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ABSTRACT

The sheer volume of scientific experimental results and complex
technical statements, often presented in tabular formats, presents a
formidable barrier to individuals acquiring preferred information.
The realms of scientific reasoning and content generation that ad-
here to user preferences encounter distinct challenges. In this work,
we present a new task for generating fluent and logical descriptions
that match user preferences over scientific tabular data, aiming to
automate scientific document analysis. To facilitate research in this
direction, we construct a new challenging dataset CTRLSciTab con-
sisting of table-description pairs extracted from the scientific lit-
erature, with highlighted cells and corresponding domain-specific
knowledge base. We evaluated popular pre-trained language mod-
els to establish a baseline and proposed a novel architecture outper-
forming competing approaches. The results showed that large mod-
els struggle to produce accurate content that aligns with user pref-
erences. As the first of its kind, our work should motivate further
research in scientific domains. 1

Index Terms— Table-to-text Generation, Scientific Reasoning,
Controlled Generation

1. INTRODUCTION

Table-to-text generation is a significant research problem involving
the generation of analytical descriptions from tabular data. Recently,
pre-trained language model (PLM)-based approaches have demon-
strated impressive improvements in text fluency and fidelity com-
pared to traditional template-based methods, as seen in the popular
table-to-text challenges, WikiBio [1], LogicNLG [2], RottoWire [3],
and ToTTo [4]. However, their success is highly dependent on pre-
training using a large corpus of open-domain text, such as the two
billion words of Wikipedia [5].

Scientific domains that require advanced expertise present a sig-
nificant challenge for PLM-based NLG systems in generating de-
scriptions with scientific reasoning. Scientific reasoning is a cogni-
tive process characterized by systematic, logical, and evidence-based
reasoning to understand the natural world, develop hypotheses, de-
sign experiments, evaluate evidence, and draw conclusions based on
empirical data and observations [7], [8], [9]. In the context of scien-
tific natural language processing (NLP), scientific reasoning repre-
sents a significant bottleneck, relying primarily on domain-specific
knowledge tailored to specific scientific phenomena.

Guanjie Zheng is the corresponding author.
1We release our code at https://github.com/sjtugzx/

CTRLSciTab.

Model

ConvS2S Ensemble
Transformer (base model)
Transformer (big)

BLEU
EN-DE EN-FR

41.2926.36

38.1
41.0

27.3
28.4

Table Caption: The Transformer achieves 
better BLEU scores …… at a fraction of the 
training cost.

Highlighted Cells: ConvS2S Ensemble, 
Transformer (big), 26.36, 28.4

Domain-specific Knowledge: reducing 
sequential computation …… ConvS2S, all of 
which use convolutional neural networks ……
Transformer uses multi-head attention……BLEU 
stands for "Bilingual ……training costs to other 
model architectures from the literature.

Table Description: …..the big transformer model outperforms the best previously reported 
models (including ensembles) by more than 2.0 BLEU, establishing a new state-of-the-art BLEU 
score of 28.4.

Intuitive Reasoning Steps: 
(1)A higher BLEU indicates better performance
(2) Previous best model is ConvS2S Ensemble, with 26.36 BLEU
(3) Transformer (big) achieves 28.4 BLEU
(4) Compared to previous by more than 2.0 BLEU

(a) Input

(c) Output

(b) Languange Model Reasoning

Fig. 1. An illustration of controlled table-to-text generation incor-
porating explicit scientific reasoning stages. (a) represents the input
information, (b) illustrates the inherent reasoning processes of lan-
guage models, and (c) displays the resultant descriptions. Yellow
highlights user preferences; red relates to tabular knowledge, and
blue indicates scientific reasoning content. Potential scientific rea-
soning steps are outlined at the bottom. The original table is adapted
from [6].

