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ABSTRACT

Learning with noisy labels is a challenging task in machine learn-
ing. Furthermore in reality, label noise can be highly non-uniform
in feature space, e.g. with higher error rate for more difficult sam-
ples. Some recent works consider instance-dependent label noise
but they require additional information such as some cleanly labeled
data and confidence scores, which are usually unavailable or costly
to obtain. In this paper, we consider learning with non-uniform la-
bel noise that requires no such additional information. Inspired by
stratified sampling, we propose a cluster-dependent sample selec-
tion algorithm followed by a contrastive training mechanism based
on the cluster-dependent label noise. Despite its simplicity, the pro-
posed method can distinguish clean data from the corrupt ones more
precisely and achieve state-of-the-art performance on most image
classification benchmarks, especially when the number of training
samples is small and the noise rate is high. The code is released at
https://github.com/MattZ-99/ClusterCL.

Index Terms— Non-uniform label noise, cluster dependent
sample selection, contrastive training mechanism.

1. INTRODUCTION

Deep Neural Networks (DNNs) have achieved great success in var-
ious machine learning tasks, such as in computer vision, natural
language processing, and information retrieval. Unfortunately, their
successes heavily rely on the carefully labeled data, which are expen-
sive and time-consuming to collect. Online queries [1] and crowd-
sourcing [2] are cheap alternatives, which would produce datasets
with noisy labels. Song et al. [3] reports that the overall ratio of
corrupted labels in real-world datasets range from 8.0% to 38.5%.

Due to the universal approximation ability of DNNs, they can
easily memorize and eventually overfit to the corrupted labels, lead-
ing to poor generalization [4]. Such overfitting would be aggravated
by inadequate training samples, which often occur in real-world sce-
narios such as medical image processing. Efforts have been taken
to robust learning paradigms under noisy labels [3]. Generally, ex-
isting methods on learning with noisy labels can be categorized into
two groups: loss correction methods [5, 6, 7, 8, 9, 10] and sample
selection methods [11, 12, 13, 14].

Methods in the first group mainly model label noise with label
transition matrix. Several works [6, 7] assumed that label noises
were class-dependent (called class-dependent noise, CDN). Other
works [9, 10] proposed to model instance-dependent noise (IDN),
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Fig. 1: Noise rate distribution of CIFAR-10N Worst dataset [15].
Each point represents a data sample in 2D t-SNE feature space. The
color indicates the neighborhood noise rate around each data point.

which is more fine-grained but requires a large number of parameters
to be estimated [16].

Methods in the second group are designed to select confident
clean samples from noisy datasets based on the memorization effect
of DNNs [17], which tend to learn simple patterns first before fit-
ting the corrupt samples. Han et al. [11] and Yu et al. [12] train
two networks simultaneously where each network selects small-loss
samples to train the other one. Furthermore, semi-supervised learn-
ing was used to explore both confident clean samples (as labeled
data) and corrupt samples (as unlabeled data) [13, 14].

However, existing works explicitly or implicitly rely on the as-
sumption of uniform noise rate over the entire dataset, while the local
noise rates inside the real dataset can vary greatly, e.g. from 25% to
70% in Figure 1. Besides, Figure 1 also shows the non-uniformity
of intra-class noise rate in more details. The methods of CDN tran-
sition matrix assume that all samples in same class have same noise
rate, and methods of IDN need additional information and extra as-
sumption, which are not realistic and have poor performance exper-
imentally. With the implicit assumption of uniform noise rate, the
small-loss trick [18] would select simple patterns first and regard
most samples in the hard regions as corrupt data (though part of the
samples have correct labels). As a result, the inconsistent sample
distribution would make neural networks confused in hard regions
and thus weaken the generalization performance. A visualization
illustration is shown in Figure 3.

To address the above inconsistent sample selection problem, we
propose ClusterCL, which selects good samples from each cluster
separately, where the clusters are based on features trained by a com-
prehensive weakly supervised mechanism. To get better sample se-
lection and more robust model training, feature extraction, cluster-
ing, sample selection, and weakly supervised training are repeated
and refined iteratively. Inspired by the idea of stratified sampling,
ClusterCL selects samples in both simple and hard regions, allevi-
ating the inconsistency defect of existing sample selection methods.
Experimental results on both synthetic and real-world datasets ver-
ify the effectiveness of ClusterCL, which outperforms all baseline
methods, especially with small training set and high noise rate.
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Fig. 2: An overview of proposed ClusterCL, which is robust to the non-uniform noise. Generally, the proposed method has four steps: 1)
Feature extraction. Extract features using the current trained model. 2) Clustering. K-Means (or any other clustering method) is employed to
group samples in the feature space. 3) Cluster-dependent sample selection. 2-dimension Gaussian Mixture Model (GMM) will be employed
on the loss distribution and small-loss selection criteria are adopted to selection clean samples for each cluster separately. 4) Training for
one epoch. Supervised cross-entropy loss Lsup and unsupervised contrastive loss LCL will be used to update models’ parameters. Note: the
above four steps would be looped for epochs until convergence.

