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ABSTRACT
Reinforcement learning (RL) has recently become a promising ap-
proach in various decision-making tasks. Among them, traffic signal
control is the one where RL makes a great breakthrough. However,
these methods always suffer from the prominent exploration prob-
lem and even fail to converge. To resolve this issue, we make an
analogy between agents and humans. Agents can learn from demon-
strations generated by traditional traffic signal control methods, in
the similar way as people master a skill from expert knowledge.
Therefore, we propose DemoLight, for the first time, to leverage
demonstrations collected from classic methods to accelerate learn-
ing. Based on the state-of-the-art deep RL method Advantage Actor-
Critic (A2C), training with demos are carried out for both the actor
and the critic and reinforcement learning is followed for further
improvement. Results under real-world datasets show that Demo-
Light enables a more efficient exploration and outperforms existing
baselines with faster convergence and better performance.
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1 INTRODUCTION
Traffic congestion has been affecting people’s daily lives nowadays.
A significant amount of time on commute can be spent due to bad
traffic conditions. To alleviate this issue, one of effective ways is a
more efficient traffic signal control system.

With the development of computing resources and learning tech-
nologies, researchers begin to study reinforcement learning (RL)
techniques for traffic signal control. The strength that RL learns an
optimal policy by interacting with the environment makes it suit-
able for real-world traffic signal control. Currently, many RL meth-
ods have been proposed. For example, DRL [8] and IntelliLight [12]
use DQN to search the policy. In addition, FRAP [15] follows the
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phase competition principle to design the network and IA2C [1] se-
lects actor-critic with LSTM to improve and stabilize performance.

Although methods mentioned above do achieve relatively satis-
factory performance in traffic signal control, they still suffer from
the key challenge in RL: large exploration space. A naive trial-
and-error approach in such space leads to slow convergence and
bad performance. In fact, to reduce unnecessary exploration, inspi-
rations can be obtained from humans. When humans attempt to
master a skill, they often refer to expert knowledge, speeding up the
learning process. Such knowledge can also work as catalysts in traf-
fic signal control. However, there are two questions to be answered
first: (1) Is there any expert knowledge in traffic signal control? (2)
How can such knowledge be used to benefit exploration?

For the first question, we seek expert knowledge from classi-
cal methods in transportation field. There are several effective
methods proposed by transportation researchers. For instance, Self-
Organizing Traffic Light control (SOTL) [2] is one of such methods
that adjust timing plans according to traffic dynamics. These trans-
portation methods are often based on assumptions of traffic models,
so they may not work well under certain scenarios. But they can
serve as a strong baseline and can be treated as expert knowledge to
benefit RL methods, without making any pre-defined assumptions.

As to utilization of expert knowledge, we can leverage it in the
form of demonstrations, i.e., expert-like trajectories in decision-
making tasks. Recent works have put forward various algorithms
learning from demonstrations, and showed that they can tackle the
exploration problem in RL efficiently. DQfD [3] accelerates learning
with a small set of demonstrations on Atari games by modified loss
functions while DDPGfD [10] makes an extension to robotic control
problems. For our problem, traffic situations and corresponding
signal plans generated by traditional methods can be regarded as
demos, and then be incorporated to improve performance.

To the best of our knowledge, we are the first to propose amethod
integrating demonstrations into RL in traffic signal control. Our
work bridges the gap between fields of transportation and machine
learning. Our main contributions are summarized as follows:
• We exploit demonstrations collected from a traditional traffic
signal control method to accelerate our actor-critic algorithm.

• We train the actor and the critic with demonstrations respectively
to guarantee an expert-like initialization.

• Extensive experiments are performed to show efficiency and
effectiveness of our algorithm under guidance of demonstrations.

2 RELATEDWORK
Traffic signal control. Recently, reinforcement learning methods
have shown superior performance in traffic signal control problems,
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compared to the traditional transportation approaches [11]. How-
ever, the essential challenge of RL methods is that they may suffer
from severe exploration difficulties when facing large state/action
space. Despite plenty of human prior knowledge from transportation
theories and traffic policy about controlling the traffic signal, there
have never been attempts in utilizing them to reduce the exploration
cost for reinforcement learning methods.

