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ABSTRACT
The intelligent traffic light control is critical for an efficient trans-
portation system. While existing traffic lights are mostly operated
by hand-crafted rules, an intelligent traffic light control system
should be dynamically adjusted to real-time traffic. There is an
emerging trend of using deep reinforcement learning technique
for traffic light control and recent studies have shown promising
results. However, existing studies have not yet tested the methods
on the real-world traffic data and they only focus on studying the
rewards without interpreting the policies. In this paper, we propose
a more effective deep reinforcement learning model for traffic light
control. We test our method on a large-scale real traffic dataset
obtained from surveillance cameras. We also show some interesting
case studies of policies learned from the real data.

CCS CONCEPTS
• Computing methodologies → Control methods; • Applied
computing → Transportation;
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1 INTRODUCTION
Traffic congestion has become increasingly costly. For example,
traffic congestion costs Americans $124 billion a year, according
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Figure 1: Deep reinforcement learning framework for traffic
light control.

to a report by Forbes in 2014 [12]. In European Union, the traffic
congestion cost is estimated to be 1% of its GDP [7]. Improving
traffic conditions could increase city efficiency, improve economy,
and ease people’s daily life.

One way to reduce the traffic congestion is by intelligently con-
trolling traffic lights. Nowadays, most traffic lights are still con-
trolled with pre-defined fixed-time plan [18, 23] and are not de-
signed by observing real traffic. Recent studies propose hand-crafted
rules according to real traffic data [5, 20]. However, these rules are
still pre-defined and cannot be dynamically adjusted w.r.t. real-time
traffic.

To dynamically adjust traffic lights according to real-time traffic,
people have been using reinforcement learning technique [13, 22,
24]. Traditional reinforcement learning is difficult to apply due to
two key challenges: (1) how to represent environment; and (2) how
to model the correlation between environment and decision. To
address these two challenges, recent studies [15, 22] have applied
deep reinforcement learning techniques, such as Deep Q-learning
(DQN), for traffic light control problem. Figure 1 illustrates the basic
idea of deep reinforcement learning framework. Environment is
composed of traffic light phase and traffic condition. State is a fea-
ture representation of the environment. Agent takes state as input
and learns a model to predict whether to “keep the current phase
of traffic lights” or “change the current phase”. The decision is sent
to the environment and the reward (e.g., how many vehicles pass
the intersection) is sent back to the agent. The agent consequently
updates the model and further makes the new decision for the next
timestamp based on the new state and the updated model. In such
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Figure 2: Reward is not a comprehensive measure to evalu-
ate traffic light control performance. Both policies will lead
to the same rewards. But policy #1 is more suitable than pol-
icy #2 in the real world.

a framework, traffic condition can be described as an image and
such an image is directly taken as an input for a CNN-based model
to enrich the hand-crafted features of the environment.

Recent deep reinforcement learning approaches made promising
progress for the traffic light control problem. Our approach extends
this line of work by making several important new contributions:

1. Experiments with real traffic data. Nowadays, increasing
amount of traffic data is being collected from various sources. In
China, many big cities have installed AI-equipped traffic surveil-
lance cameras to monitor traffic conditions in real time. Such real-
time traffic data enables us to implement reinforcement learning
in real world. However, to the best of our knowledge, none of ex-
isting studies have used the real traffic data to test their methods.
Instead, they use traffic simulations and such simulations do not
reflect the real-world traffic. For example, the simulation models in
current studies often assume that vehicles arrive at a constant rate
but real traffic are highly dynamic over time. In our paper, we test
the methods on a large-scale real traffic data obtained from 1,704
surveillance cameras in Jinan, China for a period of 31 days (see
experiment section for details). In this dataset, there are more than
405 million vehicle records and more than 11 million unique vehicle
plates. We conduct comprehensive experiments on such large real
dataset.

