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ABSTRACT

Cloud providers often build a geo-distributed cloud frommul-

tiple datacenters in different geographic regions, to serve

tenants at different locations. The tenants that run large scale

applications often reserve resources based on their peak loads

in the region close to the end users to handle the ever chang-

ing application load, wasting a large amount of resources.

We therefore characterize the VM request patterns of the top

tenants in our production public geo-distributed cloud, and

open-source the VM request traces in four months from the

top 20 tenants of our cloud. The characterization shows that

the resource usage of large tenants has various temporal and

spatial patterns on the dimensions of time series, regions, and

VM types, and has the potential of peak shaving between dif-

ferent tenants to further reduce the resource reservation cost.

Based on the findings, we propose a resource reservation and

VM request scheduling scheme named ROS to minimize the

resource reservation cost while satisfying the VM allocation

requests. Our experiments show that ROS reduces the overall

deployment cost by 75.4% and the reservation resources by

60.1%, compared to the tenant-specified reservation strategy.
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1 INTRODUCTION

Public cloud providers often build multiple datacenters in

different geographic regions [6, 13, 19, 22], to serve tenants

at different locations. The hardware resources in a datacenter

are often organized into resource pools, and cloud providers

usually provide different virtual machine (VM) types for

tenants to choose [3, 12, 17, 21]. These regions and VM types

usually have different resource cost coefficients [3, 4, 12, 15,

17, 18, 21, 23], due to the different energy charges and VM

performance.

These geo-distributed clouds often host large-scale appli-

cations, e.g., streaming video applications (like youtube) and

social network applications (like twitter and facebook). The

actual loads of such tenant-facing applications often change

dynamically due to the unplanned load spike or diurnal load

pattern [32, 37, 58], requiring different amounts of resources

to achieve the strict Quality-of-Service (QoS) [59, 62]. To this

end, current clouds (e.g., AWS, Azure, Google Cloud) allow

the tenants to reserve VMs with preferred specifications in

the preferred regions [5, 7, 16, 20, 24]. And the tenants often

claim to reserve VMs according to their peak possible loads

in the cloud regions that close to their end users.

In this paper, we first analyze the resource (CPU core

and memory space) reservation patterns of these tenants in

our in-production geo-distributed cloud with 17 regions1.

1The traces are open-sourced via https://github.com/shijiuchen/HuaweiCloud-

GeoVMTraces.
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Figure 1: The aggregated resource usage of the tenants

in the descending order in our geo-distributed cloud.

We observe that the tenant-specified resource reservation

policy causes two main problems. First, a tenant often only

uses all the reserved resources for a short time, the reserved

resources result in the huge resource waste. For instance,

in our geo-distributed cloud, at most 68.6% of the reserved

resources are actually used in a region, while only 1.0% of the

reserved resources are used in the worst case (Section 4.1).

Second, the reservation is often placed on the expensive

regions that close to the end tenants or the expensive VM

types, resources on the expensive regions/VM types may be

unnecessarily reserved (Section 4.2). It is beneficial to reserve

“just-enough” resources on cheaper regions/VM types that

are geographically close and have similar performance, while

still ensuring the required service-level agreement (SLA).

Figure 1 shows the percentage of resource usage (cores ×
hours) of the 84379 tenants in our traces. As observed, the
top 20 tenants use 54.3% of the all resource usages. While a

few large tenants use a large percentage of the resources, by

persuading them to allow flexible cross-datacenter VM reser-

vation/scheduling with a lower price and ensured SLA, there

is an opportunity to greatly improve the resource efficiency

of the geo-distributed cloud.

It is nontrivial to take the above opportunity, as the re-

source usage of large tenants show different temporal (Sec-

tion 5.1) and spatial (Section 5.2) patterns. The temporal

pattern presents a tenant’s resource usage amount over time.

For instance, a video application [52] often has diurnal load

pattern, and a social-network application [14] has bursty

request pattern for the breaking news. The spatial pattern

shows a tenant’s resource usage pattern on different regions

and VM types. For instance, a tenant may deploy VMs in mul-

tiple regions that close to the end-users for short response

latency [9, 26, 43] or deploy on the VMs with various speci-

fications that satisfy the performance requirement [2, 56].

Moreover, we also observe that some large tenants have

complementary temporal and spatial resource usage pat-

terns. When a tenant uses a small amount of resources (a

large amount of resources are reserved actually), some other

tenants use most of its reserved resources, and vice versa.

This is because these tenants often run different applications,

and their end users have different access behaviors. By or-

chestrating the resources of these complementary tenants

in the same region of the geo-distributed cloud, the resource

reservation cost can be further reduced.

Technically, three challenges should be resolved to im-

prove the resource efficiency. First, the resource usage pat-

tern of a tenant should be precisely predicted, so that we

can reserve “just-enough” resources for the tenant. Second,

to avoid the case that too many resources are unnecessarily

reserved on the high cost regions or VM types, a cross-region

resource orchestrator is required to carefully distributes the

reserved resources of each tenant to different regions/VM

types considering the tenants’ spatial resource usage pat-

terns. Last, an online scheduling mechanism is required to

quickly allocate more resources to a tenant, as the load of an

application may burst occasionally.

We therefore further propose a runtime scheme named

ROS to orchestrate the resources in a geo-distributed cloud.

ROS optimizes the resource orchestration of multiple tenants

together based on their temporal and spatial resource usage

patterns. ROS comprises a load pattern predictor, a cross-

region resource orchestrator, and a bursty-aware scheduler to

resolve the above challenges. The predictor uses different

prediction methods to predict the resource usage of large ten-

ants. Considering different costs of regions/VM types and the

complementary of large tenants, the orchestrator takes the

predicted load patterns as input, and orchestrates the reser-

vation resources onto different regions/VM types, to reduce

the overall deployment cost. The online scheduler sched-

ules VM requests and compensates the bursty and irregular

requests at runtime. We conduct simulations based on our

traces, and the results show ROS reduces the overall deploy-

ment cost by 75.4% and the reserved resources by 60.1%. We

have adopted ROS in our production geo-distributed cloud

and show similar performance as the simulation.

We summarize the contributions as follows:

• An open-sourced VM request dataset of our pro-

duction geo-distributed cloud. The dataset includes

the VM request traces of the top 20 tenants in 4 months.

To the best of our knowledge, it is the first VM request

dataset of large tenants in a geo-distributed cloud.

• The comprehensive analysis of the VM requests

in our production-level geo-distributed cloud.The

insights obtained from the analysis identify the oppor-

tunity to reduce the resource reservation cost through

cross-region reservation and scheduling.

• Thedesign of a resource orchestrating and sched-

uling scheme. The scheme minimizes the resource

reservation cost while satisfying the requests of VMs.

The simulation results show it can reduce both the

overall deployment cost and the reserved resources.

