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ABSTRACT
In this paper, we address an important problem of understanding
the impacts of shale-gas development on the groundwater in the
state of Pennsylvania, U.S.A., with a focus on the methane leakage
from shale-gas wells. �e problem is highly challenging because
methane concentrations in water are in�uenced by a large number
of factors, many of which are unobserved. Further, the correlation
between the methane values and the impacting factors exhibits
strong spatial heterogeneity. As a result, simply applying existing
data analysis tools would result in poor performance in terms of
predicting the methane concentrations values using the available
data of the impacting factors, and more importantly, provide li�le
insight into the actual impacts of shale-gas development. In this pa-
per, we take a di�erent approach to develop a simple spatially local
ensemble model which is able to explore the local correlations in
the data while enabling domain experts to provide timely feedback
on its performance. �rough experiments on real environmental
datasets from multiple sources, we demonstrate the e�ectiveness
of the proposed method.

1 INTRODUCTION
Improvements in horizontal drilling and hydrofracturing has al-
lowed the shale gas extraction, and therefore changed the energy
industry. Only 1% of U.S. natural gas production was from shale
gas in year 2000, but this ratio might approach 46% by 2035[23].
Figure 1 shows unconventional wells in Pennsylvania before 2008
and as of August 2015. However, the increasing prevalence of shale-
gas wells (also called unconventional wells) has potential impacts
for contamination of water quality and air quality [21], of which
the biggest concern is methane leakage. Methane has the poten-
tial to not only cause the contamination of homeowner wells and
aquifers [5, 20], but to enhance global warming [4, 16] as well.

Methane leakage from shale gas wells remains notoriously hard
to assess. As we can see from Figure 2, there is no clear pat-
tern showing that the number of shale gas wells correlate with
methane values in the groundwater. �is is because many fac-
tors contribute to methane in water, including geology, agriculture,
industry, and other anthropogenic activities. For example, many
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Figure 1: Number of unconventional wells increase from
2008 to 2015 in Pennsylvania (PA), U.S.A.

locations in Pennsylvania show naturally high methane concentra-
tion in groundwater due to emissions from the underlying geolog-
ical formations, due to wetlands, glacial deposits, or due to farm
activities.

To systematically assess the environmental impacts from shale
gas development, it is critical to study all the potential impacting
factors simultaneously and examine their combined impacts. Since
the impacting factors are from multiple heterogeneous data sources
and some are at a large scale, environmental scientists seek ad-
vanced computational tools to help them model such complicated
correlations. �at means we need to build a robust inference model
that can estimate methane concentration by considering all the
impacting factors. If shale gas wells play a signi�cant role in such
an inference model, it is more likely that the higher methane con-
centration is caused by shale gas wells (even though we still can
not make conclusion about causation).

Figure 2: Methane concentrations in groundwater sam-
ples [17]

However, the inference of methane concentrations in water, is
very challenging due to the following factors. First, methane con-
centrations in groundwater have a high spatial heterogeneity. �e
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Figure 3: High spatial heterogeneity for methane concentra-
tions in groundwater.

methane concentrations in groundwater in the northeastern Penn-
sylvania vary from less than 1 ppb to 46,500 ppb. From Figure 3(a),
we see that the average methane di�erence for data samples within
500 meters is as large as 2,000 ppb. Figure 3(b) shows that, for two
water samples collected on the same day with only 100 meter dis-
tance, the di�erence in methane values could be as large as 26, 800
ppb. Second, the water quality depends on multiple factors, and many
of these factors are not fully measured. For example, fertilizer used
on farmland can easily penetrate into groundwater and change
the methane concentration but the exact use level and type of the
fertilizer can not be recorded accurately.

