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ABSTRACT

Optical Coherence Tomography (OCT) retinal lesion segmentation is critical for ophthalmic diagnosis and treat-
ment. However, current OCT retinal image segmentation methods primarily focus on individual B-scans and
neglect the continuity condition of lesions across OCT volume B-scans, which leads to suboptimal segmentation
results. To address this issue, we propose an innovative 2.5D segmentation algorithm that treats OCT retinal
images as video sequences and leverage advanced video segmentation models. We compared our method with
state-of-the-art 2D image-based segmentation methods on a public dataset. Experimental results demonstrate
that our method significantly improves both visual quality and quantitative metrics, particularly in terms of
structural continuity and robustness of the segmentation results.
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1. INTRODUCTION

Optical Coherence Tomography (OCT) is an important imaging modality for the diagnosis and monitoring of
retinal diseases, which could provide high-resolution cross-sectional images of the retina.1 These images allow
for the detailed visualization of retinal lesions, essential for precise diagnosis and effective treatment planning.
Moreover, the segmentation and quantification of these lesions, as imaging biomarkers, are pivotal for clinicians
to understand their implication on disease progression.

Recent advancements in deep learning-based segmentation methods have shown promising results in the
task of OCT retinal lesion segmentation. Most of these methods use 2D image-based models that process each
B-scan independently, focusing on expanding the receptive field2 or incorporating multi-scale information3 to
improve model performance. However, they tend to concentrate solely on the information from individual frames
and, neglect the inherent continuity condition of lesions across adjacent B-scans within an OCT volume. This
neglection can limit the effectiveness of lesion detection and segmentation in a clinical setting and further result
in suboptimal segmentation outcomes, which is especially critical in the context of reconstructing 3D retinal
structures for clinical purposes.

As illustrated in Fig. 1, adjacent frames in a video are separated by minimal temporal intervals, similar
to the minimal scanning intervals between adjacent B-scans in an OCT volume. Therefore, we can apply the
optical flow constraint equation to the OCT volume, the pixel motion relationship of adjacent B-scans can be
represented as:
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where y denotes the position of B-scans in an OCT volume instead t which denotes the positions of frames in
a video. This similarity emphasizes the inherent continuity present in both video sequences and OCT volumes,
highlighting the potential for applying mature video-based segmentation techniques to OCT retinal volume
analysis.

Inspired by video processing techniques, we introduce a novel concept for OCT retinal lesion segmentation
by treating adjacent B-scans as video sequences in this manuscript. This concept frames the segmentation task
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Figure 1. (a) Consecutive Frames in a video. (b) Consecutive B-scans in an OCT retinal volume.

as a 2.5D problem rather than a purely 2D one. By leveraging the OCT raster scanning mechanism and the
inherent continuity of retinal lesions, we employ a Mamba-based video method4 that accurately captures the
consistent presence and gradual changes of lesions across consecutive OCT B-scans. This 2.5D approach could
bridge the gap between 2D and 3D segmentation, providing a more balanced performance for segmenting retinal
pathology. The contributions of our approach can be summarized as follows: (1) We introduce an innovative
concept for treating OCT retinal lesion segmentation task as an analogy of video segmentation; (2) We achieve
notable results using video segmentation models, surpassing state-of-the-art methods on a public dataset.

2. METHOD

2.1 Framework

In this work, we employ the Mamba-based Vivim model4 for OCT retinal lesion segmentation, where the model’s
input is video sequence. The initial step entails transforming consecutive B-scans from an OCT retinal volume
into a video sequence. When processing a volume containing N B-scans, our approach involves converting every
consecutive set of T B-scans into a video sequence. By setting the stride to 1, each new video sequence overlaps
with the preceding one by T − 1 B-scans. This methodology ensures continuity across sequences and enhances
the robustness of the dataset. These preprocessed video sequences are then used as input for the Vivim model,
as demonstrated in Fig. 2. Vivim primarily comprises two components: a hierarchical encoder featuring stacked
Temporal Mamba Blocks designed to extract multi-scale feature sequences, and a lightweight CNN-based decoder
head that integrates multi-scale feature sequences to generate segmentation masks.

2.2 Loss Function

We use a combined approach of Binary Cross-Entropy Loss ℓbce and Dice Loss ℓdice to supervise the learning of
our model. This hybrid loss function is designed to optimize the model’s performance in handling imbalanced
data and improving the precision of segmentation in target areas.

2.3 Dataset and Implementation

We evaluated our innovative concept for OCT retinal lesion segmentation on the public Retinal Edema Segmen-
tation Challenge (RESC) dataset,5 containing subretinal fluid (SRF) and pigment epithelial detachments (PED)
lesion images. The dataset comprises training, validation, and test splits, consisting of 70, 15, and 15 cases
respectively, each case includes 128 OCT slices at a resolution of 512 × 1024 pixels. However, the dataset only
provides pixel-level annotations for training and validation splits, therefore, we implement 5-fold cross-validation
on the training split on the case level in our experiments and test on the validation split. The proposed framework
was trained on one NVIDIA RTX 3090 GPU. During each iteration of the training process, video frames are
resized to 256×256 pixels. Each video sequence contains 5 B-scans, and each batch comprises 8 such sequences.
We conducted data augmentation strategies on these sequences by random flipping and rotation. The initial
learning rate is set at 1×10−4 and is gradually reduced to 1×10−4 using a cosine annealing strategy. The entire
training extends over 100 epochs, with the Adam optimizer utilized to optimize model parameters.
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Figure 2. Overview of the framework.