Our key contributions are the open-sourced traces and the

comprehensive analysis on the VM usage patterns of large
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tenants in our geo-distributed cloud. ROS is designed based

on the analysis, which also has multiple technical novelties.

2 RELATED WORK

In this section, we discuss the current work on analyzing the

traces of popular cloud providers and/or managing resources

within or across datacenters.

2.1 Cloud Trace Analysis

Popular cloud providers released production traces of both

the public and private clouds [10, 30, 39, 44, 51, 53]. As the

number of the open-sourced traces is limited, we compare all

the traces we know with ours. Table 1 makes the comparison.

In more detail, as for private clouds, Google provided

a one month trace from its Borg cluster in 2011 [44], and

published an extension version of the trace with 8 different

clusters in 2019 [53]. These traces focused on the internal

container-based workloads in their private cloud. Alibaba

Cloud released a publicly accessible dataset in 2017 with 1300

machines in a period of 12 hours, which contains both the

Latency-Critical (LC) and batch workloads [10, 39]. In 2018,

Alibaba also published a larger scale dataset of the LC and

batch workloads, which contains the DAG information of

the batch workloads [30, 51]. Alibaba’s traces also focus on

their internal applications in a private cloud environment.

In contract, we characterize the cloud VM workloads with

the IaaS mode of the public cloud.

As for public clouds, Microsoft Azure open-sourced their

first-party and third-party VM workloads over three months

in 2017 and 2019 [25]. Thework analyzed the temporal behav-

iors of the VMs to show their resource usage is predictable.

Moreover, Microsoft Azure also published one VM request

trace specifically for investigating their VM scheduling algo-

rithms [31]. Compared with these traces, our traces focus on

both the temporal and spatial characteristics of the resource

usage of large tenants’ VM requests in our geo-distributed

cloud. This analysis perspective assists us to investigate how

to reduce the deployment costs when make resource reser-

vation for large tenants.

There are also other trace analysis works with other types

of workloads for the public cloud. Microsoft Azure pub-

lished two function traces in 2019 [46] and 2021 [60], respec-

tively. Alibaba published their trace analysis about machine

learning (ML) workloads and microservices in 2020 [57] and

2021 [40], respectively. Different from our traces, these traces

are not about VM workloads with the IaaS mode.

2.2 Scheduling within/across Datacenters

In the aspect of task scheduling inside the datacenter, a series

of works have been proposed to schedule VMs, containers,

and functions, with the classification of centralized [25, 29, 50,

53, 54], distributed (two-level [33] and share state [8, 45, 61]),

Table 1: Comparisons between our traces and others

Geo-distributed VM Workload Tenant Characteristic

Google Cluster [44, 53]

Alibaba Cluster [39, 51]

Alibaba GPU [57]

Alibaba Microservice [40]

Azure Function [46, 60]

Azure VM [25, 31] �

Ours � � �

and hybrid [31, 55] scheduling architectures. Their common

goal is to seek high scheduling quality under low latency

scheduling decisions. These schedulers focused on task-level

scheduling within the datacenter, so they cannot be applied

to reserve resources and schedule VMs geographically.

In terms of geo-distributed task scheduling, most of the

works focused on managing the network traffic among dif-

ferent datacenters. Yugong [35] managed the network traffic

through project placement, table replication, and job out-

sourcing, to save the public network bandwidth. Taiji [11]

assigned traffic objects geographically through modeling

the network traffic routing as an assignment problem, to

satisfy the service-level objectives. Gaia [34] eliminated in-

significant communications between datacenters while main-

taining the correctness of an ML algorithm. ELIS [47] and

Nautilus [28] optimized the network traffic in public net-

work when deploying microservices among datacenters and

edges to achieve better service latency. However, none of

these works took into account the resource reservation un-

der different resource costs of datacenters, which aims at

minimizing the computational resource reservation cost.

In addition, current cloud providers reserved resources

based on the maximum required amount and instance loca-

tions specified by cloud tenants [5, 7, 16, 20, 24]. However,

cloud tenants cannot fully utilize the reserved resources

most of the time and the reservation positions may have

high resource cost coefficients, resulting in huge resource

reservation cost. Moreover, Narayanan et al. [42] proposed

a geo-distributed capacity planning strategy to optimize the

deployment cost, but orchestrated resources for each tenant

independently, which leads to poor resource efficiency.

To conclude, prior researches on public cloud resource

management and task scheduling to date lacked a thorough

understanding of the key characteristics of large tenants’

temporal and spatial patterns of large commercial providers.

3 BACKGROUND AND TERMINOLOGY

Our VM request traces include a total of the top 20 large

tenants on 17 regions and dozens of VM types during 4

months of the year 2021. Each request specifies the tenant

demand, e.g., the region and VM type. In this section, we

introduce the background and terminology used in our paper.

Figure 2 shows the overview of our geo-distributed cloud.
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Figure 2: Overview of our geo-distributed cloud.

3.1 Cloud Regions and Datacenters
As shown in Figure 2, the datacenters of our cloud platform

are built in multiple geographic positions. Regions in our

cloud platform are partitioned based on their geographic

positions. Public services, e.g., elastic computing, block stor-

age, and VPC network are shared in the same region. The

datacenters in a region are connected through high-speed

fiber-optic network to meet cloud tenants’ requirements for

building high availability systems across datacenters.

As different datacenters are in the same geographic po-

sition, the spatial characteristics of large cloud tenants’ re-

source usage lie in the selection of different regions. We use

the resource usage of different regions as one aspect to an-

alyze the spatial characteristics, and also reserve resources

and schedule VM requests to different regions for large ten-

ants. In this paper, we use ri to represent a specific region.
Moreover, in order to facilitate the statistics in the later data

analysis sections, we divide all regions into three region sets

marked with Region Set 1, Region Set 2, and Region Set 3, and

the geographical positions in each set are relatively close.

3.2 Resource Pools and VM Types

As shown in Figure 2, the heterogeneous hardware resources

of each region are organized into multiple types of resource

pools (marked with different colors), and each resource pool

has the same type of physical servers from datacenters in

this region. Different regions may have the same type of

resource pool as they may have the same type of physical

servers. Different resource pools have different capacities

and different cost coefficients. Our cloud platform provides

different types of VMs marked with different VM name for

cloud tenants to choose according to their demand.

For an example VM named “s2.medium.4”, “s2” represents

the type of physical servers the VM on, “medium” represents

the number of CPU cores, and “4” represents the ratio of

memory (GB) to CPU cores. Therefore, “s2” is corresponding

to the type of the resource pool, which we name it as VM

type. Since different large cloud tenants have their specific

resource usage demand for different VM types, we take the

resource usage on different VM types as another aspect to

analyze the spatial characteristics. Moreover, combing the

spatial characteristic of regions, our scheme aims at reserving

resources and scheduling VM requests to different VM types

of different regions. For different VM types, we use vi to
represent a specific VM type.

