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ABSTRACT

Missing data is ubiquitous in real-world scenarios. Recently, in-
creasing attention has been given to prediction using only incom-
plete features together with a mask indicating the missing pattern.
In this paper, we consider prediction with incomplete feature in the
presence of distribution shift. In particular, we focus on the case
where the joint distribution of complete feature and label is invari-
ant, but the mask distribution may shift agnostically between train-
ing and testing. StableMiss is state-of-the-art in this problem. It
removes correlations among feature, those among mask and those
between feature and mask to avoid learning the correlations that
possibly change under mask distribution shift. However, the cor-
relations among feature can be helpful to prediction, since they do
not change under mask distribution shift, and the optimal predictor,
namely conditional expectation of label given incomplete feature,
depends on them. To address this issue, we preserve the correla-
tions among feature and simultaneously remove those among mask
and those between feature and mask. Extensive experiments show
that our method outperforms the state-of-the-art methods, with 10%
reduction in RMSE.

Index Terms— Prediction, incomplete data, agnostic mask dis-
tribution shift

1. INTRODUCTION

Missing data is ubiquitous in real-world scenarios due to sensor mal-
function, incomplete sensing coverage, etc. Recently, increasing at-
tention has been given to prediction with only incomplete feature,
which consists of observed feature values and a mask that indicates
which features are observed. Although most existing methods [1, 2]
assume identical training and testing distributions, the prediction
may take place in the presence of distribution shift. As noted in [3],
a typical scenario is where the joint distribution of complete feature
and label is assumed invariant between training and testing, but the
mask distribution can be different, resulting from different sensor
deployment, data management, etc. E.g., the naturally incomplete
urban traffic speed dataset [4] throughout one year has relatively sta-
ble speed distribution, as the traffic network is almost unchanged,
but its missing rate drops from 37% to 23% during this year. More-
over, the mask distribution shift is agnostic, since testing distribution
is usually unavailable during the training process in practice. In this
paper, we study prediction with incomplete feature under such ag-
nostic mask distribution shift.

Several methods [1, 2, 5, 6, 7, 8] for missing data can be used
for prediction with incomplete feature. However, they assume identi-
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cal training and testing distributions and can hardly generalize under
distribution shift. Several other methods [9, 10, 11, 12, 13] focus
on prediction under agnostic feature distribution shift. They are de-
signed for complete data and are not applicable to incomplete data.

StableMiss [3] has achieved state-of-the-art performance in our
problem. It observes that the optimal predictor, namely conditional
expectation of label given incomplete feature, is invariant between
training and testing and proposes a prediction framework to approx-
imate the optimal predictor. In order to make the learned model
independent of mask distribution, StableMiss adapts existing decor-
relation technique to incomplete data to avoid learning the correla-
tions among feature and mask that possibly change under mask dis-
tribution shift. In particular, it removes three kinds of correlations,
correlations among feature (intra-feature correlations), correlations
among mask (intra-mask correlations) and correlations between fea-
ture and mask (inter-correlations). However, the intra-feature cor-
relations can be helpful to prediction, since they do not change with
mask distribution shift and the optimal predictor, namely conditional
expectation of label given incomplete feature, depends on them.

In this paper, we address the above issue by preserving the intra-
feature correlations and simultaneously removing intra-mask corre-
lations and inter-correlations. Similar to [3], we decorrelate by sam-
ple reweighting that learns a weighting function of incomplete fea-
ture. Specifically, we first show the existence of weighting function
that simultaneously preserves and removes the corresponding corre-
lations when the mask is independent of the missing feature values.
When the mask depends on the observed feature values, we learn the
weighting function by regularizing complete feature distribution to
be invariant and minimizing both intra-mask correlations and inter-
correlations. When the mask is independent of feature, removing
the intra-mask correlations automatically preserves the intra-feature
correlations, and we learn the weighting function by only minimiz-
ing the intra-mask correlations. Finally, following [3], we conduct
weighted regression under the training distribution. Our improved
version of StableMiss is named StableMiss+.

The contributions of this paper are summarized as follows.
• This paper proposes a novel method StableMiss+ for prediction

with incomplete feature under agnostic mask distribution shift.
StableMiss+ can preserve intra-feature correlations and simulta-
neously remove infra-mask correlations and inter-correlations.

