
Learning to Simulate Vehicle Trajectories from
Demonstrations

Guanjie Zheng*§, Hanyang Liu*†, Kai Xu‡, Zhenhui Li§
The Pennsylvania State University§, Washington University in St. Louis†, Tianrang Inc.‡

gjz5038@ist.psu.edu, hanyang.liu@wustl.edu, kai.xu@tianrang-inc.com, jessieli@ist.psu.edu

Abstract—Traffic simulations can help to explore novel and
efficient transportation solutions that overcome traffic problems
such as traffic jams and road planning. Traditional traffic
simulators usually leverage a car-following model to simulate the
vehicle’s behavior in the real-world traffic environment. However,
these calibrated simplified physical models often fail to accurately
predict the pattern of vehicle’s movement in complicated real-
world traffic environment. Considering the complexity and non-
linearity of the real-world traffic, this paper unprecedentedly
treat the problem of traffic simulation as a learning problem,
and proposes learning to simulate (L2S) vehicle trajectory. We
use the generative adversarial imitation learning framework to
estimate the policy that provides sequential decisions for the
vehicle given real-world demonstrations. The experiment on real-
world traffic data shows the superior performance in simulating
vehicle trajectories of our method compared to traditional traffic
simulation approaches.

Index Terms—Traffic simulation, imitation learning

I. INTRODUCTION

Traffic simulation is the dynamics representation of the real-
world traffic environment through mathematical or computer
modeling. It acts as an essential component in the operation
and planning of transportation systems. For example, a traffic
simulator can be used to test the policies of a traffic signal
plan, or generate sufficient simulation data for training an
intelligent signal controller [1].

To build an effective traffic simulator that provides life-
like microscopic simulations of vehicle movement, the key
is to accurately imitate the observed vehicle behaviors and
recover an individual vehicle’s policy given current traffic
state. Today’s state-of-the-art and popular simulators such as
SUMO [2], AIMSUN [3] and MITSIM [4] usually employ a
so-called car-following model (CFM) to describe the kinematic
movement of an individual vehicle. Basically, a CFM is a
collection of several physical formulas that describe the car-
following behaviors with empirically calibrated parameters,
such as vehicle maximum acceleration and driver reaction
time. However, the movement of real-world vehicles depends
on many factors including speed, distance to neighbors, road
networks, traffic signal, and even driver’s psychological fac-
tors. Even with these parameters carefully calibrated, the CFM
often fails to provide accurate policy estimation for the vehicle
and exhibit realistic simulations, due to the nature of inferior
approximation ability of the simplified physical models under
intricate traffic environment. For example, Gipps model [5]

*The first two authors Guanjie Zheng and Hanyang Liu contribute equally.

(AIMSUN) is simply based on safety distance. It can never
reflect other nonlinear factors such as the psycho-physical
tendency in real-world drivers’ decisions.

To overcome the deficiency in explaining real-world vehicle
behaviors of current CFM based traffic simulators, a natural
consideration is to learn the pattern of behaviors directly
from real-world observations, instead of exclusively relying on
unrealistic physical models. Imitation learning (IL), focused on
making sequences of decisions similar to existing data, shows
a promising avenue for learning from demonstrations [6]–
[8]. Behavioral cloning (BC) [6], a variant of IL, is easy to
implement due to its one-step supervised learning procedure,
but the state distribution mismatch between training and testing
makes it to perform poorly in practice. A solution to mitigate
the accumulative mistakes in BC is to iteratively sample
from the rollout of the trained policy, and thus maintain the
consistency of state distribution. In this paper, we follow
the generative adversarial imitation learning (GAIL) [8] that
incorporates a GAN-like framework into an iterative learning
procedure of IL, and extend it to the multi-agent context
in the traffic simulation problem. Our proposed learning to
simulate (L2S) takes each vehicle as an agent and directly
learns a shared policy capable of controlling multiple vehicles
simultaneously, through the alternation between a generator
network and a discriminator network.