3.3 Resource Reservation

The tenants sometimes need more resources than their daily

usage due to some special cases, e.g., unplanned load spike

and large-scale VM migrations. To handle these situations,

current cloud providers provide reserved instances or ser-

vices, and the reserved resource amount and reserved in-

stance positions are all specified by the cloud tenants them-

selves [5, 7, 16, 20, 24], as shown in the right part of Figure 2.

These reservation methods ensure the high availability

of resources for large tenants, but bring huge deployment

cost to cloud providers. The reasons lie on: (1) cloud tenants

cannot fully use the reserved resources most of the time,

(2) tenant-specified reserved instance positions may have

high resource cost coefficients. In this paper, we analyze

the temporal and spatial patterns of large cloud tenants, and

design correspondingmethods to reduce the deployment cost

of resource reservation. In the data analysis of this paper, we

only show the statistical results of CPU resources since the

space limitation. The results of memory resources show the

similar patterns as the CPU results.

4 RESOURCE RESERVATION STATUS

In this section, we analyze the current situation of the re-

source reservation in our cloud. We first show the resource

utilization of the reserved resources. Then, we present the

resource usage distribution of different regions/VM types,

and further propose the acceptable spatial range.

4.1 Utilization of Reserved Resources

To ensure the resources are available when large tenants

needmore resources than their normal usage (e.g., unplanned

load spike), we reserve resources for them in advance. The

amount of reservation resources is specified by large tenants

themselves according to their maximum demand. However,

most large tenants’ daily resource usage cannot fully utilize

the reserved resources at most of the time, which can result

in a waste of resources.

To explore the degree of resource wasting, we sample the

resource usage of different regions every 10 minutes, and

calculate the resource utilization rate relative to the total

reserved resources of all the large tenants in each region.

Figure 3 reports the distribution of the resource utilization

rate in all sampling points for all the regions. We present

the results of the regions in Region Set 1, Region Set 2, and

Region Set 3 (defined in Section 3.1) in Figure 3(a), Figure 3(b),

and Figure 3(c), respectively. We can find that most of the
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(a) Regions in Region Set 1.
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(b) Regions in Region Set 2.
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(c) Regions in Region Set 3.
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(d) Overall resource utilization rate.

Figure 3: The distribution of resource utilization rate.
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Figure 4: Average resource utilization rate relative to

the reserved amount of different regions.

sampling points of the regions have low utilization rate rel-

ative to their reserved resources, although the distribution

of different regions are not similar. The special curve of

r11 in Figure 3(c) is caused by: the resource usage amount

is 0 for most of the sampling points, although we have re-

served some resources on this region for large tenants. For

the distribution of overall resource utilization rate shown

in Figure 3(d), the sampling points are major distributed in

the range of 20%-50%. Figure 4 shows the average utilization

rate of different regions and the total utilization rate relative

to their reserved resources. The average value is in the range

of 1.0%-68.7% and the average total utilization rate is 32.3%.

These results of low resource utilization prove that there is

a large amount of resource waste for the reserved resources.

It is of great potential to reduce resource reservation waste

if we reserve resources for large tenants according to their

resource usage patterns. The exploration of the resource

usage temporal patterns of large tenants is a necessity.

4.2 Resource Usage Distribution
In the geo-distributed cloud environment, different regions

or VM types may have different resource cost coefficients.
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Figure 5: Cost coefficients of regions or VM types.
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Figure 6: Resource usage distribution of regions in dif-

ferent region sets.
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Figure 7: Resource usage distribution of VM types.

Therefore, it is expected to distribute the tenant requests to

the regions or VM types with smaller cost coefficients, which

can reduce the overall deployment cost.

We first explore large tenants’ resource usage distribution

of different regions. Figure 5(a) shows the different resource

cost coefficients of different regions. A region’s cost coeffi-

cient is its maintenance cost (e.g., the cost for real estate and

power) normalized to the cost of region r8. We can find there

are 2 different values (1.2 and 0.7) in Region Set 1, 1 value

(1.0) in Region Set 2, and 3 different values (1.0, 0.8, and 1.66)

in Region Set 3, respectively. Since regions in the same Region

Set are geographically close, most of the VM requests in the

regions of Region Set i can be scheduled to any region within

this range without affecting the response time (caused by

geographical positions). Figure 6 shows large tenants’ cur-

rent resource usage distribution with different resource cost

coefficients in the regions of Region Set 1, Region Set 2, and

Region Set 3, respectively. We can observe that only 30.2%

and 14.0% or the resources are distributed to the low-cost

regions in Region Set 1 and Region Set 3, respectively. There-

fore, current distribution of tenant resource usage does not

tend to low-cost regions.

Moreover, we also explore the resource usage distribu-

tion of different VM types. Figure 5 shows the resource cost

coefficients of 7 kinds of different VM types. The cost coeffi-

cient of a VM type is its selling price with 1vCPU and 2GiB

memory. We can find that these 7 VM types have 2 different

resource coefficient values (0.06 and 0.105). Moreover, after
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communicating with large tenants, we have learned that

most of their workloads can be conducted on any one of the

7 VM types without having different execution performance.

Figure 7 shows large tenants’ current resource usage distri-

bution with different resource cost coefficients on the 7 kinds

of VM types. Similar to the result of the regions, we can also

find that only 19.6% of the resources are distributed to low-

cost VM types. This result proves that current distribution

of tenant resources does not tend to low-cost VM types.

It’s of great potential to reduce the deployment cost through

reserving resources or scheduling VMs on the low-cost re-

gions/VM types. Therefore, we need to explore the spatial

(region/VM type) resource usage patterns of large tenants.

4.3 Defining Acceptable Spatial Ranges

The inter-datacenter scheduling is more complex than the

intra-datacenter scheduling, as datacenters have different

cost coefficients and network latencies. Combing the ob-

servations in Section 4.2, we determine the specific accept-

able spatial ranges on resource usage for each large tenant

through negotiating with them in advance. This helps us

to reserve tenants’ resources on low-cost regions/VM types

under their SLA of network latency and VM performance.

The acceptable spatial ranges consider the demand of net-

work latencies and VM performance of large tenants, and

thus includes two meanings. First, the tenant’s reserved re-

sources or VM requests on regions of ri, ..., r j can be reserved
or scheduled within these regions arbitrarily, due to these re-

gions are geographically close and the network latencies are

acceptable for tenants. For instance, different region sets Re-

gion Set 1, Region Set 2, and Region Set 3. Second, the tenant’s

reserved resources or VM requests on VM types of vi, ...,vj
can be reserved or scheduled within these VM types arbitrar-

ily, due to these VM types all have acceptable performance

for this tenant’s workloads which satisfies the SLA demand

of performance. For instance, the 7 VM types used in Figure 7.

Our resource orchestrating and scheduling scheme consid-

ers the acceptable spatial ranges of large tenants into resource

reservation and request scheduling, to minimize the deploy-

ment cost while satisfying large tenants’ required SLA.

