolation method to find core
nodes. The main idea is deleting nodes in turn with the
degrees being 1; 2; 3; . . .. After the deleting process, the
remaining nodes are taken as the core nodes. Then the seeds
in K-core are randomly selected from the remaining nodes.

(4) Maximum degree: Iteratively selecting the user with
the highest degree. Since CIM-SS ðl ¼ 0Þ is equivalent to
selecting users with highest degrees, we call Maximum
degree as CIM-SS ðl ¼ 0Þ later.

Parameter Settings. We set the weight wij of edge ði; jÞ as
wij ¼ Qð 1djÞÞ. This setting is widely used in [16] [22] [17].

Environment. We implement algorithms with Python 2.7
on a computer running Ubuntu 16.04 LTS with 40 cores 2.30
GHz (Intel Xeon E5-2650) and 128 GB memory.

6.2 Validation of the Quantifications

In Section 4, we prove in Lemmas 3, 4 and 5 that the seeds
selected under l ¼ 1 are more influential since they can
decrease �ðS; qÞ to 1 with fewer seed fraction. Here, we vali-
date if the seeds selected under l ¼ 1 can really influence
more users comparing with those selected under l ¼ 0.

From Fig. 6, we can see that the seeds selected under l ¼ 1
obviously outperform those selected under l ¼ 0 on the
influence diffusion size. Thus we validate that the seeds
which bring larger drops to the leading eigenvalue of M are
actually more influential.

In addition, Figs. 6a and 6c show that the influenced size
increases with the connecting probability p and q on ER and
SBM network, and Fig. 6b justifies that, over power-law net-
work, the effectiveness of the seed users selected via CI
increases with the increase of g.

6.3 Performance On Seed Selection

Effectiveness Study. Table 2 presents the influence diffusion
size starting from the seeds returned by CIM-SS, CIM-ESS,
and the four baseline algorithms under IC diffusion model.
Since CIM-SS (l � 3) and CIM-ESS measure the influences
of users based on more structural context information as we
discussed before, the seeds returned by them always influ-
ence the most users. Besides, CIM-SS (l ¼ 1; 2) has the com-
parable performance with the baselines (i.e., SKIM and
IMM). Notably, the influenced sizes of CIM-SS under l ¼
5; 6 are sometimes less than that under l ¼ 4. This is due to
the variance in the simulation of influence diffusion process
when counting influenced size. Such variance further indi-
cates that current sampling based methods cannot reliably
estimate the influences of users. In addition, the Maximum
degree (CI ðl ¼ 0Þ) and the K-core always have the poorest
effectiveness due to the large overlap among the influences
of the seeds returned by them.

Efficiency Study. Table 3 reports the running time of the
seed selection algorithms. The CIM-SS ðl ¼ 1Þ which has the
comparable influenced size of the SKIM and IMM just costs
a fraction of the running time of them. From l ¼ 2, we can
see the running time of CIM-SS largely increases with l since
the computation of CIs needs to traverse almost all the
nodes and edges in the network. Notably, due to the prohib-
itive running time, when conducting CIM-SS under l ¼
4; 5; 6, we only select the seeds from the top 1=500 users
with the highest out-degrees. For CIM-ESS, most of the run-
ning time is spent on computing the inner products among
the low-representations of users. Fortunately, with the help
of the low-dimensional representations, the CIs of users can

Fig. 6. Influenced size over ER, power-law and SBM graphs versus q. In
ER (a) p means the connecting probability between each pair of users.
In power-law (b), g means the exponent of the power-law degree distri-
bution. In SBM (c), p and p0 respectively denote the probability of any
user connecting to the users in a same community and other communi-
ties. q means the fraction of seed users.

TABLE 2
Influenced Size Versus q

LiveJournal Wikipedia Citation Epinions Twitter

Algorithm q ¼ 5� 10�6 10�5 10�4 5� 10�6 10�5 10�4 5� 10�6 10�5 10�4 10�5 5� 10�4 10�3 10�5 5� 10�4 10�3

SKIM 8:3k 10:8k 53:7k 44k 50k 87k 22:4k 27k 83:4k 171 202 1:8k 931 2:4k 6:6k
IMM 23:8k 33:4k 64:4k 63:4k 71k 122:3k 19:1k 29:5k 85:2k 32 204 2k 3:5k 4:5k 9:4k
K-core 297 384 933 2:8k 3:7k 14k 217 257 1:7k 27 50 658 1:1k 1:8k 5:1k
CIM-SS ðl ¼ 0Þ 1:4k 9:2k 31:7k 3:2k 45k 19:2k 14k 19k 77:9k 87 194 1048 1:3k 1:8k 5:3k
CIM-SS ðl ¼ 1Þ 9:4k 19k 48k 16k 28k 90:4k 14:5k 27k 82:9k 785 942 2:2k 2:4k 3:5k 7:7k
CIM-SS ðl ¼ 2Þ 22:6k 38:4k 62k 15:3k 41:4k 130k 15:4k 32:1k 91:8k 1:1k 1:5k 2:7k 3:6k 5:5k 11:5k
CIM-SS ðl ¼ 3Þ 56:4k 64:3k 150k 77k 90:7k 232k 23:2k 36:5k 99:1k 1:3k 1:5k 2:9k 3:5k 4:8k 12k
CIM-SS ðl ¼ 4Þ 58:9k 68k 166:7k 90k 110k 240k 25:5k 36:8k 105k 1:3k 1:6k 2:9k 3:4k 4:8k 11:8k
CIM-SS ðl ¼ 5Þ 58:3k 66:4k 160k 90k 110k 240k 17:7k 30:6k 102k � � � � � �
CIM-SS ðl ¼ 6Þ 56:9k 64k 159k 89k 108k 225k 26:2k 34:8k 101k � � � � � �
CIM-ESS 59:5k 72:6k 163k 71k 97k 233k 18:5k 33:2k 101k 1:3k 1:5k 2:9k 3:5k 5k 11:7k

Here, k means 103
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be easily conducted in parallel, thus largely improving the
efficiency.