To the best of our knowledge, we are the first to consider
the traffic simulation problem as a learning problem. The
effectiveness of our proposed L2S is demonstrated by the
experiment on real-world traffic data. Compared to traditional
CFM based methods and BC based simulation, our method
is shown to have superior performance in recovering the real-
world vehicle trajectory.

II. RELATED WORK

No previous approach on traffic simulation has considered
learning-based methods before. But the idea of learning to
simulate can be found in some other simulation problems. A
few works as in [9]–[11] use reinforcement learning in pedes-
trian simulation and railway operational simulation. However,
our method intrinsically differs from these works. They aim to
train an agent to calibrate the parameters of either a selected
physical model or a predefined distribution of generated data,
while in our work the vehicle is as an agent and seeks to
learn the policy from demonstrations on the vehicle level. The
work [12] proposed to learn the autonomous driving policy



from demonstrations, which has a similar formulation to our
paper. But traffic simulation focus on the fidelity of simulated
traffic flow and car-following behavior, as well as correct
reactions to traffic light switch-over, while [12] ignores traffic
signals, and only underlines accident avoidance.

In traditional simulators, usually a car-following model
(CFM) is employed to simulate the individual vehicle’s behav-
iors. The basic idea of the car-following theories is that the
change in velocity of a vehicle depends on the velocity of the
preceding vehicle as well as the gap between the leader and the
follower. For instance, SUMO [2] uses the Krauss model [13]
as the default CFM, with two key components: 1) safety speed,
defined by a kinematic formula that considers the speed of the
leading vehicle and a safety distance to it; 2) desired speed,
incorporating the safety speed, speed limit and the acceleration
of vehicles. With these rule-based CFMs, the simulator is
enabled to simulate the individual vehicle’s interactions with
other vehicles and the road network. For calibrating a certain
CFM, usually a heuristic search algorithm such as random
search, Tabu search [14], and genetic algorithm [15] is used
to select the best parameters for the CFM.

III. PROBLEM DEFINITION

The driving behavior of one vehicle can be formulated
as a Markov Decision Process (MDP) defined by the tuple
S,A, T , r, γ. Here, S and A represent the state and action
space correspondingly, T is the transition matrix between
states, r is the reward function, and γ is discount for future
reward. Thus, our problem can be formally defined as below.

Problem 1: Consider a set of M expert drivers with driving
policy π∗,(m), where m = 1, 2, ...M . Given their expert
demonstrations D = {τ1, τ2, ..., τM}, our goal is to recover the
driving policy π(m), so that π(m) is close enough to π∗,(m).

The above formulation may seems not clear. It has been
shown in [16] that imitating the policy from the trajectories is
equivalent to maximizing the log likelihood of the trajectories
being generated by the learned policy. Hence, the above
problem is equivalent to the following maximization.

max
π(1),π(2),...,π(M)

M∑
m=1

logP (τm|π(m)). (1)

Here, P (τm|π(m)) is the probability of generating trajectory
τm given that driver m is following policy π(m). Each
trajectory is a sequence of states and actions, i.e., τ =
s0, a0, s1, a1, ..., sT , aT , where T is the total time span.

IV. METHOD

A. Overview

In order to learn how people drive in the real world, we can
formulate each vehicle as an independent agent. Our goal is to
learn the policy for each agent. The learned policy will serve
as an engine in the traffic simulator that enables to produce
real-like simulations.

The whole framework of our solution is shown in Figure 1.
Each agent receives observations from the environment and

takes actions sequentially following the policy. Then, by com-
paring the generated trajectories with the expert trajectories, a
similarity score (actually a log likelihood) will be calculated
to guide the optimization of the policy.

In Section IV-B, we introduce how each agent is defined
and how they interact with each other and the environment.
Then, we introduce how the policy for each agent is obtained
via generative adversarial imitation learning in Section IV-C.