Learning from demonstrations. Several studies have been
proposed to reduce the exploration cost in RL methods by learning
from demonstrations. These methods integrate the two parts, mim-
icking the demonstrations, and learning by exploration. They are
usually implemented with a modified loss design. Although they
have achieved success in such fields as Atari games [3], there are
no attempts in applying this idea in traffic signal control.

Imitation learning methods (e.g., GAIL [4]) and inverse reinforce-
ment learning methods (e.g., EAIRL [6]) aim to train an agent from
"perfect" expert trajectories. They do not discuss how to achieve
further improvement. Since only using expert knowledge will not
bring a perfect traffic signal control policy, such methods are not
applicable to our problem and will not be compared.

3 BACKGROUND
3.1 Reinforcement Learning
Our traffic signal control problem can be considered as a standard
Markov Decision Process (MDP) with an agent choosing optimal
actions. We assume that traffic states at the intersection are fully
observed. The goal of the agent is to learn a policy for operating the
signals which optimizes travel time. Typically, the MDP problem
is formulated by a tuple < S,A,P,R,γ >. Given the state set S,
action set A, the reward function R is a function of S × A →

R. The discounted return is denoted by Gt =
∑T
l=t γ

(l−t )R(st ,at )
where T is the horizon and γ is a discount factor for future rewards.

The agent aims to learn a stochastic policy π (At = a |St = s),
which is a mapping from states to action probabilities, so that the
following expected discounted return J (π ) is maximized:

J (π ) = Eπ [G0] = E(s0,a0,s1, ...)

[ T∑
t=0

γ tR(st ,at )

]
(1)

where (s0,a0, s1, ...) is a trajectory generated by policy π . Note that
state transition matrix P is not described in model-free methods.
For traffic signal control, our RL agent is defined the same as [15].

3.2 Actor-Critic
Numerous algorithms have been developed to solve the RL prob-
lem, such as Q-learning and policy gradient. Most of them involve
constructing an estimate of the expected return using either value
function or action-value function, which can be written as follows:

V π (st ) = Eπ [Gt |st ], Qπ (st ,at ) = Eπ [Gt |st ,at ] (2)

As a recent work has demonstrated that actor-critic outperforms
Q-learning and pure policy gradient in traffic signal control [1], we
select the actor-critic framework for our method, which bridges the
gap between policy-based and value approximation methods in RL.
The actor and the critic are represented by two neural networks
with parameters θπ and θQ respectively. The fundamental idea of
actor-critic is that training an action-value function (critic) while

simultaneously updating the policy parameters (actor) in the direc-
tion suggested by the critic. Mathematically, the critic parameter
θQ are trained to minimize the following loss of TD error:

y = R(s,a) + γQ(s ′,a′), L(θQ ) =
1
2
(
y −Q(s,a |θQ )

)2 (3)

where the next state s ′ is determined by the environment after
taking action a and the next action a′ is sampled by a′ ∼ π (a |s ′).
For the actor, the gradient is in the form of:

д = Eπ [Q(s,a)∇θπ logπ (a |s)] (4)

In fact, demonstrations can also improve DQN models. However,
considering superior performance of actor-critic and limited space,
we will not discuss DQN with demonstrations in this paper.

4 METHOD
4.1 Demonstration Collection
How to collect demonstrations is essential for the problem. Unlike
Atari gameswhose demos are obtained from human experts, there is
no real expert who can provide optimal trajectories in traffic signal
control. However, a variety of traditional signal control algorithms
have been proposed and achieved relatively good performance.
Among these algorithms, we choose SOTL as the expert because
it is an adaptive method based on traffic volume. Using SOTL for
demonstration collection, our method can quickly learn a better
initialization, i.e., to allocate much more time of green signal to
movementswith higher traffic. Since SOTL controls the traffic signal
by some threshold parameters, we just tune parameters to find best
performance and then collect demonstrations.

4.2 Modified Action-Value AC
In practice, directly applying the algorithm in Section 3.2 will
suffer from high variance of trajectories. A widely used strategy
is to subtract a baseline from the discounted return to reduce
the variance of gradient estimation while keeping the bias un-
changed. For example, a common way is to subtract state-value
from action-value, and if applied, we would use an advantage func-
tionAπ (s,a) = Qπ (s,a)−V π (s) in the gradient ascent update called
A2C. However, approximating a new value function V π (s) will in-
troduce additional errors and biases. Since our target is to learn a
good initialization for the action-value function, we can replace
V π (s) using the following equation:

V π (st ) = Eπ [Q
π (st ,a)|st ] =

∑
a

π (a |s)Qπ (s,a) (5)

Then the advantage function can be written as:

Aπ (s,a) = Qπ (s,a) −
∑
a

π (a |s)Qπ (s,a) (6)

where Qπ and π are parameterized by θQ and θπ respectively.