4.4 Main Takeaways

From the analysis of reserved resource utilization and distri-

bution, we now reiterate our 2 observations.

First, the resource reservation for large tenants causes

huge resource waste. It is desired to reserve resources for

tenants on demand by analyzing their resource usage pat-

terns and predicting their recent required resource amount,

rather than based on the tenant-specified maximum value

at all times. Second, current resource usage distribution of

large tenants are not aware of the cost of regions and VM
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Figure 8: The resource usage of three tenants with the

diurnal pattern in oneweek. A tenant’s resource usage

is normalized to its maximum value.

types. Specifically, less than 30% of the large tenants’ re-

source usage are distributed on the low-cost regions or VM

types. Therefore, it has great potential to reserve resource

or schedule VM requests to low-cost regions and VM types

for reducing the overall deployment cost.

To conclude, no matter reducing the reserved resources

or reserving resources in low-cost regions/VM types, the

foundation lies on the analysis of large tenant’s resource

usage patterns. This motivates us to analyze the resource

usage patterns of large tenants in Section 5.

5 TEMPORAL AND SPATIAL RESOURCE
USAGE PATTERNS

In this section, we analyze the resource usage patterns of

large tenants, classify the patterns into multiple types, and

propose the corresponding prediction methods. Then, we

break down the resource usage of large tenants into regions

and VM types to explore the spatial characteristics. Further-

more, we explore the temporal and spatial potential of peak

shaving among different tenants.

5.1 Temporal Usage Patterns

The analysis of different temporal patterns of large tenants

can help us to predict their resource usage, and then re-

serve resources based on the predicted results to reduce the

resource waste. In this section, we explore the temporal pat-

terns of our 20 large tenants and classify them into 4 different

types, i.e., the diurnal load pattern, persistent usage pattern,

bursty usage pattern, and irregular usage pattern.

5.1.1 Diurnal usage pattern. The diurnal pattern of resource

usage often shows typical day and night mode. We find that

6 of the 20 top large tenants show obvious diurnal temporal

patterns, and Figure 8 shows the resource usage of the 3

example large tenants in one week.

Except for the obvious day and night pattern, we can find

that the peak time of the 3 example tenants is not the same.

This brings the potential of reducing the reserved resources

through peak shaving between different large tenants. In ad-

dition, tenant3 has a small peak and a large peak at forenoon

and night, respectively. This reminds us that the diurnal ten-

ants may have multiple peaks in a day. For diurnal tenants,
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Figure 9: The resource usage of three tenants with the

persistent pattern in fourmonths. A tenant’s resource

usage is normalized to its maximum usage value.
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Figure 10: The resource usage of three example bursty

patterns in oneweek. Each case’s resource usage is nor-

malized to its maximum value.

we also find that there is an overall resource usage upward

and downward in the long-term trend.

Combining the short-term and long-term patterns of diur-

nal tenants, the resource usage can be predicted by using time

series prediction methods, e.g., LSTM [48] and ARIMA [49].

5.1.2 Persistent usage pattern. The resource usage with a

persistent pattern usually has fewer changes at a long period

of time and maintains unchanged within one day. We find

11 of the 20 large tenants can be classified into the persistent

type. Figure 9 shows the results of 3 example large tenants

with the persistent usage pattern across 4months. The results

show that the long-term patterns of the 3 tenants can be

further classified into 3 subtypes, i.e., the stable (5 tenants),

ladder (3 tenants), and oblique-line (3 tenants) sub-types.

The resource usage of the stable sub-type has little change

and remains stable for a long period. Therefore, its resource

usage can be easily predicted by calculating the average

daily resource usage in the previous period (e.g., one week).

The ladder-type has many small ladder switches of resource

usage in a small period of time (e.g., between adjacent two

days). We can reserve resources for it by using the maximum

value in the previous period (e.g., one week). The long-term

trend of the oblique-line sub-type can be seen as a continuous

upward or downward oblique line with a stable slope. For

this sub-type, we can use the linear regression method [41]

to predict the resource usage of the next day based on the

resource usage of the previous week.

As the resource usage of persistent tenants shows fewer

changes in the long term, the usages can be predicted using

average and maximum values in the previous period, and

linear regression analysis methods.
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Figure 11: The resource usage of a tenant with the ir-

regular pattern across four months. The resource us-

age is normalized to the maximum value.

5.1.3 Bursty usage pattern. For the large tenants in our

cloud, besides the regular diurnal resource usage pattern, un-

predictable extremely high resource usage may happen. We

find 2 of the 20 large tenants have bursty cases. We explore

the different bursty cases for them as shown in Figure 10.

The bursty cases all have the diurnal resource usage pat-

tern at normal time, but use about 3-7 times of normal re-

source usage at bursty time. Moreover, we can also observe

that the 3 bursty cases have different bursty duration, i.e.,

tens of minutes, a few hours, and a few days. To sum up, this

usage pattern has the unpredictability in bursty happening

time, bursty resource amount, and bursty duration.

Since the unpredictability of bursty situations, it is hard

to predict the resource usage and reserve enough resources

in advance. Therefore, the satisfaction of the bursty resource

usage has to rely on online scheduling and compensation.

For instance, for the bursty load in a region, we can improve

the reserved resources when monitoring it at runtime, and

apply other regions’ resources if local resources are insuffi-

cient. Moreover, since the bursty duration is unpredictable,

we need to monitor the duration and reduce the reserved

resources after the bursty duration, so as to reduce the waste

of resource reservation. At last, since the tenants with bursty

cases still show diurnal patterns at the normal time, we can

use methods in Section 5.1.1 to predict the normal usage.

The bursty cases of large tenants are hard to predict, and

we mainly rely on online scheduling and compensation to

satisfy the bursty resource usage demand.

5.1.4 Irregular usage pattern. Some large tenants (3 of the 20

large tenants) show irregular resource usage in our trace data.

Figure 11 shows an example large tenant of the irregular type

across 4 months. We can find it does not have a determined

pattern no matter short-term or long-term. The irregular

resource usage is hard to predict and we cannot make precise

resource reservation in advance.

Therefore, we make some simple predictions, and mainly

rely on the online scheduling and compensation to handle it.

5.1.5 Main takeaways. Based on the observations of the

temporal patterns, we can classify them into 4 different types,

i.e., diurnal, persistent, bursty, and irregular types.
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For different types of resource usage patterns, we need

to use the corresponding methods to predict, and further

make resource reservations based on the prediction results

in advance. Moreover, since the diurnal tenants would have

different peak time, it’s potential to reduce the resource reser-

vation through peak shaving between them. For the bursty

type and irregular type, since the unpredictability of them,

the online scheduling and compensation within or across

the regions are of significance to satisfy their requirement.

