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Abstract—Online cloud services are increasingly deployed as
long-running applications (LRAs) in containers. Placing LRA
containers is known to be difficult as they often have sophisticated
resource interferences and I/O dependencies. Existing schedulers
rely on operators to manually express the container scheduling
requirements as placement constraints and strive to satisfy as
many constraints as possible. Such schedulers, however, fall short
in performance as placement constraints only provide qualitative
scheduling guidelines and minimizing constraint violations does
not necessarily result in the optimal performance.

In this work, we present Metis, a general-purpose scheduler
that learns to optimally place LRA containers using deep re-
inforcement learning (RL) techniques. This eliminates the com-
plex manual specification of placement constraints and offers,
for the first time, concrete quantitative scheduling criteria. As
directly training an RL agent does not scale, we develop a
novel hierarchical learning technique that decomposes a complex
container placement problem into a hierarchy of subproblems
with significantly reduced state and action space. We show that
many subproblems have similar structures and can hence be
solved by training a unified RL agent offline. Large-scale EC2
deployment shows that compared with the traditional constraint-
based schedulers, Metis improves the throughput by up to 61%,
optimizes various performance metrics, and easily scales to a
large cluster where 3K containers run on over 700 machines.

I. INTRODUCTION

Production clusters run two types of workloads, long-
running applications (LRAs) for online cloud services [1]–
[14] and batch jobs for offline data analytics [15]–[17]. Unlike
batch jobs that run in short-lived task executors, LRAs run
in long-lived containers with durations spanning hours to
months [18]–[20]. This allows dynamic queries to be served
in real time without the overhead of repeatedly launching
containers upon their arrivals. Compared with batch jobs,
LRAs run business-critical, user-facing services with stringent
SLO (Service-Level Objective) requirements, and need to scale
out to a large number of containers in response to load
spikes [21]. LRAs are hence scheduled as first-class citizens in
production clusters [18]–[20], [22]. Fig. 1 illustrates a typical
scheduling process for LRA containers.

LRAs have sophisticated performance interactions that dra-
matically complicate container placement. LRAs commonly
have I/O dependencies in that one’s input depends on the
output of another, e.g., a Spark streaming instance [23] running
business analytics service reads streaming data prepared by a
Kafka instance [3]. In the meantime, LRA containers routinely

Fig. 1: An illustration of LRA scheduling: the container
launching requests, received in a queue buffer, are scheduled
in groups to optimize various performance metrics.

face interference from the co-located containers contending
shared resources such as CPU cache, network, I/O and mem-
ory bandwidth. Existing LRA schedulers define various place-
ment constraints [18], [24]–[28], such as affinity, in which I/O-
dependent containers should be co-located on one machine
to avoid the communication overhead, and anti-affinity, in
which contending containers should be placed on separate
machines to avoid resource interference. The scheduler then
places containers to satisfy as many constraints as possible,
using simple heuristics [18], [29]–[35].

However, such constraint-based scheduling has three fun-
damental problems. First, it requires cluster operators to
identify complex container interactions based on operational
experience and manually specify them as placement con-
straints. This requires onerous human efforts yet can still
be inaccurate. Second, placement constraints only provide a
qualitative scheduling guideline, but do not quantify the actual
performance impact (e.g., to what degree can the throughput be
harmed if violating a certain constraint). Consequently, when
the scheduler cannot satisfy all constraints, it may mistakenly
choose to violate those with more significant impacts. Third,
complex placement constraints often formulate an intractable
optimization problem in large clusters.

In this paper, we show that optimal LRA placement can be
automatically learned using deep reinforcement learning (RL)
techniques [36], without the need of specifying placement
constraints. We present Metis1, an intelligent, general-purpose
LRA scheduler capable of optimizing various scheduling ob-

1In Greek mythology, Metis is the goddess of wisdom, prudence, and deep
thought.
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jectives, such as throughput, SLO satisfaction, and cluster
utilization. Metis learns the sophisticated performance inter-
actions between LRA containers from past workload logs or
from lightweight offline profiling. Based on that information,
Metis learns to schedule containers by encoding the scheduling
policy into a neural network and training it with extensive
simulated experiments, in which it places LRA containers,
predicts their performance, and iteratively refines the policy.

The key to Metis is to build an RL model that scales to
large clusters where tens of thousands of LRA containers run
on thousands of machines. However, directly training an RL
agent at such scale is computationally infeasible, as it man-
dates high-dimensional state representations (i.e., container
placement on all machines). We find that the RL techniques
recently developed for the other scheduling problems offer
little help in addressing the scalability challenge posed to
container placement (see §III). Most of these works learn to
find the optimal scheduling order of batch jobs [37]–[39] or
network flows [40], whereas LRA scheduling concerns the
interactions between containers, and is essentially a combi-
natorial placement optimization problem. This fundamental
difference invalidates their techniques in our problem.

We address the scalability challenge of container placement
with three new techniques. First, unlike existing works [37]–
[41] that train a generic scheduling policy offline for all
possible input workloads, we train a dedicated RL model every
time when a group of containers arrive. Having a dedicated
model tailored to each container group results in high-quality
placements and reduced training complexity. Although it takes
more time to make a decision, LRAs are insensitive to the
scheduling latency due to their long-running nature [18].

Second, to enable scalable learning, we propose a hierar-
chical reinforcement learning technique using a divide-and-
conquer approach. Our key idea is to decompose a complex
learning task into a hierarchy of subtasks with significantly
reduced state and action space. Specifically, given a container,
we learn to place it following a decision tree. At the root level,
we divide the cluster into K partitions and learn to determine
which sub-cluster provides the optimal placement. Following
our choice, we descend to a lower level of the tree, where we
subdivide the selected sub-cluster into K partitions, and learn
to choose the one that contains the optimal placement. As we
traverse down the decision tree, we recursively narrow our
search for the container placement, until it pinpoints a single
machine. In the end, the scheduler makes a sequence of K-
choose-1 decisions that can be individually learned at each
level by training simple RL models. Note that at one level all
the decision-making tasks have the same learning structure,
enabling a shared model to be reused by all tasks.

Third, to further accelerate the learning process, we pretrain
a sub-scheduler for general workloads in a small sub-cluster.
This allows the traverse down the decision tree to stop at a high
level when reaching that sub-cluster, where the pretrained
sub-scheduler is used to decide the container placement.
This approach results in a “shallowed” decision tree, with
the decision space reduced exponentially. In our evaluation,

using pretrained sub-schedulers leads to 95× training speedup
(§VII-C, Fig. 11).

We have implemented Metis as a pluggable scheduling
service in Docker Swarm [42]. We evaluate its performance
in two Amazon EC2 [43] clusters (81 and 729 nodes)
against seven real-world applications covering machine learn-
ing, stream processing, I/O and storage services. Compared
with the state-of-the-art constraint-based schedulers [18], [29],
Metis achieves up to 61% higher request throughput. Metis is
also capable of optimizing various scheduling objectives that
are otherwise not directly supported by the existing constraint-
based schedulers (e.g., minimizing SLO violations). Metis
easily scales to large clusters where thousands of containers
run on over 700 machines.

II. BACKGROUND

Long-Running Applications Online cloud applications are
widely hosted in production clusters to provide interactive,
latency-critical services, such as stream processing [1]–[4],
interactive data analytics [44], [45], storage services [5]–[7],
and machine learning [8]–[14]. These applications usually run
in long-lived containers, enabling them to respond to dynamic
queries in real time without repeatedly launching or warming
up new containers at request arrivals. Previous study shows
that in Microsoft clusters, the containers of online services
typically run for hours to months [18]. Our communication
with Alibaba Cloud confirmed the same phenomenon. Online
cloud applications are thus referred to as long-running appli-
cations (LRAs) in the literature [18], [20].

LRAs run business-critical, user-facing services with strin-
gent SLOs and are hence scheduled as first-class citizens in
the clusters [18]–[20], [22]. In Microsoft, many large clusters
are entirely dedicated to LRA workloads [18]. Analysis of the
recently released Alibaba cluster trace [46] shows that 94.2%
of the cluster CPUs were allocated to run LRA containers [19].
As LRAs dominate resource allocations in production clouds,
they play a pivotal role in cluster scheduling.