4.3 Actor Training from Demonstrations
First, we put forward training the actor from demos. As stochastic
policies aremodeled and learned by neural networks in our problem,
it is hard to backpropagate gradients. It poses a great challenge
in initializing the policy network in the case of deep actor-critic
methods, which requires a differentiable computation graph. To



tackle this problem, we follow the re-parameterization mechanism,
which enables computing the derivatives of stochastic models, to
estimate gradients of categorical stochastic elements.

In our traffic signal control scenario with the discrete action
space, the idea of categorical re-parameterization with Gumbel-
Softmax [5] is widely applied. It is based on the Gumbel-Max
trick [5], which provides a simple way to draw sampled actions
from a categorical distribution with class probabilities π (·|s):

ahard = one-hot(argmaxi [дi + π (ai |s)]) (7)

where g = − log(− log(u)), u ∼ Uniform(0, 1).
As arдmax is not differentiable, we just replace the operation

with a so f tmax version:

asoft = softmax
(
(дi + π )/τ

)
(8)

Under the Gumbel-Softmax distribution, the previous sampling
process becomes a deterministic function which allows us to com-
pute its gradient estimation with low variance. Then regarding the
training as a classification problem, we can easily define the loss of
the policy network where aD is the action of demos:

Lpre(θπ ) = Cross-Entropy
(
asoft, aD

)
(9)

4.4 Critic Training from Demonstrations
In this section, we introduce how to train the critic through behavior
cloning losses, i.e., supervised losses with special designs.

Following DQfD [3], behavior cloning losses are composed of a
1-step TD loss for the action-value function, an n-step TD loss, a
large margin classification loss, and an L2 regularization loss.

The 1-step TD loss is described in Equation 3 while the n-step TD
loss is a decomposition of the target value using n-step returns. Tak-
ing n-step loss into account benefits expert’s information flowing
to earlier states and makes the best use of demonstrations.

The margin classification loss is crucial for training with demon-
strations. Those demonstrations are only a small part of the whole
exploration space. Despite their higher Q values than other state-
action pairs, we cannot guarantee the training process will take
place as expected. The Q function cannot evaluate unobserved state-
action pairs and it is likely that the network would update towards
the highest value of those pairs rather than the demonstrated one.
Therefore, a large margin classification loss is necessary:

Lmargin(θQ ) = max
a

[
Q(s,a) + l(aD ,a)

]
−Q(s,aD ) (10)

In this equation, l(aD ,a) is a margin function that is set to 0.8 when
a , aD and 0 otherwise. With this loss, we constrain the Q value of
the demonstrator’s action to be a margin higher than other actions.

Finally an L2 regularization loss is included to alleviate the over-
fitting issue due to the relatively small number of demonstrations.

5 EXPERIMENT
5.1 Experiment Settings
In this paper, we conduct extensive experiments in a new simulator
CityFlow [14]. The agent can obtain states of the environment like
the number of vehicles through flexible APIs. In the meanwhile,
the simulator can execute actions from the agent to control traffic
signals accordingly. Each green signal is followed by a three-second

yellow signal and two-second all red time by convention. Codes of
this paper are provided at https://github.com/xyh97/DemoLight.

5.2 Datasets
We use real-world datasets of three different cities. Raw data are
collected from surveillance cameras in various intersections. We
process them to extract one-hour traffic flows for a single inter-
section, which is randomly sampled from traffic-jammed or clear
ones with probability 0.5. In a dataset, each vehicle is described as
(o, t ,d), where o is the origin, t is the departing time, and d is the
destination. o and d are both on the road network.

5.3 Training Details
5.3.1 Parameter Selection. In our experiments, Adam is chosen
with learning rate 10−3 determined by the grid search. The discount
factorγ is set to be 0.8. 1800 demonstrations are collected from SOTL
to initialize the actor and the critic. Specifically, thresholds of SOTL
are selected by brute force and we pick five sets of parameters that
perform best to generate demonstrations. Function approximators
Q and π are deep neural networks with ReLU activations and they
are updated every simulation step. The temperature τ in the actor
and the L2 regularization coefficient in the critic are 1 and 10−5
respectively. In addition, to avoid changing traffic light frequently,
we constrain each phase remains at least ten seconds. It is for drivers
to respond and stop and for the algorithm to choose phases flexibly.