2. METHOD

An overview of framework is shown in Figure 2. Generally, our
proposed method has four steps in each epoch, i.e. feature extrac-
tion, clustering, cluster-dependent sample selection and weakly su-
pervised training. More details will be discussed in the following
subsections.

2.1. Cluster-dependent Sample Selection (CDSS)

Clustering algorithm, cluster-dependent data division, and effective-
ness analysis would be discussed in this section.

Clustering. To group the entire dataset by the similarity, we
use the features extracted by backbone networks trained in previous
epoch to divide the dataset into clusters. Experiments in Section 3.5
show the robustness of the proposed method to the clustering algo-
rithm and clusters number. Therefore for convenience, K-means is
selected as the clustering method unless otherwise specified.

Cluster-Dependent Data Division. As shown above, the sam-
ples in different clusters have different noise rate. To address the
challenge of non-uniform label noise, we propose to select clean and
corrupt samples within clusters.

Inspired by the idea of stratified sampling, we propose to first
divide the entire dataset into several cluster-based subset. Then
by using the small-loss trick on each cluster, an independent 2-
components GMM is used to fit the per-sample losses and the
samples clean probability ωi = p(g|li), where g is the component
with lower mean and li is the loss of sample i. Finally, the clean
samples (ωi > 0.5) in all clusters will merge together as the labeled
data while the corrupted ones as the unlabeled data.

Effectiveness analysis. Two clusters with different noise rates
are selected in Figure 3 to illustrate the effectiveness of proposed
method in sample selection process. Specifically, different criteria
would be adopted for different clusters, based on the fitting degree
of neural networks. As shown in Figure 3, the baseline method (red
line in Figure 3a) would omit most of samples in Cluster 1, which
has higher noise rate and neural networks would fit it slowly. There-
fore compared with baseline method, the proposed adaptive selec-
tion method sets variable criteria for different ”sub-populations” (i.e.
clusters with different fitting characteristics). The effectiveness of
the proposed method would be summarized as:

1) For clusters with smaller losses (Cluster 0 in Figure 3), the
proposed cluster-dependent sample selection method would achieve
higher precision with similar recall.

2) For clusters with higher losses (Cluster 1 in Figure 3), the
proposed method would achieve much higher recall with similar
precision.

2.2. Contrastive Training Mechanism

The training process of our proposed method contains two parts, i.e.
unsupervised training and supervised training. Unsupervised con-
trastive training is used to pull similar samples together which facil-
itates the cluster-dependent selection and supervised training is con-
ducted using selected clean samples to push samples from different
classes away.

Co-training mechanism. To avoid the accumulation of confir-
mation bias in self-training, we follow the common practice [11, 12]
of co-training two networks simultaneously.

Noisy data usage. To fully utilize the entire dataset (both clean
and corrupt data), the proposed method keeps the clean labels while
replacing the corrupted ones by generated pseudo labels. Specifi-
cally, the pseudo labels are generated with aggregated output of two
networks and multiple augmentation views [14].

Mixup. To regularize the neural network for more robust train-
ing, mixup [19] and FMix [20] are employed to construct more di-
verse sample views. Specifically, for a pair of samples (x1, ŷ1) and
(x2, ŷ2), the mixed views are computed by

(x′, y′) = λ (x1, ŷ1) + (1− λ) (x2, ŷ2)

(x′′, y′′) = MASK (x1, ŷ1) + (1− MASK) (x2, ŷ2)
(1)

where λ ∼ Beta(α = 4, α = 4) and MASK means a sampled
mask for the input data. Denoting by LCE the cross-entropy loss,
the supervised training loss Lsup can be written as

Lsup = Lmixup(x
′, y′) + Lfmix(x

′′, y′′)

= LCE(x
′, y′) + LCE(x

′′, y′′)
(2)

Contrastive loss. To pull similar samples together in the fea-
ture space, additional unsupervised contrastive loss is employed on
the last-layer features (denoted as zi) for the entire dataset. Specif-
ically, with the similarity measured by dot product, the contrastive
loss LCL we use in this paper is given by

LCL =
N∑
i=1

lCL(i) = −
N∑
i=1

log
exp (zi · z+i /t)∑K

j=1(zi · zj/t)
, (3)

where N is the batch size, K is the feature dictionary size as in [21],
and t is a temperature hyper-parameter.