B. Multi-Agent Simulation System

Given the context that each driver is making their decisions
independently based on his or her own observations, we model
each driver as an agent m. For simplicity, we will omit the
superscript (m) when no confusion would be introduced.

State: a set of features are selected to describe the current
observations that the vehicle m receives:
• Road network: length of current lane, speed limit of current

lane, whether current lane is an exit to the system.
• Current vehicle m: speed, position in current lane, distance

to preceding traffic signal.
• Preceding vehicle m′: speed of m′, position of m′ in lane,

gap from m, whether m′ in same lane as m.
• Traffic signal: phase of the preceding traffic signal.

Action: defined as the next-step speed for vehicle m.
In this paper, we assume that all drivers share homogeneous

policy π. But with different state, each vehicle agent yields
different actions. In other words, each agent m takes its own
observation s(m) and gets its action a(m) = fπ(s

(m)).

C. Generative Adversarial Imitation Learning

Imitation Learning. We utilize imitation learning approach
to learn the policy from the pre-logged data. It has been shown
that the imitation learning (or inverse reinforcement learning)
problem can be reduced to the feature matching (for discrete-
state problems) or state occupancy matching problem [8], [17]
with some constraints (e.g., entropy), i.e., we aim to minimize
the discrepancy with an entropy regularization H (as in [8]).

minimize
π

d(ρπ, ρ
∗)−H(π) (2)

where ρ denotes the state action occupancy and d measures
the discrepancy between the state occupancy of learned policy
π and expert policy π∗.

Generative Adversarial Imitation Learning. As in [8],
we replace the discrepancy measure d with a binary classifi-
cation negative log loss. Then, we have the objective as [8]

min
θ

max
ψ

Eπθ [log(Dψ(s, a))]+Eπ∗ [log(1−Dψ(s, a))]−λH(πθ)

(3)
where D(s, a) is a binary classifier that discriminates gener-
ated trajectories from the expert ones.

Concretely, there are actually two steps in doing this op-
timization, discriminating step (D-step) and generating step
(G-step). For the D-step, we can update the discriminator
parameters to maximize

max
ψ

Eπθ [log(Dψ(s, a))] + Eπ∗ [log(1−Dψ(s, a))] (4)



Generated trajectory Expert trajectory

State Action

Policy (generator)

State Action

Policy (generator)

Discriminator

Score
0.95: similar to expert

0.22: dissimilar to expert

Fig. 1. Framework of proposed model. Each agent m receives observations from the current traffic environment, and takes actions based on the policy π
(i.e., generator). The trajectories of each vehicle (formed by its state representations and actions) are compared against the expert trajectories. The similarity
score obtained from the comparison guides the optimization of the policy towards the real-world policy.

Then, for the G-step, we optimize the policy towards the
direction that the generated trajectories are more similar to
the expert ones, using any reinforcement learning algorithms.
Mathematically, the objective of G-step is

min
θ

Eπθ [log(Dψ(s, a))]− λH(πθ) (5)

Specifically, for instance, [8] uses log(D(s, a)) as the cost to
guide the optimization of the policy (or use the negative log
likelihood as the reward).

For the policy optimization algorithm, we follow [18] and
employ proximal policy optimization (PPO) algorithm to up-
date the policy. By doing the D-step and G-step iteratively, we
can finally get πθ close enough to the expert policy π∗.

V. EXPERIMENT

A. Dataset

Three real world datasets are used for the experiments.
• Hangzhou (HZ). This dataset is composed of surveil-

lance camera records from various 4-way intersections in
Hangzhou, China. Each record has the attribute vehicle id,
arriving location and arriving time. We input this data into
CityFlow [19] controlled by a pre-set driving policy to
generate the expert trajectories.

• Gudang (GD). This dataset covers a 4 × 4 road network
in the Gudang area in Hangzhou (also used in [20], [21]).
This data has been collected in the same fashion as the HZ
dataset. We input it into CityFlow [19] like the HZ dataset.