5.2 Spatial Usage Patterns

Different regions/VM types have different resource costs,

and large tenants have different acceptable spatial ranges

(Section 4.2 and 4.3). These spatial characteristics motivate

us to explore the potential differences in resource usage

predicting and reservation on spatial. Therefore, based on

the temporal characteristics of large tenants’ resource usage,

we further break down the resource usage into different

regions and VM types, to explore spatial patterns of them.

5.2.1 Using a single major region/VM type. From the statis-

tics of the 20 tenants, we find 10/20 and 5/20 of the large

tenants mainly use one region and VM type for their VMs,

respectively, while the resource usage on other regions and

VM types is negligible.

For this kind of tenant, we can focus on the resource usage

prediction of their mainly used one region/VM type. Similar

prediction methods of the temporal pattern can be used to

predict the resource usage of this region/VM type. The other

regions/VM types often show little and stable resource usage,

so we can reserve resources on them with a fixed value (e.g.,

an average of previous data) for the large tenants.

The spatial (region/VM type) patterns of these large ten-

ants show few differences from their temporal patterns.

5.2.2 Using multiple regions/VM types with stable usage divi-

sion. Some large tenants use multiple regions/VM types with

stable resource usage division, i.e., the proportion of resource

usage between different regions/VM types maintains stable.

Figure 12(a) shows an example tenant who uses 3 regions.We

can find that r12 has a similar trend with the total resource

usage, and the other two regions’ resource usage is nearly

stable and equal to each other. Moreover, we can find that

the proportion of resource usage in the 3 regions is fairly

stable. Figure 12(b) shows an example tenant who uses 3 VM

types. We can find v3 and v5 has the similar resource usage

trend with the total resource usage, and v10 maintains stable

fluctuation. Moreover, similar observations to the regions

can be achieved that the resource usage proportion of the 3

VM types approximately remains stable. From statistics of

the 20 large tenants, 2/20 and 6/20 large tenants use multiple

regions and VM types with stable resource usage division.
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(a) The tenant that uses multiple regions with stable mode.
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(b) The tenant that uses multiple VM types with stable mode.

Figure 12: The resource usage of two tenants that use

multiple regions/VM types with stable mode across 4

months. All the resource usage is normalized to the

maximum value for each tenant.

For this kind of tenant, as the resource usage division of

different regions/VM types remains stable with each other,

we can easily achieve the resource usage of each region/VM

type by using tenants’ temporal prediction results to multiply

the proportion of each region/VM type.

To sum up, although this kind of tenant uses multiple

regions/VM types, their spatial (region/VM type) patterns

still do not have much difference from the temporal patterns.

5.2.3 Using multiple regions/VM types with dynamic division.

Most of the large tenants use multiple regions/VM types

with changing resource usage division, i.e., the proportion

of resource usage between different regions/VM types is

changing frequently. Figure 13(a) shows an example tenant

who uses 4 regions, and the resource usage proportion of

them changes frequently. As the resource usage breakdown

of each week shown in Figure 14(a), the resource proportion

is r8 > r5 ≈ r4 > r14 ≈ 0 in week1, r5 > r8 > r4 > r14 ≈ 0

during week2 to week6, r5 > r8 > r4 > r14 in week7,

r5 > r8 > r14 > r4 ≈ 0 during week8 to week12, and r5 >
r14 > r8 ≈ r4 ≈ 0 from week13 . Moreover, the resource

usage in different regions shows a variety of patterns, which

are not necessarily the same as the overall temporal pattern.

The results of Figure 13(b) and Figure 14(b) also shows the

similar observations on the VM type spatial pattern. From

our statistics of the 20 large tenants, most of the tenants

belong to this type of spatial pattern, with 8/20 and 9/20 for

the region and VM type spatial pattern, respectively.

This kind of tenant has many differences in their spatial

patterns with the minimum granularity (region/VM type)
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(a) The tenant that uses multiple regions with changing mode.
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(b) The tenant that uses multiple VM types with changing mode.

Figure 13: The resource usage of two tenants that

use multiple regions/VM types with changing mode

across 4 months. A tenant’s resource usage is normal-

ized to its maximum value.

from their overall temporal patterns. The reasons include: (1)

their resource usage proportion among different regions/VM

types changes frequently, and (2) their resource usage of dif-

ferent regions/VM types shows a variety of patterns. More-

over, since different large tenants have their own acceptable

spatial ranges which are more complex than the minimum

spatial granularity (region/VM type), their spatial patterns

can be more different from their temporal patterns.

We may divide the spatial granularity according to the

acceptable spatial ranges of different tenants, and conduct

resource usage prediction and resource reservation on the

corresponding spatial granularity, so as to better reduce the

cost of resource reservation.

5.2.4 Main takeaways. Based on the analysis of resource

usage on different regions/VM types, we find most of the ten-

ants use multiple regions/VM types with dynamic resource

usage divisions, which have two spatial characteristics.

First, the resource usage of different regions/VM types

shows a variety of patterns that are different from their

temporal patterns of overall resource usage. Second, the

resource usage division among different regions/VM types

changes frequently over time. Considering the more complex

acceptable spatial ranges of different large tenants (stated in

Section 4.3), the spatial patterns can be more different from

their temporal patterns. These spatial characteristics do not

hold for centralized clouds, as the resource usage patterns

of baremetals in a datacenter are often identical for a tenant.
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(a) The resource usage breakdown of each week for Figure 13(a).
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(b) The resource usage breakdown of each week for Figure 13(b).

Figure 14: The resource usage breakdown of the two

tenants in Figure 13.

The spatial characteristics suggest us to conduct the re-

source usage prediction and resource reservation on tenants’

corresponding acceptable spatial ranges, to achieve better

prediction results and more efficient resource reservation.

5.3 The Potentials of Improving the
Resource Reservation Efficiency

Based on our previous analysis of large tenants’ temporal

patterns in Section 5.1, we have observed that some tenants

present the diurnal patterns of resource usage. Moreover,

different large tenants may have different peak time in one

day, which brings the potentials to reduce the reserved re-

sources. Therefore, we explore both the temporal and spatial

potentials of peak shaving among tenants in this section.

5.3.1 Temporal potential. We first explore the temporal po-

tential between different large tenants. Figure 15(a) shows

two example tenants’ resource usage on the same region and

same VM type during a week. As the red ellipses marked

in this figure, we can find that the resource usage of the

two tenants shows different peak time. The tenant1 always

achieves the peak load from forenoon to noon, while ten-

ant2 always experiences peak load during the night. It’s an

obvious complementary resource usage between these two

tenants. For this example, we make resource reservations for

both the two tenants together each day, i.e., peak shaving

with each other, and then calculate its ratio relative to the

method which reserves resources for each tenant separately.

The results in Figure 16(a) show that the resource usage of

each day in this week can be reduced, with an average value
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(a) The example of the temporal potential. The two tenants are on the same

region r4 with the same VM type v5.
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(b) The example of the spatial potential. One tenant is on the VM type v5 of

region r14, while the other is on the VM type v1 of region r10.