• Extensive experiments on both synthetic and real-world datasets
show that StableMiss+ outperforms the state-of-the-art methods
under agnostic mask distribution shift.

2. NOTATION AND PROBLEM STATEMENT

2.1. Notation

Capital and lowercase letters, e.g., X and x, are used to denote ran-
dom variable and realization, respectively. Subscripts are used to



index the entries of a vector, e.g., xi is the i-th entry of x. Let
x ∈ Rn and y ∈ Rd denote the feature and label, respectively.
We consider the case where x is partially observed and y is fully
observed during training. We use a binary mask m ∈ {0, 1}n to
indicate which entries of x are observed: mi = 1 if xi is observed,
and mi = 0 if xi is missing. The complementary mask m is defined
by mi = 1 −mi, ∀i. With a slight abuse of notation, we regard m
and m as the index sets of the observed and missing entries, so that
the observed and missing feature values are xm = {xi | i ∈ m}
and xm = {xi | i ∈ m}, respectively. We consider the case where
mask m is known, since it is common to know which features are ob-
served within incomplete feature. The incomplete feature is given by
(xm,m). We consider the case where label generation process de-
pends on the feature but not the mask, i.e., p(y | x,m) = p(y | x).

Following [14], we model the generative process of incomplete
feature as follows. A complete feature sample x is first drawn from
the complete feature distribution p(x). Given x, a mask sample m
is then drawn from the conditional mask distribution p(m | x). The
incomplete feature (xm,m) follows the distribution

p(xm,m) =

∫
p(x)p(m | x)dxm.

We focus on the cases of Missing Completely At Random (MCAR)
and Missing At Random (MAR) [14]. Under MCAR, mask M is
independent of the underlying complete feature X, i.e., p(m | x) =
p(m),∀m,x; under MAR, mask M only depends on the observed
feature values XM, i.e., p(m | x) = p(m | xm), ∀m,x.

2.2. Problem Statement

Given a training set D = {(x(i)

m(i) ,m
(i),y(i))}Ni=1, consisting of N

samples from the training distribution ptr(x,m,y), the goal is to
learn a prediction function g(xm,m) for agnostic testing distribu-
tion pte(x,m,y), where the input to g is only incomplete feature.
Under commonly adopted L2-norm metric, the optimal g is

g(xm,m) = EY∼pte
Y|xm,m

[Y | xm,m].

Following [3], we make the following assumption on testing dis-
tribution. Note that the mask distribution shift still remains agnostic
under this assumption.

Assumption 1. The joint distribution of complete feature and label
is invariant between training and testing:

pte(x,y) = ptr(x,y).

3. BACKGROUND

In this section, we introduce StableMiss [3], which is highly related
to our method. It observes that, under Assumption 1 and in MCAR
or MAR, the optimal predictor, i.e., conditional expectation of label
given incomplete feature, is invariant between training and testing:

EY∼pte
Y|xm,m

[Y | xm,m] = EY∼ptr
Y|xm,m

[Y | xm,m].

StableMiss achieves generalization by approximating this invariant
conditional expectation, whose architecture is shown in Fig. 1.

The conditional expectation E[Y | xm,m] is an aggregation of
2n optimal predictors, one for each mask m. StableMiss approxi-
mates them by learning a prediction function g, whose parameter ϕ
is a function of m and parameterized by learnable θ, as given by

g(xm,m) = gϕθ(m)(x⊙m),

x�m

m

g

φθ

ŷ

y

Loss w( , )

Fig. 1: Overall architecture of StableMiss [3].

where ⊙ is element-wise multiplication.
To avoid learning the correlations among feature and mask

that possibly change under mask distribution shift, StableMiss per-
forms decorrelation by sample reweighting. Specifically, it learns a
weighting function w(xm,m) of incomplete feature by minimiz-
ing the total correlations under the weighted training distribution
pw(x,m,y) = w(xm,m)ptr(x,m,y). In the case of MCAR, it
minimizes the intra-feature and intra-mask correlations:

min
w∈R+

∑
cor(Xk, Xl,w) +

∑
cor(Mk,Ml,w) + γCV(w),

where the summation is taken over 1 ≤ k < l ≤ n, and
the coefficient of variation CV(w) of w is for regularization;
in the case of MAR, it further minimizes the inter-correlations∑

1≤k,l≤n cor(Xk,Ml, w). The correlation cor(·, ·,w) is mea-
sured by Random Fourier Feature [15]. Due to space limit, see [3]
for details. Then it conducts weighted regression under the training
distribution:

min
θ

Eptr [w(XM,M)(Y − gϕθ(M)(XM,M))2].