Scheduling LRA Containers An LRA typically consists
of multiple containers, each running a replica of the service
instance. Over time, an LRA may launch more containers or
destroy existing ones as the request load changes. Consider a
cluster consisting of N machines, each of which can host a
certain number of containers.2 Given the dynamic arrivals of
the container launching requests from M LRAs, the scheduler
examines the current cluster state (i.e., the currently running
containers on each machine) and determines the placement of
each container, with the objectives of maximizing the overall
container throughput, SLO satisfaction rate, cluster utilization,
or any other performance metrics in combination (see Fig. 1).
Once a container is deployed, it runs for a long time, during
which no preemption or migration is allowed.

To achieve better performance, the scheduler batches the
received container launching requests into groups, each con-

2For simplicity, we assume containers with homogeneous resource de-
mands. Yet our approach can be extended to a more general case.



sisting of no more than T containers. The scheduler then
makes placement decisions on a per-group basis. Compared
with per-container placement [24], [29], [30], scheduling a
group of containers in one go enables more combinatorial
optimization opportunities, as it gives the scheduler a “global
view” to account for the performance interactions between
containers within a group [18], [35]. Configuring a larger
group usually leads to a better placement. Yet, it significantly
complicates the scheduling decision, plus accumulating a large
number of arriving containers also takes time. In this work,
we tune the group size for improved placement quality without
causing overly long scheduling latency.

Interactions between Containers LRA containers have so-
phisticated performance interactions that substantially compli-
cate the placement problem [18], [29], [30]. While containers
effectively divide CPU cores and memory capacity among
packaged applications, they offer poor isolation when con-
tending for shared resources that are not managed by the OS
kernel, such as network, CPU cache, disk I/O, and memory
bandwidth. Therefore, co-locating many contending containers
increases resource contention, resulting in significant interfer-
ence that harms the performance of all the hosted containers.

On the other hand, co-locating LRA containers can some-
times be beneficial. In production clusters, many online ser-
vices are structured as graphs of dependent LRA containers
where the output of an upstream container is forwarded to
a downstream instance for further processing [47], [48]. Co-
locating two dependent LRA containers on one machine avoids
transferring a large amount of data over the network, leading
to faster responses to query processing.

Given the complex interactions between LRAs, judiciously
scheduling their containers for optimal performance becomes
critically important [18], [29], [30], [33], [34], [49]–[51].

III. PRIOR ARTS AND THEIR LIMITATIONS

In this section, we briefly review existing LRA sched-
ulers that make scheduling decisions based on placement
constraints. We discuss their inefficiency and motivate the
need for an intelligent LRA scheduler driven by reinforcement
learning (RL) techniques. We show that previous RL solutions
developed for the other scheduling problems do not scale to
container placement in large clusters.

A. Inefficiency of Constraint-based Solution

Constraint-based LRA Scheduling Existing cluster sched-
ulers use various placement constraints to capture the com-
plex interactions between LRA containers [18], [24]–[28].
Common constraints supported in popular cluster management
systems [24], [25], [42] include affinity, which co-locates I/O-
dependent containers to provide data locality, and anti-affinity,
which schedules contending containers on separate machines
to avoid resource interference. More expressive constraints
have also been proposed to support more sophisticated re-
quirements [18], [35]. These constraints are usually speci-
fied through scheduler-provided APIs [18], [24], [25]. The
schedulers then make container placement decisions to satisfy

Fig. 2: An illustration of the performance interactions be-
tween seven applications: Redis [5], MXNet Model Server
(MMS) [11], image super resolution (ISR) [52], file checksum
(CKM) [53], video scene detection (ScD) [54], and two YCSB
benchmarks [55]. Detailed descriptions are given in §VII-A.

TABLE I: Minimizing constraint violations does not necessar-
ily optimize the performance in the example of Fig. 3.

Scheduler # of Violated Constraints Average RPS
Medea [18] 4 / 468 (minimum) 0.93

Metis 6 / 468 1.16

Fig. 3: Container placements given by Medea and Metis when
running seven LRAs (Fig. 2) in a 6-node EC2 cluster.

as many constraints as possible, either with simple greedy
strategies [29], [30] or by solving a constrained combinatorial
optimization problem [18], [31]–[35].

However, simply relying on placement constraints for LRA
scheduling can be highly inefficient, as we explain below.

Expensive to Specify Placement Constraints In production
clusters, placement constraints are often specified manually
by cluster operators based on operational experience, which
requires expert knowledge and extensive human efforts. Many
organizations do not have such expertise or find the required
labor expense too costly to justify the benefits. Although prior
works [29], [30] show that some placement requirements can
be efficiently profiled by classification techniques, they can
only identify resource contentions (i.e., anti-affinity), but not
the affinity requirements (e.g., I/O dependency between con-
tainers) or more sophisticated interactions (e.g., the cardinality
requirement as supported in Medea [18]).

Minimizing Constraint Violations Does Not Guarantee
Optimal Performance Placement constraints do not quantify
the significance of the underlying performance gain (or loss).
Take the affinity constraint as an example. Beyond stating that
co-locating two containers is desirable, it offers no clue about
how much performance gains that co-location can provide.



Consequently, given conflicting constraints, the scheduler may
unwisely choose to violate those with more significant impact.

To illustrate this problem, we run 14 containers of seven
real applications (two containers each) in a 6-node EC2
cluster (details given in §VII-A). We manually profile their
performance interactions and depict the results in Fig. 2. Note
that Redis and MMS have conflicting placement requirements:
Co-locating an MMS container with Redis greatly improves
the RPS of the former by 147% (affinity) but reduces that of
the latter by 13% (anti-affinity). We make a similar observation
in co-locating ISR and Redis containers.

We schedule the 14 containers using Medea [18], a state-
of-the-art constraint-based LRA scheduler, which formulates
an ILP problem based on the profiled placement constraints.
Medea produces a placement with 4 constraint violations, the
minimum one can expect, and achieves 0.93 RPS on average.
However, by violating more constraints, our solution Metis
gives an even better placement with higher RPS (see Table I).

Fig. 3 compares the placement decisions made by the two
schedulers, where the key difference is the placements of
Redis, MMS, and ISR containers. Notably, Medea assigns
Redis and MMS (or ISR) containers to different nodes. In
contrast, Metis learns that co-locating Redis with MMS and
ISR is more beneficial than separating them, i.e., the impact
of affinity outweighs that of anti-affinity. The result is 25%
higher RPS than that obtained with Medea.

Limited Support of Scheduling Objectives Constraint-
based scheduling formulates an ILP problem [18], [35], which
does not support optimizing the objectives that cannot be
quantitatively specified by the placement matrix [56]. For
example, high-level scheduling objectives that are not linearly
correlated to the container allocation such as guaranteeing a
specific level of QoS or balancing network traffics are not
supported in Medea.

Intractable Optimization Formulation To make matters
worse, solving ILP problems is time-consuming and does not
scale to large clusters [18], [35]. Taking Medea [18] as an
example, the ILP formulation uses a variable Xijn ∈ {0, 1}
to indicate if container j of LRA i is placed on node n. For
each placement constraint (affinity and anti-affinity), a specific
ILP-constraint is required for all machines and subjected
containers. Consequently, the formulation involves O(NM)
ILP-constraints when placing M containers to an N -node
cluster. As we will show in §VII-B, when placing thousands of
containers to a large cluster of more than 700 nodes, the ILP
formulation involves 1M variables and 10M ILP-constraints.
Even finding a feasible solution takes more than 10 hours.