2. Interpretations of the policy. A frequently used measure
to quantify the performance of traffic light control is by examining
the overall reward, which can be defined by several factors such
as waiting time of vehicles and number of vehicles passing the
intersections. However, existing studies rarely make observations of
the policy learned from the model. The reward could be misleading
in some cases. There could be different policies with the same
reward but one is more suitable than the other. Take Figure 2 as
an example. Assume there is only traffic on South-North direction
and the traffic comes for the first 80 seconds in every 120 seconds.

Case A Case B

Figure 3: Case A and case B have the same environment ex-
cept the traffic light phase.

Policy #1 is 80 seconds for green light on South-North direction and
followed by red light for 40 seconds, and then repeat. And policy #2
is different from policy #1 in the way that, instead of 40-second red
light on South-North direction, the light changes every 10 seconds.
Both policies will result in the same reward because no vehicle will
be waiting under either policy. However, policy #1 is preferred over
policy #2 in real scenario. In this paper, we claim that it is important
to study the policies rather than simply showing the overall reward.
In our experiments, we show several interesting policies learned
from the real traffic under different scenarios (e.g., peak hours vs.
non-peak hours, weekday vs. weekend).

3. A phase-gatedmodel learning.As described earlier in deep
reinforcement learning framework, the agent will take the state,
which is the representation of environment, as model input. The en-
vironment usually includes the current traffic light phase and traffic
conditions. For example, the environments of two cases in Figure 3
are the same, except the traffic light phases. Previous studies all take
phase as one feature [17, 22], together with many other features
(e.g., number of vehicles at different lanes, positions of vehicles).
And it is likely that this one feature does not play a role that is
significant enough to affect the model output. Therefore, the model
will make the same decision (i.e., either keep or change the current
phase) for these two different cases. However, such a decision, no
matter which one, is not ideal for one of the cases. Because in Fig-
ure 3, case A hopes to keep the phase and case B hopes to change the
phase. In this paper, we propose a new phase-sensitive (i.e., phase
gate combined with memory palace) reinforcement learning agent,
which is a critical component that leads to superior performance.

The rest of this paper is organized as follows. Section 2 discusses
the literature. Section 3 formally defines the problem. The method
is shown in Section 4 and the experimental results are shown in
Section 5. Finally, we conclude the paper in Section 6.

2 RELATEDWORK
In this section, we firstly introduce conventional methods for traffic
light control, then introduce methods using reinforcement learning.

2.1 Conventional Traffic Light Control
Early traffic light control methods can be roughly classified into
two groups. The first is pre-timed signal control [6, 18, 23], where a



fixed time is determined for all green phases according to historical
traffic demand, without considering possible fluctuations in traffic
demand. The second is vehicle-actuated control methods [5, 20]
where the real-time traffic information is used. Vehicle-actuated
methods are suitable for the situations with relatively high traffic
randomness. However, this method largely depends on the hand-
craft rules for current traffic condition, without taking into account
future situation. Therefore, it cannot reach the global optimal.

2.2 Reinforcement Learning for Traffic Light
Control

Recently, due to the incapability of dealing with dynamic multi-
direction traffic in previous methods, more works try to use re-
inforcement learning algorithms to solve the traffic light control
problem [13, 17, 24]. Typically, these algorithms take the traffic on
the road as state, and the operation on light as action. These meth-
ods usually show better performance compared with fixed-time
and traffic-responsive control methods.

Methods in [1, 2, 4, 8, 24] designed the state as discrete values
like the location of vehicles or number of waited cars. However,
the discrete state-action pair value matrix requires huge storage
space, which keeps these methods from being used in large state
space problems.

To solve the in-managablely large state space of previous meth-
ods, recent studies [15, 22] propose to apply Deep Q-learning meth-
ods using continuous state representations. These studies learn a
Q-function (e.g. a deep neural network) to map state and action to
reward. Theseworks vary in the state representation including hand
craft features (e.g., queue length [15, 17], average delay [10, 22]) and
image features[9, 16, 22]) They are also different in reward design,
including average delay [3, 22],the average travel time [16, 22], and
queue length[15].