�erefore, an ideal approach to assess such impacts should (1) be
able to exploit the correlation between methane concentration and
limited observations of potential factors in the presence of strong
spatial heterogeneity, and (2) keep domain experts involved in data
interpretation so that they can provide timely feedback as well as
additional data to improve the model performance. In the data
mining literature, numerous models have been proposed which
can handle spatial heterogeneity with varying degrees of success.
However, li�le a�ention has been paid to the inclusion of domain
experts. As a result, even if the existing models are able to achieve
decent accuracies, the results are o�en very hard to interpret.

In view of this di�culty, the key innovation of this paper is a
spatially local ensemble model which is able to explore local correla-
tions, and provide our collaborators in geoscience and meteorology
with new insight to the problem. On one hand, we observe that
correlation between methane and factors could vary at di�erent
locations. For example, at certain regions, the methane concen-
tration has a strong correlation with number of unconventional
wells, whereas in other regions, such a correlation is very weak.
�erefore, building a local inference model enables us to make
more accurate inference. On the other hand, such a local model
allows geoscientists to reason about results on a map and take
further actions when necessary. For example, in our study [17],
we visualized the local importance of unconventional wells, and
geoscientists were able to infer that such a correlation could be
due to a geological factor - faults. Fault data were subsequently
collected. Even though the data are incomplete, this factor could
be further considered in the inference model.

�e contribution of this paper lies in the following aspects:

• We propose to adopt a spatially local ensemble learning
approach, which e�ectively uses the local correlations for

inference. We evaluate our method using data from mul-
tiple sources including water quality data, gas wells data,
industry emission data, and land use data.

• We collaborate with geoscientists and meteorologists in
analyzing our models. As an example of the interactive
data exploration process, we conduct in-depth studies to
understand the model in terms of model uncertainties and
outliers. �ese explanations help domain experts to further
collect more samples to understand the correlations and
outliers. �is also helps us to build more systematic models
to analyze the water quality data.

�e rest of the paper is organized as follows. We �rst review
the related work in Section 2. �en we introduce the datasets and
describe how to construct features in Section 3. We describe our
correlation discovery and inference model in Section 4. Experimen-
tal results are presented in Section 5. And �nally we conclude the
paper in Section 6.

2 RELATEDWORK
Generativemodels. In the �eld of environmental science and geo-
science, generative models [24] are frequently used for environmen-
tal reading prediction. �ese models o�en incorporate meteorology,
street geometry, receptor locations, tra�c volumes, and emission
factors, based on some empirical assumptions. Such assumptions
might not be applicable to all scenarios [29]. At the same time, these
parameters and data are di�cult to obtain precisely, thus the re-
sults generated by these methods may not be very accurate [28, 29].
�erefore, we propose to use a data-driven discriminative model to
learn the correlations between water quality and available features.
Discriminative models. Machine learning and statistical models,
such as linear regression [9], classi�cation and regression trees
(CART) [25], neural network [13, 18, 22, 25], and support vector
machine [13], have been adopted by geoscientists to predict air
quality [9, 25, 26] and water quality [13, 18]. Recently, Zheng et
al [28, 29] discussed how to use advanced data mining techniques
to predict PM2.5 and PM10 in the air. �ey propose a co-training
method to infer air quality data [28], and use a regression tree [29]
to predict air quality. Our work is di�erent from these work in
three aspects. First, we observe local correlations and use a local en-
semble model to describe such local correlations. Previous methods
have not considered such spatial heterogeneity at the model level.
Second, the data used in previous studies are o�en collected by
sensors at �xed locations in the format of a time series. �erefore,
historical temporal information can be used for prediction. �is
is not the case for our problem because our data are collected at
di�erent locations and temporally sparse. �ird, most previous
studies use environmental quality data of nearby locations to in-
fer or predict the environmental quality at a given location. We
do not use any environmental quality data as input to our model
because our main goal is to understand the correlation between
the impacting factors and environmental quality data instead of
making accurate predictions.

3 DATASETS AND FEATURE CONSTRUCTION
In this section, we provide details about our datasets and features
used in our study.