B. Learning-based Scheduling Solutions

The inefficiency of constraint-based scheduling calls for
a more intelligent alternative that automatically learns to
schedule LRA containers without pursuing an intermediate ob-
jective, such as meeting the placement constraints. We find that
modern reinforcement learning (RL) techniques [36] offer a
particularly appealing solution for LRA scheduling. First, over

the years, production clusters have accumulated a significant
amount of workload logs, providing rich operation data for
learning container interactions. Second, LRA containers can
tolerate long scheduling latency in exchange for high-quality
placement [18], allowing sufficient time for the RL agent to
learn the placement policy.

RL-based Solutions for Other Scheduling Problems A
rich body of recent works have applied RL techniques to
many other scheduling problems, such as batch job schedul-
ing [37]–[39], network optimization [40], [57], and device
placement [58], [59]. However, we find that their techniques
are either inapplicable to container placement or limited to an
optimization problem at a small scale.

One successful RL-based scheduling is to learn the opti-
mal scheduling order of batch jobs [37]–[39]. For example,
Decima [39] is a meticulously optimized scheduler for DAG-
structured batch jobs. Decima automatically encodes the DAG
information into feature vectors and trains a policy network
to determine which tasks should be launched next and how
many executors should be allocated. Spear [38] learns to
schedule DAG-structured jobs with Monte Carlo Tree Search.
DeepRM [37] trains an RL policy for packing batch jobs
with multi-resource demands. Unlike LRA workloads, batch
jobs run in executors without complex interactions, and their
performance critically depends on the scheduling order rather
than job placement. Therefore, the RL designs developed for
job scheduling do not apply to container placement with a
fundamentally different formulation. In fact, as the former
mainly concerns the scheduling order of M jobs, the action
space is O(M !). In comparison, scheduling M containers on
an N -node cluster formulates a far more complex combinato-
rial placement optimization problem with substantially larger
action space of O(NM ).

To our knowledge, there are only a few attempts of using
RL techniques to solve combinatorial placement problems at a
small scale. Notably, Google proposes to use RL to optimally
partition the operations of a deep neural network onto different
devices (CPUs and GPUs) for fast model execution [58],
[59]. It encodes the information and dependencies of these
operations into a sequence-to-sequence model, and learns to
assign these operations onto a few devices. However, even at
such a small scale, learning the optimal device placement may
still take more than 10 hours [58].

IV. LEARNING TO SCHEDULE LRA CONTAINERS

In this section, we propose to learn the optimal LRA con-
tainer placement using deep reinforcement learning (RL). We
present our design choices for a practical RL-based scheduler
and discuss the key scalability challenges posed to it.

A. Learning Optimal Placement with RL

LRA scheduling naturally formulates an RL problem. Given
the existing container placement (state) in the cluster, the
scheduler (RL agent) learns to place new LRA containers (ac-
tion) based on its interactions with the cluster (environment).
We use a neural network to encode the scheduling policy and



train it with extensive simulated experiments: the scheduler
places containers, observes the performance outcome (reward),
and iteratively improves the policy. We visualize this training
process in Fig. 7 (the dotted arrows on the left).

State Recall in §II that the scheduler group-schedules T
containers at their arrivals. We treat each group scheduling
as an episode consisting of T steps, where in each step, only
one container is placed onto a machine. More specifically,
consider an N -node cluster running M applications. Assume
that in step t, the RL agent has already placed t−1 containers
in the group and will next schedule container ct. We embed
container ct into a one-hot vector e = 〈e1, . . . , eM 〉, where
each element ei is 1 if ct belongs to application i, and 0
otherwise. We further define the state of a node as the vector
vn = 〈vn1, . . . , vnM 〉, where vni measures the number of
containers it runs for application i. Concatenating container ct
and the states of all nodes in step t, we define the cluster state
st = 〈e,v1, · · · ,vN 〉, which is observed by the RL agent.

Action and Reward Given a state st, the RL agent takes
an action at = n which schedules container ct to node
n, and transits the system to a new state st+1 in the next
step. The agent will evaluate the performance of the group
placement in the final step T after all T containers are
scheduled. More specifically, the agent receives no reward rt at
an intermediate step t < T , and the final reward rT , which can
be any performance measures such as the normalized average
throughput of the scheduled container group, SLO satisfaction
rate, cluster utilization, or their combinations, is independent
of the actual container scheduling order within the group.

Training Policy Network with Policy Gradient We encode
the scheduling policy into a neural network with parameters θ,
known as policy network πθ. It takes as input the cluster state
and outputs a distribution over all possible actions [36]. We
train the policy network using the REINFORCE algorithm [60]
which performs gradient ascent on parameters θ using the
rewards observed during training, i.e.,

θ ← θ + α
∑
t

∇θ log πθ(
∞∑
k=0

γkrt+k+1 − b). (1)

Here, α is the learning rate, γ ∈ (0, 1] a factor used to discount
future rewards, and b the baseline used to reduce the variance
of the policy gradient. A common choice of the baseline
is the average reward observed during training [36], [61].
These hyper-parameters can be tuned for faster convergence.
Intuitively, this gives the agent a high chance of choosing
an action with a better-than-average reward, accelerating the
training process.

Inspired by [39], we use experience replay [62], [63] to
further speed up the training. The main idea is to store the
performed actions leading to high rewards in a replay buffer.
The agent will periodically sample those high-performance
actions for policy updating. By replaying the good experience
encountered in previous trainings, the agent can learn faster.
More details can be found in the supplemental material [64].

Algorithm 1: Policy-gradient training routine of Metis
Input : An N -node cluster with node n ∈ {1, . . . , N}, a group of

T containers {c1, c2, . . . , cT } to allocate on these nodes.
Output: An allocation {a1, a2, . . . , aT } of the batch of T

containers (at ∈ {1, . . . , N} is allocating container ct on
node n = at).

1 Initialize the environment and performance indicator R
2 Set replay buffer B and best performance R∗ as empty
3 for episode=1,2,. . . ,E do
4 Initialize the state s = {e, v1, . . . ,vN}
5 for t=1,2,. . . ,T do
6 Choose an action at with policy π(at|st)
7 Execute the action and observe a new state st+1

8 Collect all perf. indicators as reward r =
∑

tR(ct)

9 if r ≥ ηR∗ // η ∈ (0, 1]: replay threshold
10 then
11 Store experience {s1, a1, . . . , sT , aT , r} in B
12 R∗ ← max(r, R∗)

13 Every C episodes, use REINFORCE algorithm to update
π(at|st), with both recent C experiences and a mini-batch of
experiences sampled from B

14 Return the action {a1, a2, . . . , aT } of the experience with the
highest reward r = R∗ in replay buffer B.

To summarize, Algorithm 1 presents the pseudo-code of
RL agent training run in both the vanilla and augmented
versions (i.e., hierarchical reinforcement learning, to be eluci-
dated under the “Scheduling Routine” in §V-A). Specifically,
the input is a group of containers and the output is their
corresponding allocations. Line 4 shows the state input, which
is the concatenation of the LRA vector e of the current
container to schedule and the states of all nodes 〈v1, . . . ,vN 〉
(see the “State” above). Lines 5–7 are the allocation process
of all T containers in the batch; the reward is issued after
all of them are scheduled (Line 8) (see the “Action and
Reward” above). Lines 9–12 describe the experience replay
technique that stores experiences with high rewards in the
replay buffer. In Line 13, the agent updates its policy with
both recent experiences and the sampled ones from the replay
buffer, using the REINFORCE algorithm (Eq. (1)). We refer
interested readers to Sutton and Barto’s textbook [36] for
detailed explanations. In the end, the RL agent selects the
action sequence with the highest reward in the replay buffer
and returns it as the final placement decision (Line 14).

B. Cluster Environment Simulator

Training a neural network using policy gradient requires
the RL agent to frequently interact with the environment,
which is extremely time-consuming for LRA scheduling. In
real systems, it takes at least minutes to deploy containers and
measure their performance. As RL training typically requires
tens of thousands of iterations to complete [37], [39], [58],
[59], [61], [65], having the scheduler directly interacting with
a real cluster is too slow to be practical.

Similar to prior work [39], [41], we develop a high-fidelity
cluster environment simulator that can faithfully predict con-
tainer performance given a placement. This allows the learning
to be performed with simulated experiments without deploying
containers in a real cluster.