However, all these methods assume relatively static traffic en-
vironments, and hence far from the real case. Further, they only
focus on rewards and overlook the adaptability of the algorithms
to the real traffic. Therefore, they cannot interpret why the learned
light signal changes corresponding to the traffic. In this paper, we
try to test the algorithms in a more realistic traffic setting, and add
more interpretation other than reward.

3 PROBLEM DEFINITION
In our problem, we have the environment E as an intersection of two
roads (and the traffic on this intersection). There is an intelligent
traffic light agent G. To make the notation simpler, we use “N”,
“S”, “W”, “E” to represent north, south, west, and east respectively,
and use “Red” and “Green” to represent red light and green light
correspondingly. A setting of the traffic light is defined as a phase
(e.g., green light on the west-east direction which can be simplified
as Green-WE). When a light changes from green to red, there is a
3 second yellow light, while the other directions still keep red. So
one green light and the subsequent yellow light can be represented
together by “Green”. To simplify the problem, we assume there
are only two phases of the traffic light, i.e., 1) Green-WE, and 2)
Red-WE. Due to the limitation of real-world setting, the traffic light
can only change in a specific order (i.e., 1 -> 2 -> 1 -> 2 -> ...). Given
the state s (describing the positions and speed of the traffic near

this intersection), the goal of the agent G is to give the optimal
action a (i.e., whether to change the light to the next phase), so that
the reward r (i.e., the smoothness of traffic) can be maximized.

Table 1: Notations

Notation Meaning

E Environment
G Agent
a Action
s State
r Reward
∆t Time interval between actions
q Action value function
Q Deep Q-Network
Li Queue length on the lane i
Vi Number of vehicles on the lane i
Wi Updated waiting time of all vehicles on the lane i
Di Delay of lane i.
M ∈ RN×N Image representation of vehicles’ position
Pc Current phase
Pn Next phase
C ∈ {0, 1} Light switches (1) or not (0)
N Number of vehicles passed the intersection

after the action.
T Travel time in system of all vehicles that passed

the intersection during ∆t .

4 METHOD
Traffic light control has attracted a lot of attention in recent years
due to its essential role in adjusting traffic. Current methods gen-
erally have two categories, conventional methods, and deep rein-
forcement learning based methods. Conventional methods usually
rely on previous knowledge to set fixed time for each light phase
or set changing rules. These rules are prone to dynamically chang-
ing traffic. Reinforcement learning methods usually take the traffic
condition (e.g., queue length of waiting cars and updated waiting
time) as state, and try to make actions that can improve the traffic
condition based on the current state.

However, the current methods do not consider the complex situ-
ations in real case, and hence may lead to stuck in one single kind
of action. This will lead to inferior traffic adjusting performance
under complex traffic situation.

In this section, we propose a deep reinforcement traffic light
agent to solve this problem. We will first introduce the model frame-
work in Section 4.1. Then, we show the design of agent in Section 4.2.
We further describe the network structure in Section 4.3. In addition,
we describe the memory palace in Section 4.4. Note that, although
our model is designed for a four way intersection with two phases,
it is not difficult to extend it to other types of intersections or to
multiple phases scenarios.
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Figure 4: Model framework

4.1 Framework

Our model is composed of offline part and online part (as shown
in Figure 4). We extract five kinds of features describing the traffic
conditions as state (detailed in Section 4.2), and use reward to
describe how much the action has improved the traffic (detailed in
Section 4.2). In offline stage, we set a fixed timetable for the lights,
and let traffic go through the system to collect data samples. After
training with the samples logged in this stage, the model will be
put into the online part. In online stage, at every time interval ∆t ,
the traffic light agent will observe the state s from the environment
and take action a (i.e., whether to change light signal to the next
phase) according to ϵ-greedy strategy combining exploration (i.e.,
random action with probability ϵ) and exploitation (i.e., taking the
action with maximum estimated reward). After that, the agent G
will observe the environment and get the reward r from it. Then, the
tuple (s, a, r) will be stored into memory. After several timestamps
(e.g., t2 in Figure 4), agent G will update the network according to
the logs in the memory.