5.3.2 Network Architecture. For both networks of the actor and
the critic, we use a 2-layer structure with 20 hidden neurons per
layer. In addition, we use a target network [9] when training the
critic to stabilize performance. Prioritized experience replay [7] is
applied in the training process of the critic with demonstrations.

5.4 Results
5.4.1 Effectiveness. We compare DemoLight with a conventional
traffic control method SOTL [2], a deep Q-learning method LIT [16],
and a state-of-the-art RL method advantage actor-critic (A2C) [13].
In accordance with existing studies in the transportation field,
travel time is selected as an evaluation metric. This is defined
as average time vehicles spend passing the intersection and is fre-
quently used in the problem of traffic signal control.

Overall results are reported in Table 1. As is expected, perfor-
mance of LIT is inferior to that of actor-critic, reconfirming ratio-
nality of choosing A2C as our basis. In addition, from this table
we can see clearly that our algorithm DemoLight achieves best
performance in travel time for each intersection in three cities.
Specifically, under some circumstances such as #1 and #5 in the
city B where vehicle volume is quite large, learning directly even
cannot beat the tradition method SOTL. But with demonstrations
incorporated, performance can be improved significantly by over
60%. On the other hand, not much improvement is achieved in
some intersections with relatively small traffic. This phenomenon
mainly results from different traffic volumes. Specifically, in the
City B, traffic volume at #2 is 1671 per hour while the number is
over 2000 at #3. Extra vehicles will trap the agent in a congested
state frequently, making exploration much harder.

5.4.2 Efficiency. Contrary to training, traffic volume hardly in-
fluences time consumption of demo collection and initialization
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Table 1: Overall performance. Travel time is reported in the unit of second.

Model City A City B City C
1 2 3 1 2 3 4 5 1 2 3

SOTL [2] 102.76 179.41 248.73 248.12 153.43 165.38 123.73 269.64 89.36 149.49 72.11
LIT [16] 103.31 122.88 154.77 346.30 146.88 139.83 104.84 551.65 93.95 130.11 48.43
A2C [1] 85.48 98.36 136.01 380.64 92.14 135.93 77.56 517.77 76.38 96.74 46.83

DemoLight 76.64 85.16 85.93 116.10 92.02 97.88 76.39 183.70 72.44 91.26 43.04
Improvement 10.34% 13.42% 36.82% 69.50% 0.13% 27.99% 1.51% 31.87% 5.30% 5.66% 8.09%
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Figure 1: Convergence speed comparison among five intersections.

and they can be considered as an ignorable constant cost. It guar-
antees scalablity of our method to process scenarios with large
traffic. Hence, we only focus on time cost of training. Despite the
same computational complexity of DemoLight as A2C, our method
greatly reduces exploration space, thus accelerating training. We
take three intersections as representative examples to show effi-
ciency of our method. In Figure 1, our method always outperforms
A2C. We can observe that curves of DemoLight descends faster
than those of A2C and our method converges to a lower travel time.

5.4.3 Learnt Policy. As shown in Figure 2, the percentage of vehi-
cles in four directions synchronizes well with green time ratio of
DemoLight. It follows an intuitive principle of a good policy that
more green time should be allocated to larger traffic.

5.5 Ablation Study
In this section, we perform an ablation study to measure the impor-
tance of both training the actor and the critic with demonstrations.

We evaluate results from only initializing actor and only initial-
izing critic. From Figure 3, these two ablations perform better than
learning from scratch. But improvement of actor with demos is not
obvious compared with that of critic. One possible explanation is
that transforming a stochastic policy into a deterministic one may
cause training errors. Besides, it is still training both components
under guidance of demonstrations that achieves best travel time.
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Figure 2: Learnt policy.
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Figure 3: Ablation study.

6 CONCLUSION
In this paper, we proposed DemoLight to further improve RL in
traffic signal control with demonstrations. It speeds up training and
converges to a better result. For future work, extension to complex
traffic scenarios and an off-policy structure are potential directions.
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