While existing challenges such as SciGen [10] and numeric-
NLG [11] address table-to-text generation related to scientific con-
tent, they predominantly focus on numerical reasoning. We argue
that scientific reasoning in the context of scientific NLP presents
a unique and comprehensive challenge for table-to-text generation.
Moreover, with the increasing use of PLM-based natural language
generation (NLG) systems in real-world applications, the focus has
shifted from the generation of generic content to the generation of
customized content that is aligned with user preferences. However,
the currently popular methods of table-to-text tasks may not consis-
tently match user preferences due to the broad nature of the gener-
ated output.

In this work, we propose a new task of controlled table-to-text
generation with scientific reasoning, which aims to generate analyt-
ical descriptions that are consistent with domain-specific knowledge
and align with user preferences. To facilitate research on this task,
we present CTRLSciTab, which consists of 8,967 scientific table-
description pairs with an external domain-specific knowledge base
and highlighted cells. CTRLSciTab represents a challenging table-
to-text generation task with two unique features: (1) all pairs are
from the scientific literature, requiring scientific reasoning, and (2)
all descriptions are aligned with user preferences.

We conducted extensive experiments on popular PLM-based

9951979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P 

20
24

 - 
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
64

79

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on June 23,2024 at 03:38:29 UTC from IEEE Xplore.  Restrictions apply. 



Mining domain-specific knowledge from PDF sources

Aligning Highlighted Cells to table descriptions

Expert Verification

+dict.

Domain-specific knowledge: Three types of 
task descriptions are….. for collecting dialog 
data. Rule-based tracking scheme is used to 
accumulate the turn-level: ……

arXiv 
documents Three types of task descriptions 

are constructedin the WOZ ……
A rule-based tracking scheme……

Domain-specific 
knowledge: Three types of 
task descriptions are 
constructedin the WOZ 
experiment as the guidence 
for collecting dialog ……PDF Parsing

Content Matching
Deduplicating

Table 2. …… RNN, NBT 
and EDST on WOZ2.0. 
+dict means ……

Model Turn-level Joint Request
92.8 87.5 95.3

EDST 91.6 85.2 95.2 Highlight Cells

+dict., EDST, 87.5, 
85.2

Table 2. Results for delexicalisation-based 
RNN, NBT and EDST on WOZ2.0. ……

The Highlighted Cells:+dict., EDST, 87.5, 85.2

Expert 
Annotation

Entity 
Detection

+dict.
Model Turn-level Joint Request

92.8 87.5 95.3
EDST 91.6 85.2 95.2

Fig. 2. Overview of CTRLSciTab construction steps, including min-
ing domain-specific knowledge from PDF source, aligning high-
lighted cells to table descriptions, and expert verification.

models, revealing their poor performance in scientific domains re-
quiring advanced expertise, a persistent challenge for the NLP com-
munity. To address this, we propose a retrieval-based pre-trained
model trained on our dataset, which shows a better performance.
However, evaluations, both automatic and human, indicate that the
generated sentences may sometimes contain incorrect and halluci-
natory content, highlighting this data set’s potential as a valuable
benchmark for evaluating controlled table-to-text generation with
scientific reasoning.

2. THE CTRLSCITAB DATASET

Data Preparation. CTRLSciTab, a broad dataset, consolidates
table-to-text pairs from the [10] and [11] datasets, which originally
obtained these pairs from scientific literature with a focus on nu-
merical reasoning. To cater to controlled generation coupled with
scientific reasoning, we embarked on a retrieval process for original
scientific articles from arXiv.org using tabular metadata. Subse-
quently, we instituted a procedure to extract sentences associated
with tables, thereby constructing a domain-specific knowledge base
for scientific reasoning. We also highlighted cells mentioned within
table descriptions, serving as prompts instructing PLMs to mirror
user preferences. As depicted in Figure 2, the extraction we first
transform articles into XML-encoded files. A greedy algorithm is
then engaged for content matching, aligning parsed content with
tables, and preserving entity-referencing sentences. Deduplication
removes any overlap with table descriptions, and entity detection
identifies pertinent entities within the descriptions.