3.1 Water�ality Data
We study 1,816 water quality samples, sampled from Year 2010
to 2015. �ese water samples were taken for point locations and
there are no data available for other locations. Each data sample
has values for 30 to 50 chemical analytes. In this paper, we focus
on methane values because methane is the major contamination
concern from shale-gas development. Among these data samples,
1,684 of them have methane concentration values. �is dataset can
be found at [3]. While thousands of data samples may look “small”,
this is the largest public groundwater data because it is expensive
to sample and measure the chemical analytes in groundwater.

As illustrated in Figure 2 and Figure 3, methane concentrations in
groundwater have high spatial heterogeneity. �e values could be
very di�erent for two spatially close locations. Also, the distribution
of methane values are highly skewed. As we can see from the
histogram in Figure 4, there are many samples with values 5 ppb
and 26 ppb. �ese two numbers are the detection limits, where
the actual values are not reported once the values are below these
limits. We observe 71% data points have values lower or equal to
26 ppb but the large values could be as high as 46,500 ppb.
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Figure 4: Histogram of methane values of samples in
groundwater.

3.2 Feature: Wells
Wells data include both conventional wells and unconventional
wells. A conventional gas well produces oil or gas from a conven-
tional formation while an unconventional well usually employs
sophisticated methodologies including horizontal drilling and hy-
draulic fracturing. In our studying area, as of May, 2015, there are
61,739 conventional wells and 6,227 unconventional wells. �e well
data are obtained from Pennsylvania Department of Environmental
Protection (PA DEP) [2].

Figure 2(a) shows the conventional wells and unconventional
wells in our focused area as of May, 2015. In our work, we use the
2,276 conventional wells and 3,279 unconventional wells located in
the northeastern Pennsylvania, where the water quality samples
are located.

Well emission data estimate how much methane (in mol/hr) are
let into the air due to the production of gas wells. It is derived from
well production data by assuming that there is a leakage rate of 0.2%
for unconventional well and 5% for conventional well. Figure 5(a)
and (b) show the estimated emission of methane from conventional
wells and unconventional wells, respectively. Based on locations
and emissions from both conventional wells and unconventional
wells, we construct features as shown in Table 1.

Similar to that in [17] (di�erent factors are used), �gure 6 plots
the methane values in water w.r.t. the feature well emission total
from unconventional wells with a distance threshold of 5 kilometers.
In fact, we do not observe a signi�cant correlation between methane
concentrations and the emissions from unconventional wells. But
this does not mean that such a correlation does not exist in certain
regions. We have studied the local correlations in details in [17].

3.3 Feature: Industrial Emission
Industrial emission data is collected from Greenhouse Gas Proto-
col [1] by the Greenhouse Gas Reporting Program in 2014. �ere
are 7,289 reported industrial facilities in total, of which 331 are
located in Pennsylvania. Each facility will report their emission of
methane, carbon dioxide, nitrous oxide and several other emissions.
Figure 5(c) displays the industry emission of methane on the map.
Similar to the wells, we construct �ve features using industrial
emission data as shown in Table 1.

3.4 Feature: Land Use
Land use data is collected from National Land Cover Database [15].
It re�ects a combination of human activities and natural geology.
In this study, we use land use image with 30-meter resolution (the
highest resolution we could obtain). In Figure 7, we show the land
use types of water sample locations.

Figure 8 shows the distribution of methane values for di�erent
land types. �e methane values (water) are generally higher in
wetlands, as expected.

3.5 Feature: Geology
We also consider a set of geological features in our study, including
elevation and distance to fault (see Table 1).

4 CORRELATION DISCOVERY AND
INFERENCE MODEL

In this section, we develop inference models to predict methane
concentrations in water using the aforementioned features. Note
that our feature set does not include methane concentrations from
nearby locations or historical data. �is is in strong contrast to the
inference model on air quality in [28, 29], whose ultimate objective
is to make accurate predictions using both historical air quality
data and contextual data. �e reason is that we wish to discover the
correlations between the features and methane concentrations, and
use such correlations to help domain experts interpret the observed
methane concentrations. If we include methane concentrations
from nearby locations as features, the inference model is likely to
be dominated by facts such as “the methane concentration is likely
to be high if nearby concentrations are high”. Such facts are not
helpful in mining the root cause of high methane concentrations at
certain locations.