Instead of modeling low-level resource interference based
on contentions on CPU caches or memory bandwidth, which
may not be available in production traces, we turn to high-
level performance metrics such as container throughput and
request latency. We then predict how those metrics may change
under varying container placements. In particular, we log
the machine-level container co-location vectors along with
the observed RPS/latency of each resident container, and use
them as the training samples for the simulator. Our simulator
uses multivariate Random Forests (RF) [66] as the main
regressor to characterize container interactions. RF method
uses a combination of decision trees to perform the regression
task, and can make accurate predictions with a small number
of training data. It is also resilient to overfitting when supplied
with a large number of repetitive samples. Both properties
make the RF regressor an ideal choice for our simulator. We
defer the implementation details to §VI.

C. Training Dedicated Model on the Spot

Previous RL-based schedulers [37]–[39], [41] train a unified
RL model offline and use it online to make scheduling deci-
sions. However, this approach falls short in LRA scheduling.
As a container group comes with a large number of com-
binations, an LRA scheduler needs to handle highly variant
input—in our previous experiments with seven applications
(Fig. 2), scheduling a small group of 30 containers requires
the scheduler to handle over one million possible container
combinations in input. When it comes to a large cluster, offline
training a scheduling policy for extremely variant workloads
inevitably results in poor performance.

Instead, we train a dedicated RL model on the spot upon the
arrival of a new group of containers. While training a dedicated
model takes time, the long-running nature of LRA containers
allows them to tolerate relatively long scheduling latency (e.g.,
tens of minutes) in exchange for better placements [18].

D. Scalability Challenge

However, directly training a dedicated model using standard
RL techniques (§IV-A) suffers from two scalability problems.

Exponential State Space Given an input container group,
for each container, the RL agent needs to choose the optimal
placement from the whole cluster. This requires the agent to
keep track of the container placement on all machines (see
the definition of state st in §IV-A). Maintaining such a high-
dimensional state results in the curse of dimensionality [67]–
[71], in that the state space grows exponentially as the cluster
size increases. In order to learn a stable policy, each state
must be visited multiple times during training [72]. Having an
exponential state space mandates prohibitive training efforts.

Exponential Scheduling Decision Space In a training
episode, the RL agent takes a sequence of actions to place
a group of containers, which together compose a scheduling
decision. As the action space for each container placement is
proportional to the number of machines in the cluster (i.e.,
choosing one machine out of all), the scheduling decision
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Fig. 4: An illustration of the scalability challenge posed to RL
approaches: learning curves of vanilla RL and Hierarchical RL
designs in an 81-node cluster.

space also grows exponentially as the cluster size increases.
This, in turn, requires an extremely large number of training
episodes in efforts to search the optimal placement combina-
tion, dramatically prolonging the training time.

To demonstrate these scalability problems, we launch an
81-node EC2 cluster and run the seven applications in Fig. 2.
We randomly generate 30 container groups, each having 200
containers, and measure their average RPS. We depict the
learning curve of vanilla RL in Fig. 4 (the green, dotted curve).
We observe that the agent makes little progress throughout
the training process. In fact, as there are so many machine
candidates to choose from, the agent easily gets stuck at a local
optimum, without a chance to explore a better placement.

V. ENABLING SCALABLE LEARNING WITH METIS

In this section, we present Metis, an intelligent LRA sched-
uler that enables scalable learning in large clusters. Metis
learns to place LRA containers using hierarchical reinforce-
ment learning (HRL) techniques [67], [71], [73]–[76]. The
main idea of HRL is to decompose an initially complex
learning task into multiple layers of simpler subtasks. Each
subtask is independently modeled as a single MDP (Markov
Decision Process) with its own state, action, and reward.

We next present two key HRL designs for LRA scheduling
that aim to answer two questions: (1) How to decompose the
scheduling task into a hierarchy of subtasks with reduced state
and action space (§V-A)? (2) How to reuse the building blocks
in the learning hierarchy for generalization (§V-B)?

A. Divide-and-Conquer Placement

Divide-and-Conquer Throughout the RL training process,
determining the placement for a given container is the most
complex task. We decompose it into a sequence of simpler
decision-making problems with substantially reduced state
and action space. To facilitate this divide-and-conquer (D&C)
strategy, we recursively divide a cluster into smaller ones
following a decision tree. Specifically, at the root level (L0)
of the tree, we conceptually divide the entire cluster into K
equal-sized sub-clusters, each being a child of the root located
at the next level (L1). For each L1 sub-cluster, we further
divide it into K smaller partitions, each being a child at the



Fig. 5: An illustration of the divide-and-conquer placement.
Instead of using a monolithic neural network to determine
the container placement, we make a sequence of K-choose-
1 decisions following a decision tree, each of which can be
individually learned using a small neural network.

next level L2. Continuing this process, we recursively divide
an upper-level sub-cluster into K smaller ones at a lower level.
The decomposition stops when a sub-cluster contains only a
single machine. Fig. 5 illustrates this process, where a 27-node
cluster is recursively divided into three sub-clusters.

Following the decision tree, we gradually narrow down the
search for a container placement by making a sequence of
K-choose-1 decisions, each corresponding to an independent
RL sub-policy. In particular, to determine the placement of
a container in the cluster, we start from the root level L0,
where we learn to find which one of the K sub-clusters at the
next level L1 provides the optimal placement. Following our
choice, we descend to L1 and narrow the search scope from
the entire cluster down to the selected sub-cluster. We next
learn to find which sub-cluster of its children at L2 contains
the optimal placement. As we traverse down the decision
tree, we recursively narrow the search scope for the container
placement, until it pinpoints a single machine at the bottom
level. Continuing our previous example in Fig. 5, we make
three 3-choose-1 decisions (highlighted in red) to locate the
host machine for a container in a 27-node cluster.

Compared with choosing the container placement from all
N machines using a monolithic neural network (§IV-A), our
divide-and-conquer approach makes a sequence of K-choose-
1 decisions (logK N decisions made in total). Each decision
can be individually learned using a small neural network with
significantly reduced state space (Fig. 5), as we explain below.

State Summarization for Sub-clusters For each sub-cluster
p, we train a policy network (an RL agent) to determine which
one of its K child sub-clusters provides the optimal placement
for a container. We first embed the current container placement
of each child sub-cluster into a feature vector which is a high-
level state summarization of the included machines. Through
careful feature engineering, we find that an informative state
summarization is given by the number of containers each
application runs in a sub-cluster. More formally, let C(p) be
the set of K child sub-clusters of p. For each child k ∈ C(p),
we define its feature vector as fk = 〈fk1, . . . , fkM 〉, where
M is the number of LRAs and fki the number of containers

LRA i runs in k. To choose the best child out of the K
candidates for a given container, the RL agent takes as state
input s = 〈e, {fk}k∈C(p)〉, where e is the one-hot LRA
embedding vector of the container (see State in §IV-A).

Scheduling Routine We next elaborate the scheduling rou-
tine used to determine the placement for a given container.
Starting from the root level L0, we summarize the state
vectors of all K child sub-clusters in L1. Concatenating these
summarizations with the LRA embedding vector, we have the
L1 state s1 = 〈e, {fk}k∈C〉, where C is the collection of
L1 sub-clusters. With state input s, the L1 RL agent outputs
an action k∗1 , which chooses an L1 sub-cluster k∗1 to place
the container. Now in k∗1 , we summarize its K child sub-
clusters in L2 and obtain the L2 state s2 = 〈e, {fc}c∈C(k∗1 )

〉.
Taking s2 as input, the L2 RL agent outputs a child sub-
cluster k∗2 ∈ C(k∗1) to narrow the search scope. We recursively
continue this process until the bottom RL agent outputs a
single machine to host the container. We use this scheduling
routine to place all the containers in the group. At the end
of the episode, we evaluate the collective performance of the
placed containers, and use it as the reward shared by all the
involved 〈state, action〉 pairs to update the RL policies in
the hierarchy.