• Los Angeles (LA). This dataset is collected from Lanker-
shim Boulevard, Los Angeles on June 16, 2005 and made
public online 1. This dataset records how each vehicle
proceed (e.g., location and speed) on a 1× 4 road network,
in the temporal resolution of 0.1 second. These trajectories
are used directly as the expert trajectories.

1https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

B. Compared Methods

We compare our method Learning to Simulate (L2S) with
two types of baseline methods: traditional CFM based methods
and learning based methods. For the CFM based methods, we
select the popular Krauss model [13] as the CFM and employ
two search methods that are frequently used in calibrating
these parameters.

• CFM-RS: calibrating the parameters with random search.
The algorithm will randomly generate one set of parameters
for the CFM in each round. The set of parameters that yields
the best results are kept.

• CFM-TS: calibrating the parameters with Tabu search [14].
Starting from an initial set of parameter, a new set of
parameters is chosen within the proximity of the current
parameters in each round.

In order to better evaluate the learning performance of our
method, we also apply BC [6] in vehicle trajectory learning
and compare it to our method.

C. Experiment Settings

Our experiments are conducted in a traffic simulation plat-
form called CityFlow [19]. This simulator can take traffic
flow as input and simulate how each vehicle run towards
its destination (including its interaction with traffic signals
and other vehicles). For HZ and GD dataset, since they only
have the arriving flow of the traffic, we will feed the traffic
into the simulator (controlled by a pre-set driving policy) and
generate the expert trajectories. For LA dataset, we directly
use the provided trajectories as the expert. Then, we use
different methods to recover the driving policy and compare
the recovered trajectories w.r.t. the expert ones, in terms of
root mean square error (RMSE) of the speed and position.



TABLE I
PERFORMANCE COMPARISON OF L2S WITH STATE-OF-ART METHODS IN TERMS OF RMSE OF RECOVERED VEHICLE POSITION (M) AND SPEED (M/S).

RELATIVE IMPROVEMENTS ARE CALCULATED OVER THE BEST BASELINE. OUR PROPOSED L2S SHOWS BEST PERFORMANCE ON ALL DATASETS.

Method HZ-1 HZ-2 HZ-3 GD LA
Pos Speed Pos Speed Pos Speed Pos Speed Pos Speed

CFM-RS 173.0 5.3 153.0 5.6 129.0 5.7 286.0 5.3 1280.9 10.3
CFM-TS 188.3 5.8 147.0 6.1 149.0 6.1 310.0 5.5 1294.7 10.8

BC 225.0 5.7 151.0 5.2 170.0 6.1 485.0 5.6 1003.3 7.6
L2S 147.1 4.3 66.9 2.4 98.5 4.1 157.6 2.5 749.0 5.7

Improvement 15.0% 18.9% 54.5% 53.8% 23.6% 28.1% 44.9% 52.8% 25.3% 25.0%

Concretely, we have

RMSE =
1

T

T∑
t=1

√√√√ 1

M

M∑
m=1

(
s
(m)
t − ŝ(m)

t

)2
(6)

where s(m)
t and ŝ(m)

t are the true value and recovered value of
the position or speed of vehicle m at timestamp t respectively.

D. Results

We compare L2S with the other methods on the three
datasets. The results are shown in Table I. L2S outperforms all
the baseline methods in terms of RMSE in position and speed
(compared with the expert trajectories) with improvement of at
least 15%. It is observed that, the calibration methods (CFM-
RS and CFM-TS) can achieve reasonable results on single-
intersection cases in HZ dataset, but perform very poorly in
multi-intersection cases GD and LA. The inferior results of BC
is mainly due to its failure in modeling interactions between
vehicles, which is more obvious in multi-intersection cases.

VI. CONCLUSION

In this paper, we formulate traffic simulation as an imitation
learning problem and directly learn the pattern of individual
vehicle’s behaviors from real-world demonstrations. Through
experiments we show the superior performance of our method
in recovering real-world vehicle trajectory. For future work,
we will work on improving the model’s generalization ability
in different traffic environment.