Annotation Procedure. Potential inaccuracies in the annotated
data, such as irrelevant highlighted cells, are rectified to ensure qual-
ity. Expert annotators, who are computer science undergraduates,
verify the automatically annotated data. The tasks involve refining
domain-specific knowledge and annotating highlighted cells. Anno-
tators eliminate sentences unrelated to tabular data or descriptions,
retaining content explicitly stated or logically inferred from the data
or descriptions. To quantify the annotation agreement, we randomly
selected 100 samples, and two expert annotators achieved a 66.7%
agreement rate on the highlighted cells and a 70.6% agreement rate
on domain-specific knowledge, thereby underscoring the necessity
of domain-specific knowledge.

Data Analysis. CTRLSciTab is a large data set that contains
8,967 controlled table-description pairs with rich domain-specific
knowledge in various scientific domains. Each table in CTRLSc-

Data set Pairs Cell Domain Scientific Reasoning Controlled
WikiBIO 400K 17 Open ✗ ✗
ToTTo 136K 3 Open ✗ ✓
LogicNLG 37K 91 Open ✗ ✗
SciGen 53K 55 Scientific ✗ ✗
numericNLG 1.3K 46 Scientific ✗ ✗
CTRLSciTab 9.0K 52 Scientific ✓ ✓

Table 1. Comparison of CTRLSciTab and previous table-to-text
generation data sets. The pairs represent the number of annotated
structure data in each data set. Cell denotes the average number of
total cells.

iTab consists of 52 cells on average, with a description of 34 words
and highlighted cells as controlled preferences which occupy about
20% of the cells. To support common sense generation, we construct
an average of 20 domain-specific knowledge sentences per table.

In the context of table-to-text generation datasets, CTRLSciTab
introduces a distinct perspective on content selection and surface re-
alization that distinguishes it from other existing datasets. Prior to
the advent of neural approaches, generation systems typically sepa-
rated content selection (what to say) from surface realization (how to
say it) [12]. Traditional generation datasets focused predominantly
on a single phase, simplifying the overarching complexity of the
task. ToTTo [13] was seminal in presenting a controlled table-to-
text generation task with an emphasis on content selection. How-
ever, its design does not adequately address the needs of scientific
scenarios that require expertise. Some recent datasets have proposed
incorporating complex reasoning, such as numerical [11], [10] and
logical reasoning [14], into the task by framing it as a summariza-
tion problem focused on surface realization. A deeper exploration
of the chain of thought [15] in Large Language Models (LLMs) has
led to remarkable progress in such generation tasks. CTRLSciTab
uniquely challenges generation systems by imposing controlled con-
straints on content selection while requiring sophisticated scientific
reasoning for surface realization.

3. TASK DEFINITION

This task aims to generate natural language descriptions that are
both fluent and accurate, incorporating domain-specific knowledge
while remaining consistent with the tabular data and user prefer-
ences. The input consists of structured data, highlighted cells, and
domain-specific knowledge, denoted as D = (T,H,B). Here, T
signifies a linearized table, with T =

{
t1, · · · , t|n|

}
. Each tabular

data, ti, consists of an attribute-value pair, where ai and vi can take
values such as strings, numbers, phrases, or sentences. The high-
lighted cells are akin to ti and are denoted by H =

{
h1, · · · , h|n|

}
,

acting as prompts reflecting user preferences. Furthermore, B ={
bi, · · · , b|m|

}
represents domain-specific knowledge, with each bi

corresponding to a sentence associated with the tabular data. The
expected output is an analytical description aligned with user prefer-
ences and incorporating domain-specific knowledge R.

4. METHODS

The abundance of supporting domain-specific knowledge for each
table, with an average of over 20 sentences, makes it challenging
to leverage using popular PLMs. To address this, we propose a
retriever-generator framework, CTRLSciTabNet, as our initial ap-
proach to the problem. The overall framework of our method is
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ConvS2S, all of which  ……
Transformer uses……
BLEU stands for "Bilingual ……
training costs to other ……

Retriever

Table Description: …..the big transformer 
model outperforms the best previously 
reported models (including ensembles) by more 
than 2.0 BLEU, establishing a new state-of-the-
art BLEU score of 28.4.