Figure 15: Examples to show the temporal and spatial

(region/VM type) potential of peak shaving. The red

ellipses mark the complementary resource usage.
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(a) The normalized reserved re-

sources corresponding to the ex-

ample of Figure 15(a).
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(b) The normalized reserved re-

sources corresponding to the ex-

ample of Figure 15(b).

Figure 16: The normalized reserved resources of peak

shaving relative to separately reserve for each tenant.

of 8.4%. From this example, we can see the temporal potential

for peak shaving among different tenants, and the resource

usage among other tenants also shows similar patterns.

5.3.2 Spatial potential. We further explore the peak shaving

potential of resource usage on spatial in different regions and

VM types. Figure 15(b) shows an example of resource usage

of two tenants in two regions using two VM types. In detail,

tenant1 is on region r14 with the VM type v5 while tenant2

is on region r10 with the VM type v1. As the red ellipses

marked in this figure, the resource usage curve of the two

large tenants has different peak time similar to the temporal

potential. The tenant1 always achieves the peak load at the

forenoon, while tenant2 always achieves the peak load at

night. So if we schedule the requests of the two tenants

into the same region using the same VM type, the resource

usage can be further reduced since the peak shaving. We take

the same method of Figure 16(a) to calculate the reserved

resource ratio, Figure 16(b) shows that the resource usage

on each day can be reduced more, and with a better average

value of 13.2%. The better-reserved resource reduction results

prove that the potential of peak shaving is enhanced when

we take the spatial factor into consideration.

5.4 Insights from Usage Pattern Analysis

From the comprehensive analysis of temporal and spatial

usage patterns of large tenants in our production-level geo-

distributed cloud, we now summarize our 3 key insights.

First, there are different types of temporal patterns of

large tenants, and we need to use the appropriate prediction

method for the corresponding temporal pattern. Moreover,

since some temporal patterns are unpredictable (e.g., bursty

usage pattern), it is necessary to schedule and compensate

their VM requests at runtime.

Second, most of the tenants have obvious spatial patterns

with: (1) there is a variety of resource usage patterns in dif-

ferent regions and VM types, and (2) the resource usage divi-

sions between regions and VM types change frequently over

time. These spatial patterns suggest us to conduct resource

usage prediction and resource reservation on large tenants’

corresponding acceptable spatial ranges, to achieve better

prediction results and resource reservation cost reduction.

Third, we observe that the diurnal large tenants have both

the temporal and spatial potential of reducing the reserved

resources through peak shaving between them. Combing

the analysis in Section 4.2, these observations suggest us to

orchestrate resources on low-cost regions/VM types while

considering the peak shaving potentials among tenants.

Combing all the insights, we are motivated to propose a

resource reservation and VM scheduling scheme. It consists

the resource usage predicting, resource orchestrating, and

online scheduling and compensation, to reduce the overall

deployment cost while satisfying large tenants’ VM requests.

6 THE ROS METHODOLOGY

Based on above analysis, we propose a resource orchestrating

and scheduling scheme named ROS. In this section, we first

present the overview of ROS, followed by the design details

of each part in ROS. Then, we evaluate ROS’s effectiveness

in reducing the deployment cost and resource reservation.

Lastly, we discuss the lessons learned from the traces.

6.1 Overview

Figure 17 shows the design overview of ROS. ROS comprises

a load pattern predictor, a cross-region resource orchestrator,

and a bursty-aware scheduler. The predictor identifies tenants’

behaviors and estimates the resource usage on each tenant’s

acceptable spatial ranges (Section 6.2). Based on the estimated

load pattern, the orchestrator allocates resources for the day
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Figure 17: The design overview of ROS.

to minimize overall deployment costs (Section 6.3). Orches-

tration equivalents to distributing tenants’ resource usage

to each VM type of each region, and deciding resource reser-

vation bounds correspondingly. At runtime, the scheduler

responds to tenants’ requests according to the orchestration,

and handles the unplanned requests like sudden requests

due to the load burst (Section 6.4).

ROS tends to orchestrate the resources for the tenants

daily as the tenants often have diurnal load patterns. The

design logic of ROS is also applicable for other time period.

During a day, ROS works in the following steps.

1) In the beginning of the day, the predictor identifies each

tenant’s resource usage pattern, and uses the corresponding

prediction methods to predict the resource usage curve for

the day on each tenant’s acceptable spatial ranges. The chal-

lenging part here is that the tenants have various resource

usage patterns thus require different prediction models.

2) Once receiving the prediction results, ROS orchestrates

the predicted resource usage onto different VM types in

different regions, and allocates resource reservation bounds

accordingly. The challenging part is that ROS has to consider

not only the amount of resources in each region but also the

cost differences of different regions and different VM types.

3) At runtime, the scheduler allocates the resources and

monitors the resource demand of different VM types on

different regions. If the resource demand exceeds the reser-

vation bound, the scheduler compensates the insufficient

resource reservation. Moreover, the scheduler reduces the

reservation bounds when the resource demand drops.

We implement and deploy ROS in our production cloud.

The achieved gain is similar to the results in Section 6.5.

6.2 Load Pattern Prediction

Based on our analysis in Section 5.2, the resource usage pat-

terns of large tenants can be divided into 4 types: diurnal

pattern, persistent pattern, bursty pattern, and irregular pat-

tern. For the high accuracy, ROS uses different models to

predict the load variation in different patterns. Specifically,

ROS predicts the resource usage (CPU and memory) of each

tenant in each acceptable spatial range.

To predict the load pattern of a tenant, we first classify the

load pattern using K-means [27] andmass-count disparity [1]

algorithms. The predictor then selects the corresponding

prediction models, conduct the prediction based on the trace

of previous one week, and obtains the resource usage time

curve of the tenant on the next day. The prediction models

are trained based on the historical resource requests of these

large tenants and are updated incrementally to capture the

new pattern variations. For a new tenant in our cloud, we

reserve enough VMs as specified by the tenant in the first

month. During this period, we collect the resource usage data

every 10 minutes and train the parameters in the models.

For the diurnal load pattern, a three-layer LSTM-based

model is used to capture the load variation with time. In

detail the model contains two LSTM units [48] and one full-

connected (FC) layer at the end. We provide a unique LSTM

model for each tenant on each of its acceptable spatial range,

and the input of the LSTM is the resource usage time curve

of previous one week, and the output is the resource usage

time curve of the next day.

For the persistent load pattern, the average value calcu-

lation, maximum value calculation, and the linear regres-

sion (LR) analysis methods are adopted for the stable, ladder,

and oblique-line sub-types, respectively. We also provide a

unique prediction model for each tenant on each of its accept-

able spatial range for this load pattern. Expect the prediction

model, the input and output of LR are the same as LSTM.

The input of average/maximum value calculation methods

is same to LSTM, and we use the average/maximum value of

the input as the resource usage amount of each time point

in the next day to generate the resource usage time curve.