4.2 Agent Design
First, we introduce the state, action and reward representation.

• State. Our state is defined for one intersection. For each lane
i at this intersection, the state component includes queue
length Li, number of vehicles Vi, updated waiting time of
vehiclesWi. In addition, the state includes an image repre-
sentation of vehicles’ position M, current phase Pc and next
phase Pn .

• Action. Action is defined as a = 1: change the light to next
phase Pn , and a = 0: keep the current phase Pc .

• Reward. As is shown in Equation 3, reward is defined as a
weighted sum of the following factors:

(1) Sum of queue length L over all approaching lanes, where
L is calculated as the total number of waiting vehicles on

the given lane. A vehicle with a speed of less than 0.1 m/s
is considered as waiting.

(2) Sum of delayD over all approaching lanes, where the delay
Di for lane i is defined in Equation 1, where the lane speed
is the average speed of vehicles on lane i, and the speed
limit is the maximum speed allowed on lane i:

Di = 1 − lane speed

speed limit
(1)

(3) Sum of updated waiting timeW over all approaching lanes.
This equals to the sum ofW over all vehicles on approach-
ing lanes. The updated waiting timeW for vehicle j at time
t is defined in Equation 2. Note that the updated waiting
time of a vehicle is reset to 0 every time it moves. For
example, if a vehicle’s speed is 0.01m/s from 0s to 15s,
5m/s from 15s to 30s, and 0.01m/s from 30s to 60s,Wj is
15 seconds, 0 seconds and 30 seconds when t =15s, 30s
and 60s relatively.

Wj(t) =
{
Wj(t − 1) + 1 vehicle speed < 0.1
0 vehicle speed ≥ 0.1

(2)

(4) Indicator of light switches C, where C = 0 for keeping the
current phase, and C = 1 for changing the current phase.

(5) Total number of vehicles N that passed the intersection
during time interval ∆t after the last action a.

(6) Total travel time of vehicles T that passed the intersection
during time interval ∆t after the last action a, defined as
the total time (in minutes) that vehicles spent on approach-
ing lanes.

Reward = w1 ∗
∑
i∈I

Li +w2 ∗
∑
i∈I

Di +w3 ∗
∑
i∈I

Wi+

w4 ∗ C +w5 ∗ N +w6 ∗ T.
(3)
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Hence, given the current state s of the traffic condition, the mission
of the agent G is to find the action a (change or keep current phase)
that may lead to the maximum reward r in the long run, following
the Bellman Equation (Equation 4) [21]. In this situation, the action
value function q for time t is the summation of the reward of the
next timestamp t + 1 and the maximum potential future reward.
Through this conjecture of future, the agent can select action that
is more suitable for long-run reward.

q(st , a, t) = ra,t+1 + γ max q(sa,t+1, a′, t + 1) (4)

4.3 Network Structure
In order to estimate the reward based on the state, and action, the
agent needs to learn a Deep Q-Network Q(s, a).

In the real-world scenario, traffic is very complex and contain
many different cases need to be considered separately. We will
illustrate this in Example 4.1.

Example 4.1. We still assume a simple intersection with two-
phase light transition here: 1) Green-WE, and 2) Red-WE. The
decision process of whether to change the traffic light consists
of two steps. The first step is the mapping from traffic condition
(e.g., how many cars are waiting, how long has each car been wait-
ing) to a partial reward. An example of this mapping could be
r = −0.5×L− 0.7×W. This is shared by different phases, no matter
which lane the green light is on. Then, to determine the action, the
agent should watch on the traffic in different lanes during different
phases. For instance, as is shown in Figure 3 (a), when the red light
is on the NS direction, more waiting traffic (i.e., lower reward in the
first step) on the NS direction will make the light tend to change
(because by changing the light on this lane from red to green, more
cars on this lane can pass through this intersection), while more
waiting traffic (i.e., lower reward in the first step) on the WE direc-
tion will make the light tend to keep. When the red light is on the
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Figure 6: Memory palace structure

WE direction, the case is right the opposite. Therefore, the light
phase should have an explicit selection on features.