Output Sentence

Table (T)

Backbone GeneratorConvS2S Ensemble, Transformer (big), 26.36, 28.4

Domain-Specific Knowledge 

n

The Highlighted Cells

Model

ConvS2S Ensemble
Transformer (base model)
Transformer (big)

BLEU
EN-DE EN-FR

41.2926.36
38.1
41.0

27.3
28.4

Table Caption: The Transformer achieves better 
BLEU scores …… at a fraction of the training cost.

Highlighted Cells, Tabular data: 
Noised Domain-specific knowledge

Encoder

Decoder

Highlighted Cells, Tabular data: 
Domain-specific knowledge

Embedding

(a) Unsupervised Retriever (b) CtrlSciTabNet Framework

Fig. 3. An illustration of the CTRLSciTabNet structure: (a) depicts the architecture of our unsupervised retriever; (b) outlines the two-step
operation of CTRLSciTabNet, which involves a retriever selecting the top-n related domain-relevant sentences, followed by a pre-trained
language model, the generator, utilizing this data alongside tabular inputs and highlighted cells.

illustrated in Figure 3. The retriever retrieves supporting domain-
specific knowledge based on the table contents, which is then used
by the generator to produce descriptions according to the highlighted
cells.

Retriever. In this study, as delineated in Figure 3 (a), we
introduce an unsupervised sentence embedding technique under
controlled conditions. Drawing inspiration from [16], our approach
seeks to derive embeddings of domain-specific sentences repre-
sented by B through the process of reconstructing them from a
perturbed corpus, denoted as B̃. Further refining the embedding
process, we impose constraintsH and T , signifying user preferences
and the original tabular data, respectively. The conditional distribu-
tion P (B̃|B, T,H). The training goal of the retriever is defined by
Equation 1:

JSDAE(θ) = Ex∼D[logPθ(x|x̃)]

= Ex∼D[

L∑
t=1

logPθ(x|x̃)]

= Ex∼[B:T :H][

l|B|+l|T |+l|H|∑
t=1

log
exp(hT

t et)∑N
i=1 exp(h

T
t ei)

)]

(1)

where L = l|B| + l|T | + +l|H| denotes the total length of input
tokens, including the highlighted cells, table contents, and domain-
specific knowledge.

Generator. We aim to develop a sentence generator that can
produce coherent and sensible descriptions based on tabular data and
the highlighted cells while incorporating domain-specific knowledge
according to user preferences. To achieve this goal, we employ
BART-base [17] and T5-small [18] for the sentence generator. The
learning objective of our sentence generator is to minimize the cross-
entropy loss. Specifically, given the tabular data T , highlighted cells
H , domain-specific knowledge B, and corresponding table descrip-
tions R, the learning objective is defined as Equation 2:

LLM = −
|R|∑
i=1

logPG(Ri|R<i;E([H : T : B])) (2)

where E represents the encoder.

5. EXPERIMENTS

Baselines. To evaluate the effectiveness of our approach, we com-
pare it to several popular strategies by replacing the retriever and
sequence generator as baselines. Specifically, we consider the fol-
lowing methods:

Baselines BLEU↑ METEOR↑ BertScore↑ BLEURT↑
TF-IDF + DG (Bart) 1.60 0.09 0.75 -0.93
Retriever + DG (Bart) 2.00 0.09 0.78 -1.00
Retriever + DG (GPT-3.5) 4.76 0.20 0.84 -0.51
CTRLSciTabNet (Bart) 16.90 0.34 0.87 -0.32
CTRLSciTabNet (T5) 6.60 0.29 0.85 -0.68
DG w/o BKG (GPT-3.5) 3.07 0.17 0.82 -0.65
Bart w/o BKG 14.90 0.31 0.87 -0.38
T5 w/o BKG 2.10 0.18 0.82 -0.87

Table 2. Automatic evaluation results of all methods. The symbol
↑ indicates that a higher score represents better performance. The
best result is bold, and the second best is underlined within each
metric. W/o BKG denotes the model without using domain-specific
knowledge. DG denotes direct generate from the pre-trained model
without fine-tuning

TF-IDF + Direct Generation (Bart-base). We implement TF-
IDF [19], a commonly utilized retrieval method, to access domain-
specific knowledge. The architectural design remains consistent
with our framework, utilizing the Bart-base model without fine-
tuning for the generative tasks.