4. METHODOLOGY

4.1. Issue of Decorrelation

To make the model independent of mask distribution, StableMiss [3]
aims to remove all the correlations among feature and mask, in-
cluding infra-feature correlations. However, the infra-feature cor-
relations can be helpful to prediction, whose reason is twofold. On
the one hand, under Assumption 1, the intra-feature correlations do
not change under mask distribution shift, and thus preserving them
will not degrade the generalization performance as the intra-mask
correlations and inter-correlations. On the other hand, the optimal
predictor depends on the intra-feature correlations. The dependence
can be seen by factorizing p(y | xm,m) as

p(y | xm,m) =

∫
p(y | xm,xm,m)p(xm | xm,m)dxm

=

∫
p(y | x)p(xm | xm,m)dxm.

In the case of MCAR or MAR where XM and M are conditionally
independent given XM, the second term p(xm | xm,m) = p(xm |
xm), which depends on the intra-feature correlations. Thus the op-
timal predictor depends on the infra-feature correlations. How we
exploit the intra-feature correlations is detailed in the next section.

4.2. Improvement on Decorrelation

We exploit the intra-feature correlations by preserving them and si-
multaneously removing intra-mask correlations and inter-correlations.
We first show in Theorem 1 below that theoretically this can be
achieved by weighting the training distribution appropriately. Su-
perscript tr of training distribution will be omitted for simplicity.



Table 1: Performance on Gaussian-Mix when trained under 50% missing level. The values for Optimal are RMSE, while the other values are
the gap between the RMSE of the corresponding method and that of Optimal with the same experimental setup. Bold and underline represent
the best and second best along each column, respectively. Superscript ∗ indicates when training and testing missing levels are the same.

Method
Testing Missing Level

MCAR MAR
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Gap to
Optimal

Partial VAE 1370.80 1022.81 872.67∗ 1058.23 1299.88 1541.52 1172.68 793.32∗ 1075.69 1112.42
MIWAE 1141.75 977.36 825.64∗ 953.03 1019.08 1331.95 1047.14 743.63∗ 820.39 844.17
P-BiGAN 1249.11 948.68 794.86∗ 942.71 1336.18 1382.71 1041.63 713.85∗ 845.39 979.45
NeuMiss 607.77 480.56 312.75∗ 527.64 665.30 714.19 523.10 293.14∗ 601.74 679.99

DWR 1290.18 931.87 873.53∗ 1072.58 1132.42 1485.42 1142.32 893.64∗ 969.56 963.52
SRDO 1187.14 932.88 826.52∗ 1021.75 1217.66 1385.00 1080.93 843.85∗ 899.21 866.09
StableNet 1061.32 833.19 725.82∗ 909.54 1190.70 1256.32 989.67 743.25∗ 807.50 788.56

StableMiss 409.74 346.55 292.11∗ 331.50 403.29 431.16 309.09 282.75∗ 405.60 467.98

StableMiss+ 378.92 320.46 290.85∗ 309.34 369.57 408.90 285.39 277.86∗ 381.07 454.95
Optimal 861.06 1134.42 1301.95 1591.95 1795.19 904.87 1108.73 1324.00 1518.59 1705.54

Theorem 1. Under Assumption 1 and in the case of MCAR or
MAR, there exists a weight function w(xm,m) such that, under the
weighted training distribution pw(x,m) = w(xm,m)p(x,m), the
feature distribution is preserved, while intra-mask correlations and
inter-correlations are removed, i.e.,

pw(x) = p(x), pw(m) =

n∏
i=1

pw(mi), pw(m | x) = pw(m).

Note that any w(xm,m) that preserves p(x) also preserves the
joint distribution of feature and mask, i.e., pw(x,y) = p(x,y).