Overall training loss. The overall loss in the training stage is
given by

Ltotal = Lsup + λLCL, (4)
where λ is a weight factor, which is set to 0.1 in our experiments.
Two components of the losses are employed to achieve inter-class
separability [22] and intra-cluster invariance [23] respectively.
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Fig. 3: Visualization comparison of clean sample selection results between proposed cluster-dependent method and previous baseline [13].
Color blue and orange are two selected clusters from CIFAR-10N Worst dataset [15], with noisy rate 21.1% and 60.8% respectively. The loss
distribution of clean and corrupt samples in the two clusters are shown in Figure 3a and the vertical lines are the selection criteria. Figure 3c,
Figure 3c, and Figure 3d respectively display the selected clean samples of ground truth, baseline method, and ours cluster-dependent sample
selection (CDSS) with 2D T-SNE visualization.

3. EXPERIMENTS

3.1. Datasets and Setup

Datasets: We evaluate our method on three real noisy dataset
CIFAR-10N, CIFAR-100N [15], and Clothing1M [24].
Baselines: To make comprehensive comparison, We select state-of-
the-art methods from different categories: CE (standard training with
cross-entropy loss), T-Revision [6], PTD [9], ELR+ [25], DivideMix
[13], SOP [26], and ProMix [27].
Network structure and parameters: 18/34-layer PreAct ResNet
and 50-layer ResNet [28] with ImageNet pretrained weights are used
as backbone for CIFAR-10/100N and Clothing1M. As Clothing1M
is a large dataset with 1 million images, we randomly select 1000
batches with in each epoch. To guarantee the comparability, we use
the same backbone networks among the baseline methods for the
same task.

3.2. Classification Accuracy Evaluation

Experiment results on CIFAR-10/100N. Experimental results on
CIFAR-N datasets are shown in Table 1. The reported accuracy is
averaged over the last 10 epochs. In the original dataset with 50,000
training samples, our method can outperforms all the baseline meth-
ods. Besides as discussed in Table 4, our method can achieve better
performance with inadequate samples.

Table 1: Test accuracy (%) with realistic label noise on CIFAR-N.
For CIFAR-10N, we use noisy label aggregate (τ = 9.03%), random
1 (τ = 17.23%), and Worst (τ = 40.21%). And for CIFAR-100N,
we use the fine noisy label with τ = 40.20%.

Methods CIFAR-10N CIFAR-100N

Aggr Rand1 Worst Fine

CE (Standard) 89.87 84.15 76.86 55.96
T-Revision 89.39 87.99 82.10 54.45

PTD 89.93 89.83 80.16 16.01
ELR+ 94.81 94.54 90.89 67.04

DivideMix 95.15 95.12 92.71 71.13
ProMix 96.83 96.17 94.05 70.54

SOP 95.61 95.28 93.24 67.81

ClusterCL(ours) 96.86 96.29 94.13 71.87

Experiment results on Clothing1M datasets. To validity the ef-
fectiveness of the proposed method on more general noisy datasets,
experimental results on Clothing1M are shwon in Table 2. For

Table 2: Experimental results for Clothing1M. * means the result is
copied from the original paper.

Methods Clothing1M-I Clothing1M-II

CE (Standard) 69.55 45.11
T-Revision 74.18* 40.32

PTD 71.67* 25.33
ELR+ 74.81* 60.67

DivideMix 74.76* 56.57
ProMix 72.85 55.39

SOP 73.50* 48.78

ClusterCL(ours) 74.84 61.98

Clothing1M, we design two experiments with different training sam-
ples: Clothing1M-I: Training with all 1 million samples available.
Clothing1M-II: Training with randomly selected 5000 samples.
The two tasks assess the performance of our method using varying
training set sizes. Our method achieves the state-of-the-art accuracy
on the more realistic dataset, particularly when the sample size is
limited.
Experiment results on CIFAR-10 with different number of train-
ing samples. As the non-uniform noise would have greater impact
with less training samples, we conduct experiments on CIFAR-10N
Worst dataset with varying training set sizes(500 –50000), as shown
in Table 4. ClusterCL outperforms state-of-the-art methods with var-
ious number of training samples. Notably, our method make greater
improvement when training set goes smaller. The results demon-
strate the effectiveness of our approach to suppress the inconsistent
data distribution problem after sample selection, as the problem has
greater impact when the training set is smaller.

Table 3: Precision (%), Recall (%), and F1-score (%) in the clean
sample selection step on CIFAR-10 Worst dataset with 5000 training
samples. For the standard Cross-Entropy method, all the samples are
regraded as the clean ones.

Methods Precision Recall F1-score

CE (Standard) 59.02 100.0 74.22
DivideMix 88.34 82.48 85.31

ProMix 89.19 82.03 85.46

ClusterCL(ours) 89.04 88.45 88.74

3.3. Sample Selection Evaluation

In this section, we would provide empirical evaluation of the clean
sample selection process with several baseline methods. The experi-



Table 4: Test accuracy (%) with different training samples on CIFAR-10N. The training data are randomly sampled from CIFAR-10N Worst
set, with balanced categories and noise rate τ = 40%± 1%. N is the number of training data.