In previous studies, due to the simplified design of the model for
approximating Q-function under complex traffic condition, agents
are having difficulties in distinguishing the decision process for
different phases. Therefore, we hereby propose a network structure
that can explicitly consider the different cases explicitly. We call
this special sub-structure “Phase Gate”.

Our whole network structure can be shown as in Figure 5. The
image features are extracted from the observations of the traffic
condition and fed into two convolutional layers. The output of these
layers are concatenated with the four explicitly mined features,
queue length L, updated waiting time W, phase P and number
of total vehicles V. The concatenated features are then fed into
fully-connected layers to learn the mapping from traffic conditions
to potential rewards. Then, for each phase, we design a separate
learning process of mapping from rewards to the value of making
decisions Q(s, a). These separate processes are selected through a
gate controlled by the phase. As shown in Figure 5, when phase
P = 0, the left branch will be activated, while when phase P = 1,
the right branch will be activated. This will distinguish the decision
process for different phases, prevent the decision from favoring
certain action, and enhance the fitting ability of the network.

4.4 Memory Palace and Model Updating
Periodically, the agent will take samples from the memory and use
them to update the network. This memory is maintained by adding
the new data samples in and removing the old samples occasionally.
This technique is noted as experience replay [19] and has been
widely used in reinforcement learning models.

However, in the real traffic setting, traffic on different lanes can
be really imbalanced. As previousmethods [9, 10, 15, 22] store all the



state-action-reward training samples in one memory, this memory
will be dominated by the phases and actions that appear most
frequently in imbalanced settings. Then, the agent will be learned to
estimate the reward for these frequent phase-action combinations
well, but ignore other less frequent phase-action combinations.
This will cause the learned agent to make bad decisions on the
infrequent phase-action combinations. Therefore, when traffic on
different lanes are dramatically different, these imbalanced samples
will lead to inferior performance on less frequent situation.

Inspired by Memory Palace theory [11, 14] in cognitive psychol-
ogy, we can solve this imbalance by using different memory palaces
for different phase-action combinations. As shown in Figure 6, train-
ing samples for different phase-action combinations are stored into
different memory palaces. Then same number of samples will be se-
lected from different palaces. These balanced samples will prevent
different phase-action combinations from interfering each other’s
training process, and hence, improve the fitting capability of the
network to predict the reward accurately.

5 EXPERIMENT
In this section, we conduct experiments using both synthetic and
real-world traffic data. We show a comprehensive quantitative eval-
uation by comparing with other methods and also show some
interesting case studies 1.

5.1 Experiment Setting
The experiments are conducted on a simulation platform SUMO
(Simulation of Urban MObility) 2. SUMO provides flexible APIs
for road network design, traffic volume simulation and traffic light
control. Specifically, SUMO can control the trafficmoving according
to the given policy of traffic light (obtained by the traffic light agent).

The environment for the experiments on synthetic data is a four-
way intersection as Figure 2. The intersection is connected with
four road segments of 150-meters long, where each road have three
incoming and three outgoing lanes. The traffic light in this part of
experiment contains two phases: (1) Green-WE (green light on WE
with red light on SN ), (2) Red-WE (red light onWE with green light
on SN ). Note that when a green light is on one direction, there is
a red light on the other direction. Also, a green light is followed
by a 3-second yellow light before it turns to red light. Although
this is a simplification of the real world scenario, the research of
more types of intersections (e.g., three-way intersection), and more
complex light phasing (e.g., with left-turn phasing) can be further
conducted in similar way.

5.2 Parameter Setting
The parameter setting and reward coefficients for our methods are
shown in Table 2 and Table 3 respectively. We found out that the
action time interval ∆t has minimal influence on performance of
our model as long as ∆t is between 5 seconds and 25 seconds.