Proof. We only need to consider the MAR case, from which the
MCAR case will follow. Let w(xm,m) = 0 if p(m | xm) = 0;
otherwise, let

w(xm,m) =
1

p(m | xm)

n∏
i=1

p̃(mi), (1)

where p̃ can be any distribution of m with the entries mi’s mutually
independent. The weighted training distribution is then

pw(x,m) = w(xm,m)p(x,m)

= w(xm,m)p(x)p(m | xm) = p(x)
n∏

i=1

p̃(mi),

where the second equality follows from the MAR assumption. The
desired results follow from marginalization.

Despite the formula in Eqn. (1), we still need to actually learn
w(xm,m) from the data. To this end, we solve the following op-
timization problem that minimizes both intra-mask correlations and
inter-correlations,

min
w∈R+

WD+
∑
k,l

cor(Xk,Ml,w)+
∑
k<l

cor(Mk,Ml,w)+γCV(w).

Here WD = WD(Dw,D′) is the empirical Wasserstein distance
between the weighted training set Dw and a new incomplete dataset
D′ generated as follows. We first learn p(x) from D using MisGAN
[16]. A sample of D′ is then obtained by masking a complete feature
sample drawn from the learned p(x) using a mask sample drawn

from Dw, according to the MCAR mechanism. Ideally, minimizing
WD enforces pw(xm,m) = pw(m)p(xm), which, when x and m
become independent, implies pw(xm) = p(xm), and hence helps
preserve p(x).

In the case of MCAR, the weights in Eqn. (1) become indepen-
dent of xm, i.e.

w(xm,m) = w(m) =
1

p(m)

n∏
i=1

p̃(mi).

Instead of the above more general approach, we can learn a function
w(m) directly by solving the following simpler problem,

min
w∈R+

∑
1≤k<l≤n

cor(Mk,Ml,w) + γCV(w).

5. EXPERIMENT

5.1. Experimental Setup

We evaluate StableMiss+ on both synthetic and real-world datasets.
Gaussian-Mix. Following [3], we generate feature X from a

Gaussian Mixture model, and the scalar label Y is linear to features.
House Sales. Following [3], we use dataset of house sales,

which contains n = 16 features and a scalar house price as label.
MNIST [17]. Images of handwritten digits. Given an incom-

plete image, we aim to predict the corresponding complete image.
Traffic [4]. Average traffic speed within every hour from 1343

roads in the city of Chengdu, China, in 2018. Note that this dataset
is naturally incomplete. Given incomplete history, we aim to predict
the future traffic speed.

All the datasets except Traffic are complete. We generate incom-
plete datasets by imposing mask on the complete samples according
to the following missing patterns. The missing level r is set from
10% to 90% at a step of 10%.

MCAR. We generate mask M that is independent of feature X,
but the entries of mask can be dependent. For each sample, its sam-
ple missing rate rs has 80% to be r and 2.5% to be one of the other
8 levels respectively. In each sample, following [8], we generate a
window of length ⌊n · rs⌋ at a random position, where the ⌊n · rs⌋
consecutive features in the window are missing.



Table 2: Performance on House Sales and MNIST datasets with MAR mask when trained under 50% missing level.

Method
Testing Missing Level

House Sales MNIST
10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Partial VAE 44.22 42.3 41.35∗ 61.10 100.69 40.88 40.66 39.75∗ 58.28 95.33
MIWAE 47.99 47.26 46.62∗ 64.96 100.72 44.36 45.26 44.62∗ 61.85 95.36
P-BiGAN 53.76 48.18 49.25∗ 66.67 111.03 49.70 46.11 47.06∗ 63.44 104.89
NeuMiss 46.74 42.25 40.56∗ 60.49 101.22 43.21 40.62 39.02∗ 57.72 95.82

DWR 59.21 49.58 43.98∗ 66.85 119.65 54.74 47.40 42.19∗ 63.60 112.86
SRDO 50.31 43.25 39.77∗ 64.09 103.84 46.51 41.55 38.29∗ 61.05 98.25
StableNet 42.26 39.14 41.35∗ 55.19 95.15 39.06 37.75 39.75∗ 52.82 90.21

StableMiss 35.53 32.82 32.89∗ 49.54 83.06 31.60 31.13 31.93∗ 48.05 74.23

StableMiss+ 29.83 28.76 32.61∗ 44.40 76.13 25.76 27.08 30.86∗ 44.26 69.30

Table 3: Performance on naturally incomplete Traffic dataset.