3. RESULTS

We employed five segmentation evaluation metrics, including Dice, Precision, Recall, S-measure (Sα)
6 and E-

measure (Eϕ),
7 and conducted comparisons with current popular medical image segmentation baseline models,

including Unet,8 Unet++,9 and TransUnet.10 All experimental settings were kept consistent, and The quanti-
tative results are presented in Tab. 1, tested on the validation set with 5-fold cross-validation on the training
set.

Table 1. Quantitative comparison with state-of-the-art methods on the RESC validation set. Mean(Std) of 5-fold cross-
validation. The best results in this table are labeled in bold.

Dataset Lesions Model
Metric

Dice(%) Precision(%) Recall(%) Eϕ(%) Sα(%)

RESC

SRF

Vivim 80.84(2.59) 83.44(2.08) 80.92(3.20) 95.49(1.36) 91.56(1.50)

Unet 76.08(1.57) 84.45(0.92) 74.13(1.89) 90.13(0.8) 87.12(1.20)

Unet++ 74.90(2.51) 83.69(1.96) 72.59(2.94) 87.87(2.41) 86.10(1.63)

TransUnet 77.26(2.45) 84.55(1.67) 75.25(2.61) 91.22(2.33) 89.19(1.66)

PED

Vivim 30.55(1.03) 35.83(1.79) 28.71(1.74) 77.60(3.59) 73.50(3.39)

Unet 30.79(3.74) 35.04(6.48) 29.23(3.39) 68.31(3.90) 70.77(2.93)

Unet++ 17.96(2.65) 20.63(3.05) 16.74(2.17) 63.12(0.84) 70.40(0.92)

TransUnet 36.30(11.92) 35.49(12.13) 30.32(10.99) 71.31(8.92) 69.54(4.21)

Average

Vivim 75.70 78.57 75.58 93.66 89.71

Unet 71.45 79.40 69.54 87.90 85.45

Unet++ 69.08 77.24 66.88 85.34 84.50

TransUnet 73.07 79.53 70.66 89.19 86.29
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Figure 3. Qualitative results of SRF on the consecutive B-scans along y axis.

We can observe that video-based methods outperform image-based methods on the entire dataset, surpassing
the state-of-the-art in SRF segmentation while performing slightly inferior in PED segmentation. However, our
method achieves the best results in structured metrics (Sα) and (Eϕ). This indicates that in the task of OCT
retinal lesion segmentation, video-based methods explicitly consider the continuity of adjacent frames, making
the segmentation results structurally closer to the ground truth. This ensures continuity of the segmentation
results in volume, facilitating subsequent 3D reconstruction. We presented the visualization results of SRF
segmentation in Fig. 3. Our method maintains better structural consistency and continuity across consecutive
B-scan segmentation results.

4. CONCLUSION

In conlusion, we propose an innovative concept that transforms OCT retinal lesion segmentation into a video
segmentation task, leveraging the continuity between B-scans in OCT retinal volumes. By employing mature
video segmentation models on a public dataset, we achieve promising segmentation results that exhibit better
inter-frame continuity and intra-frame structural robustness, surpassing the performance of image-based state-
of-the-art segmentation methods.

REFERENCES

[1] Goebel, W. and Kretzchmar-Gross, T., “Retinal thickness in diabetic retinopathy: a study using optical
coherence tomography (oct),” Retina 22(6), 759–767 (2002).

[2] Chen, M., Ma, W., Shi, L., Li, M., Wang, C., and Zheng, G., “Multiscale dual attention mechanism for
fluid segmentation of optical coherence tomography images,” Applied Optics 60(23), 6761–6768 (2021).

[3] Pappu, G. P., Tankala, S., Talabhaktula, K., and Biswal, B., “Eanet: Multiscale autoencoder based edge
attention network for fluid segmentation from sd-oct images,” International Journal of Imaging Systems
and Technology 33(3), 909–927 (2023).

[4] Yang, Y., Xing, Z., and Zhu, L., “Vivim: a video vision mamba for medical video object segmentation,”
arXiv preprint arXiv:2401.14168 (2024).

[5] Hu, J., Chen, Y., and Yi, Z., “Automated segmentation of macular edema in oct using deep neural networks,”
Medical image analysis 55, 216–227 (2019).

Proc. of SPIE Vol. 13406  1340628-4



[6] Fan, D.-P., Cheng, M.-M., Liu, Y., Li, T., and Borji, A., “Structure-measure: A new way to evaluate
foreground maps,” in [Proceedings of the IEEE international conference on computer vision ], 4548–4557
(2017).

[7] Fan, D.-P., Ji, G.-P., Qin, X., and Cheng, M.-M., “Cognitive vision inspired object segmentation metric and
loss function,” Scientia Sinica Informationis 6(6), 5 (2021).

[8] Ronneberger, O., Fischer, P., and Brox, T., “U-net: Convolutional networks for biomedical image segmen-
tation,” in [Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 ], 234–241, Springer (2015).

[9] Zhou, Z., Rahman Siddiquee, M. M., Tajbakhsh, N., and Liang, J., “Unet++: A nested u-net architecture
for medical image segmentation,” in [Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop,
ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings
4 ], 3–11, Springer (2018).

[10] Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A. L., and Zhou, Y., “Transunet:
Transformers make strong encoders for medical image segmentation,” arXiv preprint arXiv:2102.04306
(2021).

Proc. of SPIE Vol. 13406  1340628-5