Recall that Algorithm 1 gives the scheduling routine for
vanilla RL in §IV-A. For hierarchical RL agents in sub-
clusters, it only requires minor modifications to accommodate
the idea of state summarization. In particular, (1) the “Input”
becomes “a cluster with K sub-clusters; (2) each action in
“Output” is “at ∈ {1, · · · ,K}”, meaning allocating container
ct to sub-cluster k = at; (3) the state in Line 4 is redefined as
s = 〈e, {fk}k∈C〉, where C is a collection of the corresponding
level of sub-clusters.

Benefits Compared with the standard RL described in §IV-A,
our divide-and-conquer approach offers three benefits.

1) Manageable state size. In each subtask that makes a K-
choose-1 decision, the RL agent maintains a concise state
consisting of K fixed-sized feature vectors. As the state
structure is independent of the cluster size, scaling out the
learning to a larger cluster with more machines suffers no
curse of dimensionality: it only adds more subtasks but does
not complicate any of them. Moreover, the concise state of
each subtask results in a manageable state space with reduced
environment variance during training, allowing high-quality
container placement to be learned quickly.

2) Tractable action space. Compared with the N -choose-
1 decision in standard RL, the action space in each subtask
consists of only K actions (K � N ). Because K is a constant
that does not grow with the cluster size, the action space is
reduced from O(N) to O(1).

3) Reusable RL models among subtasks at the same level.
The decision-making tasks at the same level of the decision
tree have exactly the same learning structure, i.e., selecting a
child sub-cluster from the K candidates. Therefore, their RL
agents can be reused by each other. The reusability of RL
agents enables model generalization. That is, the knowledge



Fig. 6: Two-level hierarchical scheduling where a dedicated
RL agent makes a high-level placement decision and gets it
refined in a sub-cluster by the pretrained sub-scheduler.

learned in one subtask can be transferred to another, which,
in turn, accelerates the learning process.

To demonstrate the benefits of our divide-and-conquer
(D&C) approach, we refer back to Fig. 4, where we depict
the learning curve of our approach in the 81-node cluster (the
blue, solid curve). Our D&C approach with K = 3 easily
outperforms vanilla RL, improving the average RPS by ~30%
at the end of the training. Such a significant improvement is
achieved due to the exponentially reduced state space and the
enhanced exploration ability.

B. Augmenting D&C with Pretrained Model

Motivation Training a dedicated RL model using our D&C
approach significantly improves the learning quality. However,
the training process remains time-consuming, causing a long
scheduling delay, e.g., in the previous experiment, it takes one
hour to learn the placements of 200 containers (Fig. 4). The
root cause of such a long training time is the fine-grained
decision making. That is, for each container, the placement
decision must narrow down to a specific machine. As the RL
model learns the optimal placement combination for a batch of
containers, the scheduling decision space grows exponentially
with the cluster size (§IV-C). Note that our D&C approach
does not address this problem, as it still makes a fine-grained
placement decision for each container.

Combining Dedicated Model and Pretrained Model To
reduce the scheduling decision space, we propose to train a
dedicated RL model that makes high-level placement decisions
at the granularity of sub-clusters. That is, the dedicated model
only learns to find which sub-cluster a container should be
scheduled, without narrowing down to a specific host ma-
chine in it. These coarse-grained placement decisions are then
handed over to a pretrained unified RL model for refinement.
Specifically, we offline train a unified scheduler in a sub-
cluster for general workloads, and use it online to locate the
host machines for containers in that sub-cluster.

Intuitively, this approach combines the benefits of both
training a dedicated model for high-quality placement and
using a pretrained unified model for fast online decision mak-
ing. Our D&C approach naturally enables this combination.
As illustrated in Fig. 6, we split the decision tree into two
vertical parts. In the upper part, we train a dedicated RL model

at the arrival of a container group. The dedicated RL model
only makes high-level decisions to dispatch containers to sub-
clusters. In the lower part, we refine their placements to host
machines using a pretrained unified model. We refer to the
entire design as the core of Metis, which essentially performs
hierarchical scheduling in two levels.

Training Sub-scheduler Offline We stress that offline train-
ing a unified RL model for general container workloads in a
small sub-cluster is computationally feasible using our D&C
approach, as it only needs to handle a limited number of
container combinations. The intuition behind is that those low-
level decision makings, e.g., selecting a host machine for a
container within a server rack, are inherently atomic, as they
only perform some simple skills, episodically or cyclically.
These atomic learning tasks can be solved by training a unified
RL model in advance. The trained RL model can then be used
to make online placement decisions for any container group in
that sub-cluster, hence providing a plug-in scheduling service.
We call such an offline-trained RL model a sub-scheduler. In
a homogeneous cluster, a sub-scheduler trained for one sub-
cluster can be directly reused by another as both sub-clusters
have machines of the same configurations.

Learning Speedup vs. Performance Loss Sub-schedulers
substantially reduce the scheduling decision space: instead of
scheduling C containers onto N machines, the dedicated RL
model now places those containers to K sub-clusters, reducing
the scheduling decision space from O(NC) to O(KC), where
K � N . The reduced scheduling decision space results in
dramatic learning speedup. Continuing our experiments in an
81-node cluster, we offline train a sub-scheduler in a 27-node
sub-cluster. We depict the learning curve of Metis using pre-
trained sub-schedulers in Fig. 4 (the orange, dashed curve),
where we observe ~10× training speedup over the plain D&C.

On the other hand, we notice a slight RPS loss (< 3%
in Fig. 4) of using sub-schedulers, as they are trained offline
for general workloads and hence cannot achieve the optimal
performance for a given container batch like a dedicated agent.
In general, using a sub-scheduler in a larger sub-cluster results
in higher model reusability and faster training of the high-level
RL agent (hence shorter scheduling latency), at the expense
of increased performance loss. Metis balances this tradeoff by
configuring an appropriate size of sub-schedulers (§VII-C).

VI. IMPLEMENTATION

We have implemented Metis as a pluggable scheduler in
Docker Swarm [42]. Our design can also be easily ported to
the other container-orchestration frameworks.

Scheduling Workflow Fig. 7 illustrates the architecture
overview and the system workflow. Metis receives the con-
tainer launching requests and aggregates them in groups
( 1©). For a container group, Metis trains an RL Agent to
make a placement decision ( 2©). The Container Launcher
then executes the learned decision by placing containers onto
the selected nodes ( 3© and 4©). The performance of these
containers are monitored by the Performance Profiler ( 5©). The



Fig. 7: Metis Overview.

collected performance data is then used as training samples by
the Environment Simulator to further improve its fidelity ( 6©).

Cluster Environment Simulator and RL Agent Our im-
plementation exposes an interface to RL agents in the Cluster
Environment Simulator similar to that of OpenAI Gym [77],
[78]. To evaluate the outcome of a placement policy, the
simulator predicts the performance (i.e., RPS) of containers on
each node by taking the node state as input, which is a vector
of the number of containers running on that node for each
application (see §IV-A). In other words, it learns the mapping
between the container co-location information (input) and their
normalized throughput (output) from traces [46] or benchmark
results. Specifically, we build a RandomForestRegressor with
scikit-learn [79], which makes an ensemble of 100 regression
decision trees with a maximum depth of 20.3 Compared
with the deep neural network-based simulators [41] which
are compute-intensive and data hungry [80], our ensemble
method is more efficient. It learns thousands of samples in tens
of seconds and makes predictions in sub-seconds, enabling
frequent model re-training with the latest traces. As an en-
semble method, it also shows a strong resistance to overfitting
even supplying with a large number of repetitive training
samples [66]. We will validate these benefits in §VII-E.

Note that our simulator does not explicitly model per-
container shared resources such as CPU cache, disk I/O,
or memory bandwidth. Instead, it aggregates all resource
contention effects for each container and predicts their per-
formance impact using metrics like RPS. The reason for such
“coarse-grained” simulation is the lack of detailed informa-
tion. Unlike CPU cores or memory capacity, collecting per-
container usage of shared resources requires hardware- and
software-level monitoring mechanisms [29], [30], [32], [81],
which are expensive to deploy in production clusters.