The resource requirements of the tenants with bursty and

irregular load patterns are hard to predict. Therefore, for

these load patterns, we use the LSTM to make a basic re-

source usage prediction, and rely on the online scheduling

to quickly satisfy the unplanned resource requests.

For the predictable large tenants with diurnal and per-

sistent load patterns, the R-squared value of the real load

prediction is 0.865. Predicting the load pattern of a tenant

completes in 300ms.

6.3 Cross-region Resource Orchestration

We design the orchestrator based on two observations. 1)

Within the acceptable spatial ranges of a specific large ten-

ant, some regions or VM types have lower resource costs

(Section 4.2). We can directly reduce the deployment cost if

ROS makes resource reservation on them for the tenant. 2)

The resource usage among diurnal tenants may be comple-

mentary. As analyzed in Section 5.3, there are both temporal
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and spatial potentials for reducing the resource reservation

through peak shaving among large tenants.

For VM reservation, the SLA is satisfied if a tenant can

obtain the VMs with the required performance and network

latency. The SLA is considered through the acceptable spa-

tial ranges in our work. Since a tenant often has determined

acceptable spatial ranges, reserving resources out of these

ranges may result in the SLA violation. For instance, orches-

trating a live video service’s resource in a region far away

from the end users may result in high network latency. Some

computation-intensive workloads can be deployed on multi-

ple CPU-enhanced VM types, but will harm the performance

when deploying on the memory-enhanced VM types.

Therefore, the orchestrator determines a tenant’s resource

reservation with each resource type in each of its acceptable

spatial ranges. The resource type means a specific VM type

in a region. We model the resource orchestrating as a single

objective optimization problem in Equation 1. In the opti-

mization problem, the optimal objective function is defined

as finding the minimum total deployment cost. The deploy-

ment cost is the sum of the maximum resource usage of each

resource type during the day multiplied by its cost coeffi-

cient. To be more specific, the inputs of the orchestrator are

the predicted resource usage of large tenants achieving from

the predictor, and the outputs are the orchestrating schemes

and the reservation bounds for each resource type. We pro-

vide a unique model to orchestrate large tenants’ required

resources on each of the acceptable spatial range.

Suppose there arem tenants in an acceptable spatial range,

and their required resources can be orchestrated onto n re-
source types. We use a matrix, Ratio, to represent the orches-
trating scheme. In the matrix, ratioi j indicates the resource
usage percentage of the tenant i on the j-th resource type. In
Equation 1, fi (t) is the weighted average resource usage time
curve of tenant i’s CPU andmemory resource usage provided
by the predictor as fi (t) = α × CPUi (t) + β × MEMi (t). α
and β is the relative cost of per unit CPU and memory, re-

spectively. Moreover,Cj represents the cost coefficient of the

specific resource type j, which is calculated by the region’s
cost coefficient times the VM type’s cost coefficient.

Minimize: Ctotal = Σ
n
j=1Cj ×max(Σmi=1(fi (t) × ratioi j )|

24h
t=0)

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀i, Σn
j=1ratioi j = 1 i = 1 · · ·m

∀j,max(Σm
i=1CPUi j (t)|

24h
t=0) < Cap

j

CPU
j = 1 · · ·n

∀j,max(Σm
i=1MEMi j (t)|

24h
t=0) < Cap

j

MEM
j = 1 · · ·n

(1)

Note that, the peak shaving is embodied in calculating

the maximum resource usage of each resource type. While

other orchestrators handle each tenant independently (e.g.,

Narayanan et al. [42]), Equation 1 optimizes the reservations

of multiple tenants together, enabling spatial peak shaving

across regions. The optimization problem has 3 constraints.

Table 2: The variables used in Section 6.3

Varible Varible Description

Cj The cost coefficient of the resource type j

ratioi j The resource percentage of tenant i on resource type j

fi (t) The weighted average resource usage curve of tenant i

CPUi j (t) Tenant i’s CPU usage time curve on resource type j

MEMi j (t) Tenant i’s memory usage time curve on resource type j

Cap
j

CPU
The CPU capacity of resource type j

Cap
j

MEM
The memory capacity of resource type j

First, for each large tenant, the sum of the resource ratio

needs to be equal to 1, i.e., the required resource usage for this

tenant is satisfied. Second, the CPU and memory usage for

each resource type cannot exceed its capacity. By solving the

optimization problem, the optimal orchestrationmatrixRatio
is obtained. Table 2 summarizes the variables in Equation 1.

ROS orchestrates the reserved resources in 2.5 minutes

with about 118,000 VMs on a cloud with 17 regions and 7

VM types. The time drops exponentially if we group ten-

ants/regions/VM types.

6.4 Bursty-aware Resource Scheduling

Even if the offline prediction and orchestration may be inac-

curate occasionally for the tenants that have bursty or irreg-

ular loads, the bursty-aware scheduling is able to modify the

reservation bounds for the inaccurate resource reservation.

When a VM request is received, ROS schedules the request

to one of the resource type according to the Ratio matrix and
current resource distribution of this tenant. If the scheduler

finds that the resource usage in one resource type exceeds

the current resource reservation bound, the compensation

mechanism is activated to adjust the reservation bound.

The adjustment of resource reservations is constrained

by three rules. 1) If the current resource type still has idle

resources, the scheduler increases the resource reservation

bound until it achieves the current required resource usage. 2)

If there are no idle resource in the current resource type, the

scheduler selects the lowest-cost resource type with enough

idle resources within the acceptable spatial range, and raises

its resource reservation bound to satisfy the resource demand.

3) If the resource usage of a resource type is lower than the

reservation value during the specified time t , the scheduler
gradually reduces its reservation. The scheduler reduces the

reservations in the reverse order of raising the bounds.

Since the major increase of reserved resources is caused

by the bursty load, we define t according to the minimum
duration (tens of minutes) of the bursty load (Section 5.1.3).

Therefore, we define t as 30 minutes to be aware of the end of
bursty loads quickly. Some previous researches [38, 46] have

shown that the load can be regarded as being dropped when

load level is below a predetermined value for 30 minutes.
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The functionality of our bursty-aware resource scheduling

is similar to autoscaling. However, comparing with current

autoscaling policies (e.g., K8S’s [36]), ROS introduces the

acceptable spatial ranges (regions and VM types) for different

tenants, which enables auto-scaling with the lowest cost.

6.5 Evaluation of ROS

We evaluate ROS using the open-sourced 4 months trace

dataset. We use the first month of traces to train the predictor,

and use the rest 3 months of traces to evaluate ROS.

As mentioned in Section 3.1, the regions are divided into

three region sets (denoted by Region Set 1, Region Set 2, Region

Set 3) based on the geographic positions. The three region

sets have 7, 2, 8 regions, respectively. After negotiating with

the large tenants, we extract 7 typical VM types (v1 · · ·v7).
Large tenants’ VM requests can be safely switched between

them. The set of (v1 · · ·v7) is seen as the acceptable spatial
range in terms of the VM types.