ACKNOWLEDGMENT

This work was supported in part by NSF awards #1652525,
#1618448 and #1639150. The views and conclusions con-
tained in this paper are those of the authors and should not be
interpreted as representing any funding agencies.

REFERENCES

[1] H. Wei, G. Zheng, H. Yao, and Z. Li, “Intellilight: A reinforcement
learning approach for intelligent traffic light control,” in Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2018, pp. 2496–2505.

[2] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128–138, December 2012.

[3] J. Barceló and J. Casas, “Dynamic network simulation with aimsun,” in
Simulation approaches in transportation analysis. Springer, 2005, pp.
57–98.

[4] Q. Yang and H. N. Koutsopoulos, “A microscopic traffic simulator
for evaluation of dynamic traffic management systems,” Transportation
Research Part C: Emerging Technologies, vol. 4, no. 3, pp. 113–129,
1996.

[5] P. G. Gipps, “A behavioural car-following model for computer simula-
tion,” Transportation Research Part B: Methodological, vol. 15, no. 2,
pp. 105–111, 1981.

[6] D. Michie, M. Bain, and J. Hayes-Miches, “Cognitive models from
subcognitive skills,” IEEE control engineering series, vol. 44, pp. 71–99,
1990.

[7] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning.” in International Conference on Machine Learning (ICML),
vol. 1, 2000, p. 2.

[8] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems (NeurIPS), 2016,
pp. 4565–4573.

[9] Y. Cui, U. Martin, and W. Zhao, “Calibration of disturbance parameters
in railway operational simulation based on reinforcement learning,”
Journal of Rail Transport Planning & Management, vol. 6, no. 1, pp.
1–12, 2016.

[10] F. Martinez-Gil, M. Lozano, and F. Fernández, “Calibrating a motion
model based on reinforcement learning for pedestrian simulation,” in
International Conference on Motion in Games. Springer, 2012, pp.
302–313.

[11] N. Ruiz, S. Schulter, and M. Chandraker, “Learning to simulate,” arXiv
preprint arXiv:1810.02513, 2018.

[12] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler,
and M. J. Kochenderfer, “Multi-agent imitation learning for driving
simulation,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 1534–1539.

[13] S. Krauß, “Microscopic modeling of traffic flow: Investigation of colli-
sion free vehicle dynamics,” Ph.D. dissertation, Dt. Zentrum für Luft-und
Raumfahrt eV, Abt. Unternehmensorganisation und . . . , 1998.

[14] C. Osorio and V. Punzo, “Efficient calibration of microscopic car-
following models for large-scale stochastic network simulators,” Trans-
portation Research Part B: Methodological, vol. 119, pp. 156–173, 2019.

[15] A. Kesting and M. Treiber, “Calibrating car-following models by using
trajectory data: Methodological study,” Transportation Research Record,
vol. 2088, no. 1, pp. 148–156, 2008.

[16] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum en-
tropy inverse reinforcement learning.” in AAAI Conference on Artificial
Intelligence (AAAI), vol. 8, 2008, pp. 1433–1438.

[17] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the International Conference on
Machine learning (ICML). ACM, 2004, p. 1.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[19] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang,
Y. Yu, H. Jin, and Z. Li, “Cityflow: A multi-agent reinforcement learning
environment for large scale city traffic scenario,” in International World
Wide Web Conference (WWW) Demo Paper, 2019.

[20] G. Zheng, Y. Xiong, X. Zang, J. Feng, H. Wei, H. Zhang, Y. Li, K. Xu,
and Z. Li, “Learning phase competition for traffic signal control,” arXiv
preprint arXiv:1905.04722, 2019.

[21] H. Wei, N. Xu, H. Zhang, G. Zheng, X. Zang, C. Chen, W. Zhang,
Y. Zhu, K. Xu, and Z. Li, “Colight: Learning network-level cooperation
for traffic signal control,” arXiv preprint arXiv:1905.05717, 2019.