Partial VAE MIWAE P-BiGAN NeuMiss DWR SRDO StableNet StableMiss StableMiss+

16.08 14.82 15.79 15.10 15.93 15.72 13.97 11.84 10.62

MAR. Following [1], we generate feature-dependent mask, and
the entries of mask can also be dependent. First, randomly selected
10% features are set to be observed in all the samples. The mask on
the other features are generated depending on the selected features.
The sample missing rate rs is the missing proportion of the other
90% features, which is determined in the same way as MCAR.

We compare StableMiss+ with StableMiss as well as state-of-
the-art methods for prediction with incomplete data, including Neu-
Miss, Partial VAE, MIWAE and P-BiGAN, and those for generaliza-
tion under agnostic feature distribution shift, including DWR, SRDO
and StableNet. We use Root Mean Square Error (RMSE) as metric.

5.2. Experiment Results

We evaluate StableMiss+ under various missing patterns and levels.
The difference in missing level represents mask distribution shift.

Synthetic. We will show the performance of the optimal predic-
tor. It is derived from the known feature distribution and label gen-
eration process, without which the performance cannot be reached.
We use the gap to optimal to reflect generalizability. Table 1 shows
the performance on Gaussian-Mix when trained under 50%. Due to
space limit, only those tested under 10%, 30%, 50%, 70% and 90%
are shown; the others are similar. StableMiss+ has the best perfor-
mance, reducing gap to optimal by 8% in MCAR and 6% in MAR.

Real-World. Since the label generation process is unknown,
the optimal predictor cannot be derived. We show the exact RMSE.
Table 2 shows the performance on House Sales and MNIST when
trained under 50%. Due to space limit, we only show the more com-
plex MAR case. StableMiss+ has the best performance, reducing
RMSE by 12% on House Sales and 12% on MNIST. Table 3 shows
the performance on the naturally incomplete Traffic dataset, where
the training and testing missing rate are 37% and 23%. Since the
ground truth of missing values is unavailable, the metric is com-
puted only on the observed entries. StableMiss+ also has the best
performance, with 10% reduction in RMSE.

Ablation Study. We study the efficacy of preserving intra-
feature correlations and removing inter-correlations in the case of
MAR. We compare with two variants that do not preserve intra-
feature correlations, one removing only intra-mask correlations and

Table 4: Ablation study on Gaussian-Mix feature with MAR mask.

Method 10% 30% 50% 70% 90%

Intra-mask 683 460 334∗ 576 648
Intra-mask & Inter 601 428 328∗ 531 612
StableMiss 431 309 283∗ 406 468
StableMiss+ 409 285 278∗ 381 455

Table 5: Ablation study on Gaussian-Mix feature with MCAR mask.

Method 10% 30% 50% 70% 90%

MCAR 379 320 291∗ 309 370
MAR 382 326 301∗ 303 379

the other further removing inter-correlations. Table 4 shows the
results on Gaussian-Mix when trained under 50%. Without preserv-
ing intra-feature correlations and/or removing inter-correlations, the
performance drops by 32% and 27%. Moreover, without preserv-
ing infra-feature correlations, the performance is even worse than
StableMiss that removes them, since the unpreserved infra-feature
correlations may reversely mislead the prediction. We also study
the influence of decorrelate in the way of MAR when in the case of
MCAR. Table 5 shows the results on Gaussian-Mix when trained
under 50%. The performance is close. For real-world data with
unknown correlations, we can decorrelate in the way of MAR.

6. CONCLUSION

In this paper, we propose StableMiss+, a novel method for predic-
tion with incomplete feature under agnostic mask distribution shift.
We analyze the issue of removing the intra-feature correlations in
StableMiss and address this issue by preserving the intra-feature cor-
relations and simultaneously removing the intra-mask correlations
and inter-correlations. Experiments on synthetic and real-world
datasets show that StableMiss+ outperforms the state-of-the-art
methods, with 10% reduction in RMSE.
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