A baseline method is to build a global classi�cation model using
all the training samples. However, such method is problematic as it
fails to account for local correlations due to spatial heterogeneity.
As we discussed in previous sections, a feature could have very
di�erent correlations with the methane concentration at di�erent
locations. For example, the hydrofracturing could have a much



(a) Unconventional well emission (b) Conventional well emission (c) Industrial emission

Figure 5: Methane emission from conventional wells, unconventional wells, and industry.

Table 1: Features used in our study.

Feature Name Descriptions
Wells:
dist to conv well/dist to unconv well distance from sample location to closest conventional/unconventional well.
conv well num/unconv well num number of conventional/unconventional wells within certain distance threshold.
conv well density/unconv well density density of conventional wells/unconventional wells.
conv well emission total/unconv well emission total total methane emission by conventional wells/unconventional wells within certain

distance threshold.
conv well emission density/unconv well emission density density of methane emission by conventional wells/unconventional wells.
Industry:
dist to industry distance from sample location to the closest industrial facility.
industry num number of industrial facilities within certain distance threshold.
industry density density of industrial facilities.
industry emission total total methane emission by industrial facilities within certain distance threshold.
industry emission density density of methane emission by industry facilities.
Land Use:
land use type type of land use.
Geology:
elevation common geological features.
distance to fault distance from sample location to fault.
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Figure 6: Methane concentration w.r.t. emission from un-
conventional well.

larger impact on water quality if the wells are drilled close to faults
[17].

Figure 9 shows our proposed framework which explores the local
correlations while having domain experts in the loop. �e discovery
process starts with observing the local correlations. Statistical
analyses are �rst applied to regions to reveal local correlations in

Figure 7: Land use distribution.

Section 4.1. Next, we develop machine learning methods to train
a local inference model in Section 4.2. Since domain experts care
more about the interpretability of the model than the prediction
accuracy, we discuss various approaches to interpret the model in
Section 4.3.
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4.1 Observing Local Correlations
We �rst study the correlation between individual features and
methane concentrations in the water. �is correlation analysis
is o�en conducted as a �rst step because people may intuitively
raise the question such as “does the development of shale gas wells
increase the methane in the water?” To answer these questions, es-
sentially we wish to know if there is a correlation between features
related to unconventional wells and the methane concentration.
Kendall Rank Correlation. Many metrics could be used to mea-
sure the correlation between a feature and methane values, such as
linear regression coe�cient, Pearson correlation, and Kendall rank
correlation. Here we choose Kendall rank correlation because there
are censored values in our dataset as discussed in Section 3 and
Kendall rank correlation can deal with environmental data with
multiple detection limits [14]. Kendall rank correlation is calculated
as:

τ = (nc − nd )/n0,

where nc is the number of concordant pairs, nd is the number of
discordant pairs, and n0 =

n(n−1)
2 with n being the number of

sample points in the dataset.
Local Correlation. Given the two variables (e.g., methane concen-
tration and distance to unconventional well), we use Kendall rank
correlation to measure whether they are positively or negatively
correlated and whether such a correlation is signi�cant. Such a
correlation could vary at di�erent regions. We have shown in [17]
that the correlation values for di�erent regions vary a lot.

4.2 Spatially Local Ensemble Model
Ensembles are well-known as a method for obtaining high accu-
racy classi�ers by combining less accurate ones [6, 7, 11, 12]. Let
{yi }ni=1 be a set of responses each associated with p predictors

spatial region of 
base learner

data sample

test sample

base learners for 
prediction

Figure 10: Illustration of the ensemble model.

xi = [xi,1,xi,2, . . . ,xi,p ]. An ensemble model F (x) makes predic-
tion based on a set of base learners { fm (x)}Mm=1:

F (x) =
M∑

m=1
αm fm (x).