We first compare ROS with the resource reservation strat-

egy currently used by most cloud providers, i.e., reserve re-

sources based on the tenant-specified amount and positions.

We also compare ROS with a state-of-the-art baseline [42],

which is a geo-distributed capacity planning strategy. We

adapt its cost minimization model into our scenario, which

is aware of different cost coefficients of datacenters, but or-

chestrate resources for each tenant independently. We name

this baseline [42] as Base in the following experiments.

Moreover, we conduct another experiment to compare

ROS with a variation of ROS without the orchestrator (ROS-

wo), for exploring the effectiveness of the orchestrator. The

ROS-wo reserves resources for large tenants equal to their

maximum required resources in each day on the correspond-

ing regions and VM types. We use the real request usage

results in the trace dataset to replace the prediction results

as the input to both ROS and ROS-wo in this experiment, to

focus only on the effectiveness of the orchestrator.

6.5.1 Reducing the deployment cost. Figure 18(a) shows the

normalized deployment cost of ROS to the tenant-specific

strategy for each day of the three region sets. As observed,

ROS reduces the deployment cost on all the days. As the blue

bars shown in Figure 19(a), ROS can reduces the deployment

cost of the three region sets and total by 74.9%, 78.3%, 75.0%,

and 75.4%, compared with the tenant-specific strategy.

Figure 18(b) shows the normalized reserved resources of

ROS to the baseline, which we can observe the reserved

resources are reduced for each day on the three region sets.

As the blue bars shown in Figure 19(b), the reserved resources

of the three region sets and total are reduced by 63.5%, 66.2%,

47.7%, and 60.1%, compared with the tenant-specific strategy.

Three reasons result in the deployment cost reduction

of ROS compared with tenant-specified reservation. Firstly,

(a) Deployment cost.

(b) Reserved resources.

Figure 18: The deployment cost and reserved re-

sources of ROS normalized to the tenant-specific strat-

egy of three regions sets in each day.

(a) Deployment cost. (b) Reserved resources.

Figure 19: The overall deployment cost and reserved

resources of ROS and Base normalized to tenant-

specified strategy.

ROS reserves resources based on the predicted tenants’ re-

source usage, rather than the fixed amount of reserving re-

sources specified by the tenants. Secondly, ROS orchestrates

the tenants’ reserved resources with different patterns (e.g.,

staggering peak with each other) into the same region or

VM type, which can further reduce the reservation bound.

Thirdly, ROS tends to orchestrate tenants’ reserved resources

to low-cost regions or VM types.

Moreover, as shown in Figure 19(a) and Figure 19(b), ROS

can also reduce the deployment cost and reserved resouces

compared with Base [42]. Statistically, ROS can reduce the

total deployment cost and reserved resources by 24.7% and

12.2%, respectively. The baseline performs poor because it

orchestrates the resources for each tenant independently.

This leads to the lack of temporal and spatial potentials to

reduce reserved resources by peak shaving among tenants.

6.5.2 Effectiveness of the resource orchestrator. Figure 20(a)

shows the overall deployment cost of ROS normalized to

ROS-wo. Under the effect of orchestrator, we can find the
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(a) Deployment cost (b) Reserved resources

Figure 20: The normalized overall deployment and re-

served resource of ROS relative to ROS-wo.
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Figure 21: The resource distribution on different VM

types of different regions in the 3 region sets.

deployment cost of the three region sets and total are reduced

by 37.7%, 44.9%, 57.0%, and 45.2% on average, respectively.

Figure 20(b) shows the overall reservation resource of ROS

normalized to ROS-wo. We can observe that the reservation

resource of the three region sets and total are reduced by

12.0%, 13.5%, 8.6%, and 11.2% on average, respectively. Our

orchestrator allocates large tenants’ required resources with

staggering peak into the same region or VM types, which

can further reduce the resource reservation.

Figure 21 shows the resource distribution percentage on

different resource types in the three region sets. One resource

type represents one VM type of one region. The labels rep-

resent all the resource cost coefficients in the three region

sets, which is calculate by the product of region cost coef-

ficient and VM type cost coefficient. Since some resource

types have the same cost coefficient, we find out the different

values in all the three region sets, and calculate the resource

distribution percentage on different cost coefficients for each

region set. As observed, ROS distributes most resources on

the resource types with low cost coefficients, while ROS-wo

distributes part or lot of resources on the resource types with

high cost coefficients. The orchestrator tends to reserve re-

sources to low-cost regions or VM types, which can directly

reduce the overall resource reservation cost.

6.6 Lessons Learned

By analyzing the resource request traces in our production

geo-distributed cloud, we have learned several lessons.

Lesson 1: The tenants, even the top tenants, do not under-

stand their resource requirements in detail. They often tell us

to reserve enough VMs with their frequently used types on a

region close to the end users, and do not try other VM types

or other regions with similar performance and lower price.

Suggesting them multiple applicable VM types and multiple

regions may help the tenants to reduce the cost, and help us

to improve the utilization of the entire geo-distributed cloud.

Lesson 2: It is better to consider the resource reservation

from the cloud provider side. A cheapest resource reservation

policy for a tenant may not be optimal any more considering

the reservation of other tenants. In this case, in order to

optimize the entire resource and cost efficiency, it is better

to perform the reservation by the cloud provider as a tenant

does not know the potential resource usage of other tenants.

Lesson 3: It is possible to build datacenters at where with

low costs and improve the utilization through adaptive VM

orchestration. Our in-production usage of ROS shows that

there are no complains on this new resource reservation pol-

icy. We can safely build some datacenters at where with low

costs and offload some VMs from the “hot” expensive data-

centers to the cheaper datacenters. The running efficiency

of the entire cloud can be greatly improved in this way.

Lesson 4: There are opportunities to further optimize the

resource utilization by carefully selecting the provided VM

types. From our statistics, we find that the VMswith different

types have various reservation rates. By tuning the types

according to the workloads of the main tenants, the resource

utilization and efficiency could be further improved.

7 CONCLUSION

This paper makes a thorough study of the production VM

request traces in our geo-distributed cloud. The characteriza-

tion shows that the resource usage of large tenants has vari-

ous temporal and spatial patterns, and has the potential of

peak shaving between different tenants to further reduce the

resource reservation cost. Based on the findings, we propose

a resource reservation and VM request scheduling scheme

named ROS to minimize the resource reservation cost while

satisfying the VM allocation requests. ROS comprises a load

pattern predictor, a cross-region orchestrator, and a bursty-

aware scheduler. The predictor predicts the resource usage

of large tenants. The orchestrator orchestrates the predicted

resources of large tenants to different regions/VM types. The

scheduler schedules VM requests and compensates the spe-

cial requests at runtime. Via simulations conducted on our

VM traces, we show ROS can reduce the overall deployment

cost by 75.4% and the reserved resources by 60.1%.
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