We have implemented the RL Agent in 500 lines of Python
code and trained a 2-layer policy neural network with Tensor-
Flow [8].

Container Launcher Our Container Launcher is compati-
ble with many container-orchestration frameworks, provided
that they support per-container placement specification to a

3Having more or deeper trees barely improves accuracy in this setting.

single machine, e.g., through labels in Kubernetes [24] and
Docker Swarm [42]. Containers with I/O-dependencies can
be connected through overlay networks or by exposing their
endpoints for service discovery.

VII. EVALUATION

In this section, we evaluate Metis on EC2 clusters against
container workloads of seven real applications4. Our evalua-
tions aim to address the following three questions: (1) How
does Metis perform compared to prior constraint-based LRA
schedulers? (§VII-B) (2) Can Metis scale to large clusters,
and how does each of our HRL designs described in §V
contribute to its scalability? (§VII-C) (3) Can Metis support
various scheduling objectives? (§VII-D)

A. Methodology

Cluster Setting Most of our evaluations are carried out in
two clusters, a medium one with 81 nodes and a large one
with 729 nodes. Each node is an m5.4xlarge instance with
16 vCPUs, 64 GB memory, and up to 10 Gbps network. We
run applications in Docker containers, each with 2 vCPUs and
8 GB memory. Up to eight containers can run in one node.

Workloads We have implemented seven long-running appli-
cations covering machine learning, stream processing, I/O and
storage services. Fig. 2 depicts their performance interactions.

• Redis [5]: a stand-alone Redis server instance responding
to the redis-benchmark [82] requests with 20K basic
operations each.

• MXNet Model Server (MMS) [11]: an image classifica-
tion service, using ResNet-152 [83] in MXNet.

• Image Super Resolution (ISR) [52]: a CPU service that
super-scales low-resolution images using Residual Dense
Network [84] with Tensorflow [8].

• File Checksum (CKM) [53]: a service that loads hun-
dreds of files (several MB each) from disk, hashes each
file with SHA-512, and verifies the checksum values.

• Yahoo! Cloud Serving Benchmark (YCSB) workload A
and B [55]: the standard benchmarking suites for stream
processing, which generate either read-write-balanced
(YCSB-A) or read-heavy (YCSB-B) workloads [55] and
feed them to the underlying Memcached [6] daemon.

• Video Scene Detection (ScD) [54]: a service that detects
scene changes by comparing the difference between each
two subsequent frames in videos of two minutes.

We configure a constant high rate (4 requests/sec) for all
applications except YCSB—for which the client issues as
many operations as it can. Admittedly, this may deviate from
a more realistic setting where workloads change diurnally.
Yet, faithfully synthesizing those patterns requires access to
production traces, which we do not have. According to our
contacts at Alibaba, core LRA services have peak loads over-
lapped in a few hours of a day. Our configuration hence targets

4All the benchmark workloads and baseline schedulers in our evaluations
are available at https://github.com/Metis-RL-based-container-sche/
Metis. The details are given in the Artifact Description.

https://github.com/Metis-RL-based-container-sche/Metis
https://github.com/Metis-RL-based-container-sche/Metis
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the most challenging scenario, where sustained high load
stretches the processing capabilities of all LRA containers.

Metrics We adopt RPS (requests per second) as the main
performance metric for containers [18], [30]. For equal treat-
ment for all applications, we normalize the RPS of a container
by its stand-alone RPS which is measured when the container
runs alone on a machine.

Baselines We evaluate Metis against two constraint-based
schedulers with state-of-the-art performance:

1) Medea [18] requires the explicit specifications of place-
ment constraints. To this end, we predict the container per-
formance in co-location for any two LRAs using our cluster
environment simulator. We specify an affinity (anti-affinity)
constraint for a container if co-location leads to an RPS
improvement (reduction) over 10%.5 This allows us to provide
a high-quality constraint set to Medea, based on which it solves
an ILP problem using the branch-and-bound heuristic [85].
Medea was originally implemented in YARN. We ported it to
Docker Swarm, where we use the MATLAB ILP solver.

2) Paragon [29] automatically characterizes resource inter-
ferences between two LRAs by computing their sensitivity
scores against each other. We use the same profiling method
as mentioned above, and align the scheduling requirements
with the 10% RPS variation threshold. Paragon schedules
containers using a simple greedy algorithm. As Paragon is
not open-sourced, we reimplemented it in Python.

B. Scheduling Performance

We first compare Metis and the two constraint-based sched-
ulers in an 81-node cluster, with container group size varying
from 200 to 400. For each group size, we repeat the experiment
30 times with random containers combinations. We run Metis
in full functions using both D&C placement (§V-A) and a
pretrained sub-scheduler in a 27-node sub-cluster (§V-B).

Fig. 8a compares the average RPS under three schedulers
with different group sizes. Metis consistently outperforms
Medea and Paragon, achieving up to 25% and 61% higher

5We grid search the RPS variation for constraint specification and find that
the 10% threshold results in the best performance for Medea.
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Fig. 9: Metis’s scalability in a large cluster with 729 nodes.

RPS, respectively. Compared with Metis, Medea only achieves
sub-optimal performance as it simply minimizes constraint
violations without differentiating their performance impacts
(see §III-A). Paragon performs even worse for two reasons.
First, it only profiles anti-affinity with interference scores,
while leaving the affinity requirements unattended. Second, it
employs a simple greedy scheduling policy that sequentially
places containers to minimize interferences at each step. In
comparison, Medea and Metis place containers in batches,
enabling them a “global view” to make optimal decisions that
account for the complex interactions between those containers.

Fig. 8b compares the scheduling latencies of the three
schedulers with different group sizes. Owing to its simple
greedy scheduling logic, Paragon has the shortest latency in
only a few seconds. Metis, on the other hand, employs a more
complex RL algorithm, but still finds the optimal placement in
less than 10 minutes thanks to its highly optimized design. The
longest latency is measured in Medea, as it needs to solve a
complex ILP problem involving 100K constraints as discussed
in §III-A. To summarize, Metis offers the best solution out of
the three schedulers in that it achieves the highest RPS with
only a modest scheduling latency.

C. Scalability

Metis Performance at Production Scale We next evaluate
the scalability of Metis in a large cluster with 729 nodes.
We trained a unified sub-scheduler offline in a 27-node sub-
cluster. Experiments of each setting are repeated 30 times with
randomly generated groups of 1000, 2000, or 3000 containers.

Fig. 9a depicts how the RPS improves during training under
different groups sizes. Even in such a large cluster, Metis
still provides placements of high performance (RPS ranging
from 1.0 to 1.2 for different settings), which is comparable to
that in previous medium-sized clusters (Fig. 8a). Concerning
the scheduling latency, Fig. 9b shows Metis can still make
timely scheduling decisions within one hour. Paragon gives
undesirable performance similar to the previous; Medea takes
over ten hours to solve the ILP problem with 10M constraints,
which is unacceptable; their results are hence omitted.

A Deep Dive into the Hierarchical RL Design To quantify
how our two designs, D&C placement and pretrained sub-
scheduler, contribute to Metis’ scalability, we revisit Fig. 4
for its performance in an 81-node cluster.
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1) Higher-quality decisions with D&C placement. In Fig. 4,
compared with vanilla RL, D&C makes better scheduling
decisions by decoupling the cluster into 3 partitions recursively
(K = 3) and improves the average RPS by 35.2% (from 0.91
to 1.23). It is because D&C shrinks both state and action
space of the RL agents (§V-A), allowing them to take less
various inputs, learn much fewer state and action mappings,
and explore different placement strategies more efficiently.

2) Faster decisions with pretrained sub-schedulers. Fig. 4
confirms that employing sub-schedulers accelerates the train-
ing by 12×, as it substantially reduces the scheduling decision
space (§V-B). Specifically, the O(81200) possible outcomes of
scheduling 200 containers in an 81-node drops to O(3200)
ones after deploying a 27-node sub-cluster scheduler.