Here, each fm (x) is a di�erent function of the predictors x learned
from the data, an αm de�nes the weight of fm (x).

In our problem se�ing, we adopt a local ensemble model [10]
which restricts each base model to a local spatial window. Each
base model fj is trained using data samples in a spatial window Sj .
To make the prediction for a data sample x at location s , we use
all the base models fj where the corresponding spatial window Sj
covers this location s:

F (x(s)) = 1
Z

∑
j

fj (x(s))I (s ∈ Sj ).

I (s ∈ Si ) is the indicator function, taking value 1 when the location
is within window Si , and 0 otherwise. In addition, Z calculates the
number of base learners supporting the prediction at location s:

Z =
∑
j
I (s ∈ Sj ).

For simplicity, all the base learners have equal weights.
Figure 10 illustrates the idea of our spatially local ensemble

model. Each ensemble prediction is made for a particular location
and is computed as the average prediction (or majority vote) made
by all base models that contain that location. �e behavior of
such a local prediction is similar to that of parametric models for
spatial and temporal correlation giving larger weights to nearby
observations.

Next, we discuss how to choose the base learners and how to
select local spatial window Sj to train the base learners.

4.2.1 Decision Tree as the Base Learner. �e base learner can be
any supervised learning model. In our problem se�ing, we choose
the decision tree because it can handle non-linear correlations eas-
ily. Using decision tree as the base learner, our approach is similar
to that of a random forest [7], in which we build many decision
trees, each using a subset of training samples, and combine their
outputs to obtain the �nal result. Random forests are based on the
idea of bagging, and are known to produce very good predictive
accuracy [8, 19] because bagging can e�ectively reduce the vari-
ance in the model. �e di�erence in our method is that, instead of
randomly sampling the training data, we use the subset of train-
ing samples that are spatially close (e.g., in a region) to learn the
base models. In this way, the base models will preserve the local
correlations.



4.2.2 Density-Based Spatial Windows. �ere are two ways to
generate the spatial windows to build an ensemble model. One
way is to uniformly sample the locations on the map. However, by
doing so, some base learners might only cover very few samples.

An alternative strategy is to uniformly sample the training data
and use each sample’s location as the center of the window. In
this way, we will generate more base models for locations with
higher density of observations. In our experiment, we found that
the second approach yields a be�er performance.

4.3 Interpreting the Model
�e ensemble models (e.g., random forest) o�en have be�er predic-
tive accuracy, but they are o�en considered as “black-box” models,
which are hard to interpret directly. Fortunately, there are various
heuristics we can use to “probe” such models, in order to answer
following questions: (1) What are the locations that the model is
uncertain in making the prediction? (2) Are there any outliers in
the data?

�e spatially ensembled model o�en have di�erent con�dence
levels in making predictions at di�erent locations, especially at
the locations that are more heterogeneous in geology or have less
training data. By taking the advantage of our proposed local model,
we can further visualize such con�dence scores on a map. For a
location, we consider all the decision trees covering this location.
If the predictions made by these trees have a big discrepancy, a
low con�dence in prediction is indicated. On the other hand, if
all the trees have li�le discrepancy (i.e., high con�dence), but the
predicted value is very di�erent from the true value, this data
sample is likely to be an outlier. In both cases, the corresponding
data samples are worth further investigation (e.g., �nding more
factors for explanation or collecting more samples).