5.3 Evaluation Metric
We evaluate the performance of different methods using the follow-
ing measures:
1Codes are available at the author’s website.
2http://sumo.dlr.de/index.html

Table 2: Settings for our method

Model parameter Value

Action time interval ∆t 5 seconds
γ for future reward 0.8
ϵ for exploration 0.05

Sample size 300
Memory length 1000

Model update interval 300 seconds

Table 3: Reward coefficients

w1 w2 w3 w4 w5 w6

-0.25 -0.25 -0.25 -5 1 1

• Reward: average reward over time. Defined in Equation 3,
the reward is a combination of several terms (positive and
negative terms), therefore, the range of reward is from −∞
to ∞. Under specific configuration, there will be an upper
bound for the reward when all cars move freely without any
stop or delay.

• Queue length: average queue length over time, where the
queue length at time t is the sum of L (defined in Section 4.2)
over all approaching lanes. A smaller queue length means
there are fewer waiting vehicles on all lanes.

• Delay: average delay over time, where the delay at time t
is the sum of D (defined in Equation 1) of all approaching
lanes. A lower delay means a higher speed of all lanes.

• Duration: average travel time vehicles spent on approach-
ing lanes (in seconds). It is one of the most important mea-
sures that people care when they drive on the road. A smaller
duration means vehicles spend less time passing through the
intersection.

In summary, a higher reward indicates a better performance of the
method, and a smaller queue length, delay and duration indicates
the traffic is less jammed.

5.4 Compared Methods
To evaluate the effectiveness of our model, we compare our model
with the following baseline methods, and tune the parameter for
all methods. We then report their best performance.

• Fixed-time Control (FT ). Fixed-time control method use a
pre-determined cycle and phase time plan [18] and is widely
used when the traffic flow is steady.

• Self-Organizing Traffic Light Control (SOTL) [5]. This
method controls the traffic light according to the current
traffic state, including the eclipsed time and the number of
vehicles waiting at the red light. Specifically, the traffic light
will change when the number of waiting cars is above a
hand-tuned threshold.

• Deep Reinforcement Learning for Traffic Light Con-
trol (DRL). Proposed in [22], this method applies DQN

http://sumo.dlr.de/index.html


framework to select optimal light configurations for traf-
fic intersections. Specifically, it solely relies on the original
traffic information as an image.

In addition to the baseline methods, we also consider several
variations of our model.

• IntelliLight (Base). Using the same network structure and
reward function defined as in Section 4.2 and 4.3. Thismethod
is without Memory Palace and Phase Gate.

• IntelliLight (Base+MP). By adding Memory Palace in psy-
chology to IntelliLight-Base, we store the samples from dif-
ferent phase and time in separate memories.

• IntelliLight (Base+MP+PG). This is the model adding two
techniques (Memory Palace and Phase Gate).

5.5 Datasets
5.5.1 Synthetic data. In the first part of our experiment, syn-

thetic data is used with four traffic flow settings: simple changing
traffic (configuration 1), equally steady traffic (configuration 2), un-
equally steady traffic (configuration 3) and complex traffic (config-
uration 4) which is a combination of previous three configurations.
As is shown in Table 4, the arriving of vehicles are generated by
Poisson distribution with certain arrival rates.

Table 4: Configurations for synthetic traffic data

Config Directions Arrival rate
(cars/s)

Start time
(s)

End time
(s)

1 WE 0.4 0 36000
SN 0.4 36001 72000

2 WE 0.033 0 72000
SN 0.033 0 72000

3 WE 0.2 0 72000
SN 0.033 0 72000

4

Configuration 1 0 72000
Configuration 2 72001 144000
Configuration 3 144001 216000

5.5.2 Real-world data. The real-world dataset is collected by
1,704 surveillance cameras in Jinan, China over the time period from
08/01/2016 to 08/31/2016. The locations of these cameras are shown
in Figure 7. Gathered every second by the cameras facing towards
vehicles near intersections, each record in the dataset consists of
time, camera ID and the information about vehicles. By analyzing
these records with camera locations, the trajectories of vehicles are
recorded when they pass through road intersections. The dataset
covers 935 locations, where 43 of them are four-way intersections.
We use the number of vehicles passing through 24 intersections as
traffic volume for experiments since only these intersections have
consecutive data. Then we feed this real-world traffic setting into
SUMO as online experiments. It can be seen from Table 5 that traffic
flow on different roads are dynamically changing in the real world.