Decomposition Degree K of Divide-and-Conquer To better
illustrate the learning sensitivity to the hyper-parameter K—
the sub-cluster decomposition degree of our D&C technique,
we depict the training curves in an 81-node cluster with various
K values (3, 9, and 81)6 as Fig. 10. As we can see, D&C with a
smaller decomposition degree provides placements with better
performance. It is because smaller K indicates smaller state
and action space in each subtask, which further augments the
learning capability and avoids getting stuck in local optima.

Performance Impact of Sub-scheduler Design Admittedly,
sub-scheduler design accelerates the training at the cost of
lower decision quality (e.g., RPS loss). To quantify the im-
pacts, we generate 90 container groups of various size for
Metis to schedule, and compare the performance between the

6In this case, D&C with K = 81 is equivalent to the vanilla RL. Unless
otherwise specified, D&C adopts K = 3 in other parts of our evaluation.

RL agents with sub-scheduler and those without such design.
As shown in Fig. 11a, the sub-scheduler design (with 27-
node sub-cluster) dramatically accelerates RL convergence by
40×–95×, with less than 10% loss of RPS. Compared to
sub-scheduler of smaller sizes (3 or 9 nodes) as shown in
Fig. 11b, the larger sub-scheduler also leads to faster learning
processes and slightly lower RPS in the end. We therefore
think trading quality for latency with the sub-scheduler design
is well justified in large clusters.

D. Support of Various Scheduling Objectives

We next show that Metis is a general-purpose scheduler that
can be used to optimize various objectives beyond RPS. The
experiments are conducted in an 81-node cluster.

Case Study #1: Maximizing SLO Satisfactions Metis
can directly maximize the SLO satisfactions—the percentage
of containers whose RPS meets a specified requirement—
by configuring the RL reward function (§IV-A) as the SLO
satisfaction rate. Fig. 12a compares the SLO satisfaction rate
with different schedulers. Metis consistently achieves much
higher SLO satisfactions than Medea and Paragon. When the
required RPS is set to 0.9, Metis can meet this SLO for almost
all containers, outperforming Medea and Paragon by 1.6× and
4.4× on average, respectively. Even with a rather demanding
SLO requirement (RPS ≥ 1.0), Metis still achieves notably
higher SLO satisfaction rate (32%) than the two baselines.

To understand the advantage of Metis over constraint-
based schedulers, we refer to Fig. 12b for the distribution of
container throughput measured under Metis and Medea with
target RPS ≥ 0.9. Compared with Medea, Metis has a curve
with a much shorter tail and a close-to-zero “knee” at the
target RPS—a clear sign of sacrificing high-RPS containers in
exchange for more others to meet the SLO. For comparison,
we also plot the RPS distribution (red dashed curve) when
Metis is configured to maximize the average throughput,
without concerning about the SLO compliance. This time, it
sacrifices a small number of low-RPS containers for more to
achieve higher throughput. Metis can thus adapt to various
scheduling objectives by making precise placement decisions.

Case Study #2: Minimizing Resource Fragmentation Min-
imizing the resource fragmentation requires packing as many
containers as possible into as few machines, leading to lower
container performance due to resource contention. Metis easily
balances the two conflicting objectives by setting the reward
function as the weighted sum of RPS and vacant machines
with a tunable knob β, as shown in Fig. 12c. Compared with
maximizing RPS only (β = 0.0), setting the knob to 0.5
only sightly decreases the container performance while saving
around 12% of machines. Continuing increasing β saves more
machines at the expense of lower RPS.

E. Cluster Environment Simulator

As RL training critically relies on the prediction given by
the Cluster Environment Simulator (§VI), we validate its ac-
curacy with varying training samples. In particular, we profile
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Fig. 13: Prediction accuracy of the simulator and the schedul-
ing performance of Metis with varying data sampling rates in
an 81-node cluster.

the resultant container RPS in all 6435 possible container
co-location options of the seven LRAs on one machine. We
randomly sample the training sets covering 1%–90% of the
profiled results—the remaining data is used as the test set. We
train the predictor of our simulator, a multivariate Random
Forests regression model (an ensemble of 100 decision trees
with maximum depth of 20), and evaluate its accuracy in terms
of mean square error (MSE) over the test set. Fig. 13a shows
a box plot of the accuracy results averaged by 30 runs with
different sampling rates. As observed, profiling 10% or more
co-location combinations as dataset is sufficient to train an
accurate simulator with prediction MSE ≤ 0.15%.

We further investigate how the simulator’s prediction accu-
racy, given various sampling coverage, may affect the quality
of RL training. We evaluate the RPS performance of Metis
with three traces that respectively cover 5%, 20%, and 90%
possible combinations of container co-locations. As shown in
Fig. 13b, the more co-location cases a trace can cover, the
more accurate predictions the simulator makes, and the higher
RPS the learned scheduler achieves. In this case, having a log
trace covering 20% of the co-location cases in one machine is
sufficient for Metis to achieve the near-optimal performance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated the inefficiency of scheduling
LRA containers by means of satisfying placement constraints.

We presented Metis, an intelligent scheduler driven by novel
hierarchical reinforcement learning (HRL) techniques tailored
to LRA scheduling. This not only eliminates the manual
specification of rather complex container interactions, but also,
for the first time, offers concrete quantitative scheduling guide-
lines on placing LRA containers with performance prediction
and iterative refinement. Specifically, Metis decomposes a
complex scheduling problem into a hierarchy of simple tasks,
in which it progressively learns the container placement at
different levels of granularity, from sub-clusters to individ-
ual machines. Metis trains dedicated RL agents for quality
decision-making at a high level which schedules containers
to sub-clusters. It then uses a pretrained unified RL agent
to quickly narrow down their placements in a sub-cluster.
EC2 deployment shows that Metis substantially improves the
performance of LRA containers over the existing constraint-
based schedulers, and can scale to a large cluster running
thousands of containers.

Despite the promising performance in LRA scheduling,
Metis’s HRL design can only afford to handle dozens of
core applications that are performance-critical. Yet, production
clusters run thousands of LRA services, yielding a huge num-
ber of combinations of the cluster state and the interference
patterns. Also, our current design does not account for the
diverse workload patterns that may change over time. We plan
to tackle these issues in our future work.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
1 DESCRIPTION
We implement our proposed Metis as a pluggable scheduler in
Docker Swarm using Python 3.

The experiment package includes:
(1) Seven LRA workloads and cluster framework with scheduler
(2) Scheduling Algorithms: Metis
(3) Scheduling Baseline Algorithms: Medea, Paragon, and

Vanilla RL. In specific, our Medea implementation takes the
input of placement constraints we profiled and solves an
ILP problem using a MATLAB solver. Paragon is not open-
sourced, so we implemented its algorithms in Python, in-
cluding the interference scoring and the greedy scheduling
policy.

2 HARDWARE CONFIGURATION
The hardware information in reproducing the experimental results
can be found here:

$ http://github.com/

$ Metis-RL-based-container-sche/

$ Metis/blob/master/environment_info

3 INSTALLATION
The experiment package can be obtained from Github.

The whole project is associated with the DOI:
$ http://dx.doi.org/10.5281/zenodo.3859335

Clone from Github source:
$ git clone https://github.com/

Metis-RL-based-container-sche/Metis.git

Install Requirements:
$ pip3 install -r requirement.txt

4 EXPERIMENTWORKFLOW
Our experiment is built with three steps:

(1) Set up the cluster with our seven LRAs, collecting the con-
tainer co-location samples and establish the simulator.

(2) Run scheduling algorithms to obtain the container placement
decision.

(3) Place containers in the scheduling group according to the
scheduling decision, collecting the scheduling performance,
e.g., average container RPS.

We next describe these three steps in more detail.

4.1 Real-World LRA Cluster Setup and Profiler
Establishment

1. Launch a cluster of tens of nodes on Amazon EC2 consisting of at
least 1 manager node, several worker nodes, and some client nodes.
Record the public DNS address or ip address of each node and make

sure the manager and client nodes are accessible through the SSH
key: $HOME/.ssh/id_rsa.