Retriever + Direct Generation (Bart-base). To assess the ef-
ficacy of our proposed retrieval method, we substitute the TF-IDF
retriever with our approach, maintaining all other settings.

Retriever + Direct Generation (GPT-3.5). We conduct an addi-
tional investigation using our dataset to further explore the function-
ality of GPT-3.5 [20].

Automatic Evaluation. To evaluate the performance of our
model, we use five automatic metrics: BLEU [7], METEOR [8],
BertScore [9], and BLEURT [10]. BLEU and METEOR are widely
used metrics that measure the informativeness of generated text.
BertScore and BLEURT are pre-trained metrics to measure the
similarity between the generated descriptions and the reference sen-
tence. Table 2 delivers a thorough assessment of all tested systems
using metrics defined in §5. To evaluate the retrievers’ perfor-
mance, we maintain our model’s architecture and retrieve the top-3
related domain-specific knowledge sentences using our proposed
and TF-IDF-based retrievers. We then generate the corresponding
descriptions directly from the retrieved sentences. Our proposed
retriever outperforms the TF-IDF-based retriever based on the auto-
matic evaluation metrics. Subsequently, we use the same retriever
results as input for all generator models, which allows us to eval-
uate the performance of the generator part. It is worth noting that
the currently popular large-scale GPT-3.5 still does not perform
well on tasks that require domain-specific knowledge for scientific
reasoning.

In addition, we provide a breakdown of the performance of us-
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Model Fluency↑ Faithfulness↑ Recall↑ Valid Facts↑
Bart w BKG 4.19 0.39 0.40 0.88
Bart w/o BKG 4.14 0.31 0.38 0.80
T5 w BKG 3.74 0.33 0.33 0.50
T5 w/o BKG 2.60 0.30 0.24 0.47

Table 3. Performance of human evaluation result of CTRLSciTab-
Net using the BART-base and T5-small models based on several
metrics, including fluency, faithfulness, recall of covered highlighted
cells, and valid factors. ↑ denotes a higher score representing a bet-
ter performance. The best models are bold, and the second best ones
are underlined within each evaluation. W/o BKG denotes the model
without the use of domain-specific knowledge. W BKG denotes the
model trained with domain-specific knowledge.

ing domain-specific knowledge. When we use only the tabular data
as input, the performance for all PLMs (GPT-3.5, Bart-base, and T5-
small) significantly lags behind the results obtained when external
domain-specific knowledge is incorporated. These results demon-
strate the importance and necessity of domain-specific knowledge as
expertise for scientific reasoning.

Except for BertScore, the performance of all baseline systems
is significantly poor in the remaining metrics. Our human evalua-
tion in §5 reveals that the majority of the generated descriptions are
of poor quality. Additionally, existing automatic evaluation metrics
fail to evaluate the coherence of the highlighted cells and the gen-
erated descriptions for controlled table-to-text generation. Further-
more, CTRLSciTabNet, based on the Bart-base model, outperforms
the other models on most of the automatic evaluation metrics. These
results highlight the inadequacy of automatic evaluation metrics for
this challenge.

Human Evaluation. Existing automatic metrics have difficulty
assessing the coherence between highlighted cells and generated
sentences, requiring human evaluation using four different criteria:
fluency, fidelity, recall, and valid facts. Fluency, measured on a
five-point Likert scale, assesses the grammatical correctness and
naturalness of sentences. Faithfulness measures sentence accuracy
against table data, with annotators determining the proportion of
faithful content. Recall assesses sentence relevance to highlighted
cells, with all sentence parts aligned with cells deemed relevant.
Annotators determine the proportion of such facts within the gener-
ated descriptions. Finally, Valid Facts determines the proportion of
unique and accurate content within generated sentences relative to
reference sentences.