5 EXPERIMENTAL EVALUATION
5.1 Experiment Settings
Baseline Methods. We compare our method with �ve classi�-
cation models including decision tree (DT), random forest (RF),
Logistic regression (LR), support vector machine (SVM), and ar-
ti�cial neural network (ANN). ANN is used in a recent study by
Zheng et al. [28], which a�empts to classify the levels of PM2.5 and
PM10 in the air quality data. Note that the paper [28] proposes to
use both a temporal classi�er and a spatial classi�er. While their
air quality data are collected at several �xed monitor stations [28],
our data are collected at di�erent spatial locations and there is
no continuous data for multiple timestamps at the same location.
Due to this di�erence in data collection, we only compare with the
spatial classi�er in [28], which is the ANN model.
Ground truth and Evaluation. For water quality data, we choose
medium value (26ppb) as the threshold and classify whether methane
values are above the medium or not (i.e., binary classi�cation).
Parameter settings. For our local ensemble model, we sample
500 square windows and train a decision tree for each window. We
set the minimum number of data samples for each tree to be 50
(any tree with less than 50 samples will be discarded and a new
one will be selected). We use windows with multiple sizes (5,000m,
10,000m, and 100,000m) .

5.2 Experiment Results
Table 2 compares the performance of our local ensemble model
with the �ve baselines. As one can see, our model outperforms
other methods in terms of the accuracy, which shows that the
local correlations indeed play an important role in predicting the
methane concentration value. In terms of the standard deviation,
none of these methods has a standard deviation larger than 0.01,
indicating that their performance is very stable.
Table 2: Prediction accuracy of all methods. Standard devia-
tions are given in the parentheses.

LR 0.716 (3.0e-3)
SVM(linear) 0.723 (3.5e-3)

SVM(rbf) 0.723 (2.8e-4)
ANN(mlpc) 0.697 (1.5e-3)

DT 0.687 (3.4e-3)
RF 0.718 (4.7e-3)

Local Ensemble 0.731 (5.8e-3)

5.3 Model Interpretation
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Figure 11: Con�dence map and outliers.
As discussed in Section 4.3, we de�ne prediction con�dence of

one test sample as the number of votes to a majority vote label
divided by the total number of votes covering that sample. Fig-
ure 11(a) shows the prediction con�dence of our method on all
water samples. (�is con�dence map might look slightly di�erent
for di�erent random runs of experiments.) One can clearly see
that our model performs be�er in certain regions than the others.
Such observations are of potential value to our collaborators in



geoscience as they reveal problematic regions on which further
study should be focused.

Using the con�dence map, we are also able to identify outlying
samples in the dataset. �e black crosses in Figure 11(a) indicate
�ve such samples, which have methane concentration values higher
than 5,000 ppb but are predicted as lower than 26 ppb, each with a
con�dence value higher than 0.8. We plot the nearby region on the
map in Figure 11(b). �ere are 30 samples falling into this circle of
2km in total. We found that the distance to unconventional wells is a
discriminative feature for this region. When the distance is smaller
than 900m, there are 5 low methane concentration samples and 5
high methane concentration samples, while when the distance is
more than 900m, there are 17 low methane concentration samples
and 3 high methane concentration samples (see Figure 11(b)). Since
the focal sample is very far from any unconventional well, it is
predicted to have a methane concentration lower than 26 ppb by
our model with a high con�dence. However, it actually has a high
methane value that makes it as an outlier. To further explain such
outliers, we will work with our collaborators in geoscience to obtain
more water data samples around that location and to make some
�eld trips to learn more about the geographical structure or other
anthropogenic activities near that location. Such data could be
further incorporated into our model in the next round of analysis.
With the help of our domain experts in analyzing the results, we
have successfully delivered another more systematic spatial outlier
detection algorithm in [27], which has been proved to be able to
discover potential leakage problems in the ground water dataset.

6 CONCLUSION
In this paper, we propose to use a spatially local ensemble model
to assess the in�uence of shale gas development on groundwater
quality. Multiple factors are considered in our study, including gas
wells, industrial emission, land use, and geological features. We
have demonstrated that our local ensemble model outperform the
global models in predicting the methane concentrations. We have
further interpreted our model by studying the prediction con�dence
and detecting outliers. Such interpretations enable domain experts
to identify speci�c areas for further investigation.
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