$ export MANAGER=xxx.xxx.xxx.100

$ export WORKER1=xxx.xxx.xxx.101

$ export CLIENT1=xxx.xxx.xxx.201

$ ssh ubuntu@$MANAGER

(manager)$ git clone https://github.com/

Metis-RL-based-container-sche/Metis.git

2. If Docker has not been installed, install Docker on each manager,
worker, and client node:

(manager)$ sudo Cluster/scripts/install_docker.sh

(worker1)$ sudo Cluster/scripts/install_docker.sh

3. Coordinating manager and worker nodes through Docker Swarm
to form a Swarm cluster.

$ ssh $MANAGER docker swarm init

Output:
To add a worker to this swarm, run the following command:

docker swarm join --token SWMTKN-· · ·

· · · xxx.xxx.xxx.100:2377

Then execute the suggested command on each worker.
$ ssh $WORKER1 docker swarm join --token

SWMTKN-· · · · · · xxx.xxx.xxx.100:2377

Output:
This node joined a swarm as a worker.

4. Build docker images of seven workloads on the manager node.
(manager)$ cd Cluster/workloads

(manager)$ ./build-all.sh

The seven workloads are: 1. Redis; 2. MXNet Model Server;
3. Model Checksum; 4. Image Super Resolution; 5. Yahoo! Cloud
Streaming Benchmark A; 6. Yahoo! Cloud Streaming Benchmark B;
7. Video Scene Detection. They are modified to respond to HTTP
requests and execute standard processes.
5. Launch certain workloads on certain worker nodes from the
manager node.

(manager)$ cd Cluster/scripts

For example, launching one container for each workload on
WORKER1, where 0 indicates idle and 1 to 7 indicate different work-
loads.

(manager)$ ./service-launching.sh

$WORKER1 0 1 2 3 4 5 6 7

As another example, launch 3 workload-1, 2 workload-2, and 1
workload-3 container on WORKER2:

(manager)$ ./service-launching.sh

$WORKER2 0 0 1 1 1 2 2 3
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6. Sending requests from the client node to the worker node
$ ssh ubuntu@$CLIENT1

(client1)$ git clone https://github.com/

Metis-RL-based-container-sche/Metis.git

(client1)$ export WORKER1=xxx.xxx.xxx.101

Send single request for testing:
(client1)$ curl $WORKER1:8081

Or pressure the application with locust or other tools, e.g.,
(client1)$ cd Cluster/scripts

(client1)$ python3 parallel_locust.py $WORKER1

Default log path lies in Cluster/scripts/log

7. (Optional) Collecting performance benchmark datasets through
automatically deploying, profiling, terminating, and re-deploying.

Here the 0-1-2-3-4-5-6-7 or 0-0-1-1-1-2-2-3 means combi-
nation of different workloads on each node (as described step 5).
Each node has the maximum container capacity of 8.

(manager)$ ./profiling-go.sh

$WORKER1 "0-1-2-3-4-5-6-7 0-0-1-1-1-2-2-3"

8. Terminate the swarm cluster on the manager node.
(manager)$ docker swarm leave --force

4.2 Schedule Containers with Metis
Metis is implemented with both divide-and-conquer and sub-
scheduler techniques.

1. First check the data collected by Real-World LRA cluster is
stored in the folder:

$ cd Experiments/

$ ls ./simulator/datasets/

***_sample_collected.npz

2. Train sub-schedulers in a 27-node sub-cluster:
$ cd Experiments/

$ ./shell/TrainSubScheduler.sh

Output: the well-trained sub-scheduler models, as well as corre-
sponding log files will be store in the folder:

$ ls ./checkpoint/

subScheduler_*/

3. High-level model training based on previously well-trained
sub-schedulers.

(0) Check the sub-scheduler models are stored in the folder:
$ cd Experiments/

$ ls ./checkpoint/

subScheduler_*/

Check the container batches data is stored in the folder or create
your own batches:

$ ls ./data

batch_set_200.npz batch_set_300.npz

batch_set_400.npz batch_set_1000.npz

batch_set_2000.npz batch_set_3000.npz

(1) High-level training in a medium-sized cluster of 81 nodes:
$ ./shell/RunHighLevelTrainingMedium.sh 200

$ ./shell/RunHighLevelTrainingMedium.sh 300

$ ./shell/RunHighLevelTrainingMedium.sh 400

Output: the training log files including the RPS, placementmatrix,
training time duration, etc. will be store in the folder:

$ ls ./checkpoint/

81nodes_*_*/

(2) High-level training in a large cluster of 729 nodes:
$ ./shell/RunHighLevelTrainingLarge.sh 1000

$ ./shell/RunHighLevelTrainingLarge.sh 2000

$ ./shell/RunHighLevelTrainingLarge.sh 3000

Output: the training log files including the RPS, placementmatrix,
training time duration, etc. will be store in the folder:

$ ls ./checkpoint/

729nodes_*_*/

4.3 Schedule Containers with Vanilla RL
Vanilla RL is built directly upon Policy Gradient without our Hier-
archical designs.

1. High-level training in a medium-sized cluster of 81 nodes:
$ ./shell/RunVanillaRLMedium.sh 200

Output: the training log files including the RPS, placementmatrix,
training time duration, etc. will be store in the folder:

$ ls ./checkpoint/

Vanilla_81_*_*/

4.4 Schedule containers Divide-Conquer (DC)
only

DC Method does not use sub-schedulers. Our code below shows
its behaviors in a medium-sized cluster of 81 nodes. Each cluster is
hierarchically divided into three subsets.

1. High-level training in a medium-sized cluster of 81 nodes:
$ ./shell/RunDCMedium.sh 200

Output: the training log files including the RPS, placementmatrix,
training time duration, etc. will be store in the folder:

$ ls ./checkpoint/

DC_81_*_*/

4.5 Schedule Containers with Medea
Medea is implemented using Matlab, due to its outstanding perfor-
mance in solving the Integer Linear Programming (ILP) problem.

1. Generate the performance-constraints used in Medea:
$ cd Experiments

$ ./shell/GenerateInterference.sh

$ ls

interference_applist.csv

interference_rpslist.csv
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2. Run Medea in the folder:
$ cd testbed/Medea

$ Matlab Medea.m

Output: the scheduling decision log files including the allocation
matrix, constraint violations, time duration .etc will be store in the
folder.

4.6 Schedule Containers with Paragon
Paragon is re-implemented in Python. For the sake of fair compar-
ison, we feed it with the full interference matrix information as
Medea.

1. Make sure interference_applist.csv has been generated
in former Medea setup:

$ ls interference_applist.csv

Otherwise, generate the performance-constraints used in Medea:
$ cd Experiments

$ ./shell/GenerateInterference.sh

$ ls interference_applist.csv

2. Run Paragon of Medium size or Large size:
$ cd Experiments/shell

$ ./RunParagonMedium.sh 200 # Medium size

$ ./RunParagonLarge.sh 2000 # Large size

Output: the default output shows the average throughput for
each testing group as well as the scheduling latency.

For detailed output including container placement and per-
container throughput breakdown for each node, please add -v after
each python script:

$ cd Experiments

$ python3 ParagonExp.py --batch_set_size

200 --batch_choice 0 --size medium --verbose

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/Metis-RL-based-con ⌋

tainer-sche/Metis↪→

Artifact name: Metis: Learning to Schedule
Long-Running Applications in Shared Container
Clusters with at Scale

↪→

↪→

Citation of artifact:

http://dx.doi.org/10.5281/zenodo.3859335↪→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: 2ndGeneration Intel®Xeon® Scalable
Processors (Cascade Lake)

Operating systems and versions: Ubuntu 18.04 running Linux
kernel 4.15.0

Compilers and versions: GCC 7.4.0

Applications and versions: Docker v19.03

Libraries and versions: TensorFlow v1.12.0

Key algorithms: policy gradient
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