Table 3 shows the results of human evaluation, highlighting
the superior performance of models using external domain-specific
knowledge in terms of fluency, fidelity, recall, and valid facts. The
data suggest that advanced domain knowledge is essential for pro-
ducing scientifically sound results in the scientific domain. Our
proposed method, CTRLSciTabNet (Bart-base w BKG), consis-
tently outperforms all evaluated metrics, in line with the results of
automatic evaluation metrics.

However, the poor fidelity score indicates a significant gap
within the CTRLSciTab dataset that needs to be addressed. In ad-
dition, the poor recall of highlighted cells implies that the evaluated
models fall short in performing controlled generation independent
of scientific reasoning. Both automatic and human evaluation results
support CTRLSciTab as a practical testbed for controlled table-to-
text generation with scientific reasoning. In particular, CTRLSc-
iTabNet (Bart-base w BKG) shows the best performance across all
metrics (sign test with a p-value <0.05).

Model Positive

DTN 82.7

DNN 84.5

RMNN 85.1

Table Caption: Comparison of 
Accuracy (in%) in CN14

Table Description: The CN14 dataset is designed for 
answering commonsense questions like Is a camel 
capable of journeying across desert. The proposed NAM 
models answer this question by calculating the 
association probability Pr(E2|E1) where E1=\
{camel,capable of\} and E2=journey across desert. We 
can see that both NAM methods outperform NTN in this 
task, and the DNN and RMNN models obtain similar 
performance.

CTRLSciTabNet (Bart-base): As shown in the table, the proposed NAM model significantly 
outperforms the NTN in both the positive and the negative measures. This results indicate the 
effectiveness of our proposed model.
CTRLSciTabNet (Bart-base W/o BKG): The ecosystem is in excellent The ecosystem is in 
excellent The ecosystem is in excellent The ecosystem is in excellent.

Negative Total

86.5 84.6

86.0 85.7

87.1 86.1

Fig. 4. Case study of CTRLSciTabNet. Contents in yellow cells in-
dicate the highlighted cells. W/o BKG denotes the model without
the use of domain-specific knowledge. Green text indicates the cor-
rect statements supported by the tabular data, and red text indicates
the incorrect statements.

Case Study. Figure 4 shows an output generated by the Bart-
base model, providing a deeper insight into how our framework
works. The text colored in green indicates facts confirmed by tab-
ular data, while the text colored in red indicates incorrect facts.
These results suggest that the model trained with domain-specific
knowledge outperforms its counterpart without such knowledge, in
particular showing significant improvements in fluency and fidelity.
In contrast, the model without domain-specific knowledge tends to
hallucinate and generate content that is inconsistent with the origi-
nal tabular data. However, despite these improvements, both models
show inadequate performance in capturing highlighted content.

6. CONCLUSION

We introduce a rigorous task, controlled table-to-text generation
with scientific reasoning, to assess the machine’s ability to produce
analytical descriptions that satisfy domainspecific knowledge and
user preferences. To support research in this area, we present a
novel dataset, CTRLSciTab, which is characterized by two fea-
tures: (1) its table-description pairs from the scientific literature
require domain-specific knowledge for scientific reasoning, and (2)
all descriptions are consistent with user preferences. To evaluate
the effectiveness of CTRLSciTab, we employ different baselines
and perform comprehensive automatic and human evaluations. Our
study reveals key findings: (1) existing evaluation metrics inade-
quately measure controlled table-to-text generation with scientific
reasoning; (2) the dominant GPT-3.5 model struggles with tasks
requiring advanced expertise; (3) several challenges are associated
with the CTRLSciTab dataset. Despite these issues, the initial re-
sults lay the groundwork for future research on pre-training tasks for
complex, realistic domains. Overall, we position CTRLSciTab as
a valuable asset to the research community and expect it to inspire
further exploration in this area.
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