6.4 Performance of Collective Influence Embedding

Now, we present the performance of the collective influence
embedding, whose objective is learning the low-dimen-
sional representations fui; xig of users to characterize the CI
values of them. We set the random walk length as L ¼ 50
and conduct 10 random walk processes starting from each
node. Since we further quantify the CI values by the coexist-
ing times (e.g., sij) in the context Y and focus on using the
inner product hui; xji to represent sij, we define the error ¼
jsij�hui;xjij

sij
to quantify the performance of the CI embedding.

The smaller difference between the values of sij and hui; xji
means the better performance of CI embedding. We adopt

the relative error
jsij�hui;xjij

sij
here is for uniformly evaluating

the performance of quantifying the coexisting times with
different magnitudes. We provide the relative errors in
Fig. 7, and from which we can see that the 80 percent of the
relative errors are below 40 percent.

6.5 Structural Features of Superspreaders

At last, we move to the structural features of the seeds
returned by CIM-SS in general graphs. Under the IC diffusion
model, the influence diffusion over a given network also
depends on the weights of edges. Thus we explore the fea-
tures of seeds under two widely adopted weight settings, i.e.,
the one is setting the weights asQð1=dinÞ ( din and dout respec-
tively refer to the in-degree and out-degree of a user) and the
other is setting weights as constant. We find that, when the
weight of each edge are set as Qð1=dinÞ, the seeds are those
who can reach high out-degree users via low in-degree inter-
mediate neighbors. On the other hand, when the weights are
set as constants, the seeds are the users surrounded by high
out-degrees nodes. We use a concept of “score” to quantify

such structural features. We define score ¼ d0out
d1out
d2
in

d2out
d2
in

when

weights are set asQð1=dinÞ, and define score ¼ d0out � d1out � d2out
when weights are set as constants. Here, diout and diin respec-
tively denote the mean out-degree and in-degree of the users’
i-th-hop neighbors. Fig. 8 shows the scores of the seed and
non-seed users under the two weight settings, and presents
that the scores of seeds are much higher than those of non-
seed users. The score gap between seed and non-seed users
justifies our findings of the structural features.

7 CONCLUSION

In this paper, we take the first attempt to study the CI
based influence maximization under the IC diffusion
model, where we evaluate the influences of users based on
the their structural features in mobile social networks. By
mapping the studied problem to the optimal percolation,
we present that the optimal seeds are those who can mini-
mize the leading eigenvalue of a non-backtracking matrix,
and quantify the formula of node CI which serves as a
novel metric to evaluate users’ contribution on cascading.
Furthermore, we propose a novel CI embedding method
to characterize the node CIs in a low-dimensional space,
and over which we can purse the CI based seed selection
with high efficiency. At last, experimental results on both
real and synthetic network dataset demonstrate the superi-
ority of our solution.

TABLE 3
Running Time of Seed Selection (s) Versus q

LiveJournal Wikipedia Citation Epinions Twitter

Algorithm q ¼ 5� 10�6 10�5 10�4 5� 10�6 10�5 10�4 5� 10�6 10�5 10�4 10�5 5� 10�4 10�3 10�5 5� 10�4 10�3

SKIM 41:0k 48:0k 97:0k 0:4k 0:4k 0:4k 31:0k 37:0k 85:0k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k
IMM 0:8k 1:3k 14:0k 0:3k 0:5k 2:3k 0:1k 0:2k 1:0k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k
K-core 46:8k 46:8k 46:8k 2:8k 2:8k 2:8k 1:5k 1:5k 1:5k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k
CIM-SS ðl ¼ 0Þ 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k
CIM-SS ðl ¼ 1Þ 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k
CIM-SS ðl ¼ 2Þ 0:1k 0:1k 0:5k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k 0:1k
CIM-SS ðl ¼ 3Þ 0:3k 0:4k 4:0k 0:1k 0:1k 0:2k 0:1k 0:1k 0:1k 0:1k 0:1k 0:2k 0:5k 0:7k 1:6k
CIM-SS ðl ¼ 4Þ 0:8k 1:4k 15:0k 0:1k 0:1k 0:6k 0:1k 0:1k 0:1k 1:2k 1:8k 3:6k 1:3k 2:4k 5:0k
CIM-SS ðl ¼ 5Þ 1:7k 2:6k 27:0k 0:1k 0:1k 1:1k 0:1k 0:1k 0:5k � � � � � �
CIM-SS ðl ¼ 6Þ 2:2k 3:2k 30:0k 0:1k 0:1k 1:7k 0:1k 0:1k 0:6k � � � � � �
CIM-ESS 3:0k 3:2k 3:8k 0:3k 0:3k 0:4k 0:3k 0:3k 0:3k 0:1k 0:2k 0:2k 0:2k 0:4k 0:6k

Here, k means 103

Fig. 7. The errors of collective influence embedding.

Fig. 8. The scores of seed and non-seed users under two weight set-
tings. The “score” defined in Section 6.5 is used to quantify the structural
features of seeds.
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