Methods CIFAR-10N (τ ≈ 40%)

N = 500 2000 5000 10000 20000 40000 50000

CE (Standard) 32.54 41.05 49.58 58.61 63.84 74.33 76.86
T-Revision 28.54 29.64 32.69 63.47 77.37 80.66 82.10

PTD 18.99 26.59 39.01 65.85 66.69 70.97 80.16
ELR+ 38.39 56.29 67.24 75.26 84.30 89.77 90.89

DivideMix 36.52 58.43 70.03 77.77 87.38 91.83 92.71
ProMix 34.96 58.15 69.75 77.95 88.06 92.71 94.05

SOP 37.21 54.68 67.43 75.15 85.52 91.88 93.24

ClusterCL(ours) 44.26 64.31 76.19 84.67 89.85 93.08 94.13

Table 5: Ablation study for the proposed method. The experiments are performed on CIFAR-10N Worst dataset [15] with 40% noise
rate. CDSS represents proposed cluster-dependent sample selection and GMM represents Gaussian mixture module used in baseline method
DivideMix [13]. CE means cross-entropy loss and CL means contrastive loss.

Sample selection - CDSS CDSS GMM CDSS CDSS CDSS
Mixup - - - Mixup Mixup Mixup+FMix Mixup+FMix

Number of nets single single dual dual dual dual dual
Losses CE CE CE CE CE CE CE+CL

Accuracy 76.86 90.48 92.15 92.71 93.47 93.60 94.13 (ours)

mental results are shown in Table 3. Our proposed cluster-dependent
sample selection method would achieve slightly lower precision but
much higher recall and thus higher F1-score. The experiment illus-
trates the effectiveness of the proposed method.

3.4. Ablation Study

Ablation study for the proposed method is shown in Table 5. The
experiments are performed on CIFAR-10N Worst dataset [15] with
40% noise rate and 50,000 training samples. The experimental re-
sults prove the effectiveness of the proposed cluster-dependent sam-
ple selection mechanism, mixup regularization, co-training mech-
anism, CE and CL losses. The proposed cluster-dependent sam-
ple selection mechanism performs a foundational role. Besides, the
weakly-supervised technologies, including mixup, co-training, and
contrastive learning enhance the final performance.

3.5. Sensitivity Analysis

Experiments in Tables 6 and 7 shows the sensitivity of the proposed
method to clustering algorithm and numbers. The experiments are
conducted on CIFAR-10N Worst dataset with 5000 training samples.

Experiments in Table 6 shows the method with different num-
ber of clusters. The experiment illustrate the effectiveness of strat-
ified sampling. However, the training time and number of samples
limit the number of clusters not too much. To balance the training
effect and time, we prefer to select a intermediate value, which is
200 clusters (for 5000 samples) in the previous experiments.

Table 6: Experiments with different number of clusters.

#Clusters K 1 200 500 800 1000

Accuracy 69.78 74.27 75.26 76.03 74.37

Time 2.2h 3h 4.5h 5.0h 5.5h

Experiments in Table 7 shows the method with different clus-
tering methods. The proposed method achieves similar test accu-

racy and training time among different clustering algorithms, except
DBSCAN. Therefore, K-Means is adopted as our clustering algo-
rithm in all other experiments for convenience.

Table 7: Experiments with different clustering methods.

Methods K-Means K-Means++ Hierarchical
clustering DBSCAN

Accuracy 74.27 74.10 74.25 70.84

Time 3h 3h 3h 2.5h

4. CONCLUSION

Due to the memorization effect of DNNs [17], the small-loss trick
would select simple patterns (which usually have lower noise rate)
first but regard all samples in the hard regions as corrupt data, result-
ing in inconsistent data distribution. Furthermore, the inconsistency
problem would be harder when the training set is small and the label
noise is heavy.

Inspired by the idea of stratified sampling, the paper proposed
a novel ClusterCL mechanism to solve the robust learning chal-
lenge under non-uniform label noise. ClusterCL combines the
cluster-dependent sample selection method with a weakly super-
vised learning mechanism to distinguish and leverage the noisy
labels. At training stage, supervised cross-entropy loss and unsuper-
vised contrastive loss are employed together to achieve inter-class
separability and intra-cluster invariance in feature space. At sample
selection stage, the dataset would be divided into clusters and small-
loss selection would be performed on each cluster respectively. The
proposed cluster-dependent sample selection method sets adaptive
criteria for samples with different fitting degree and thus brings a
significant improvement on selection recall.

Experiment results demonstrate that the proposed ClusterCL can
suppress the inconsistent sample selection problem effectively and
thus outperforms all baseline methods on the datasets, especially
when the training set is small and noise rate is high.
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