5.6 Performance on Synthetic Data
5.6.1 Comparison with state-of-the-art methods. We first com-

pare ourmethodwith three other baselines under different synthetic

Figure 7: Traffic surveillance cameras in Jinan, China

Table 5: Details of real-world traffic dataset

Time Range Records Arrival Rate (cars/s)
Mean Std Max Min

08/01/2016 -
08/31/2016 405,370,631 0.089 0.117 0.844 0.0

traffic settings. From Table 6, 7, 8 and 9 we can see that our method
performs better than all other baseline methods in configurations
1, 2, 3 and 4. Although some baselines perform well on certain set-
ting, they perform badly in other configurations (e.g., SOTL achieves
good rewards under configuration 1, almost the same as our method
in 3 digit floats. This is because our method has learned to keep the
light until 36000 s and switch the light after that, and SOTL is also
designed to behave similarly. Hence, these two methods perform
very similar). On the contrary, our method IntelliLight shows better
performance under different configurations.

5.6.2 Comparison with variants of our proposed method. Table
6, 7, 8 and 9 show the performance of variants of our proposed
method. First, we can see that adding Memory Palace helps achieve
higher reward under configuration 3 and 4, although it does not
boost the reward under configuration 1 and 2. This is because for
the simple case (configuration 1 and 2), the phase is relatively steady
for a long time (because the traffic only comes from one direction or
keeps not changing in a long time). Therefore, the memory palace
does not help in building a better model for predicting the reward.
Further adding Phase Gate also reduces the queue length in most
cases and achieves highest reward, demonstrating the effectiveness
of these two techniques.

5.6.3 Interpretation of learned signal. To understand what our
method have learned w.r.t. dynamic traffic conditions, we show
the percentage of duration for phase Green-WE (i.e., green light
on WE direction with red light on SN direction), along with the
ratio of traffic flow onWE over total traffic flow from all directions.
With the changing of traffic, an ideal traffic light control method
would be able to adjust its phase duration to traffic flows and get
high reward. For example, as traffic changes from direction WE to
SN , the traffic light agent is expected to adjust its phase duration



Table 6: Performance on configuration 1. Reward: the higher
the better. Other measures: the lower the better. Same with
the following tables.

Model name Reward Queue length Delay Duration

FT -2.304 8.532 2.479 42.230
SOTL 0.398 0.006 1.598 24.129
DRL -36.247 91.412 4.483 277.430

IntelliLight (ours)
Base -3.077 10.654 2.635 92.080

Base+MP -3.267 6.087 1.865 38.230
Base+MP+PG 0.399 0.005 1.598 24.130

Table 7: Performance on configuration 2

Model name Reward Queue length Delay Duration

FT -0.978 1.105 2.614 34.278
SOTL -21.952 19.874 4.384 177.747
DRL -2.208 3.405 3.431 52.075

IntelliLight (ours)
Base -0.523 0.208 1.689 27.505

Base+MP -0.556 0.259 1.730 27.888
Base+MP+PG -0.514 0.201 1.697 27.451

Table 8: Performance on configuration 3

Model name Reward Queue length Delay Duration

FT -1.724 4.159 3.551 36.893
SOTL -20.680 20.227 5.277 69.838
DRL -8.108 16.968 4.704 66.485

IntelliLight (ours)
Base -0.836 0.905 2.699 28.197

Base+MP -0.698 0.606 2.729 26.948
Base+MP+PG -0.648 0.524 2.584 26.647

Table 9: Performance on configuration 4

Model name Reward Queue length Delay Duration

FT -1.670 4.601 2.883 39.707
SOTL -14.079 13.372 3.753 54.014
DRL -49.011 91.887 4.917 469.417

IntelliLight (ours)
Base -5.030 5.880 3.432 39.021

Base+MP -3.329 5.358 2.238 44.703
Base+MP+PG -0.474 0.548 2.202 25.977

from giving WE green light to giving SN green light. As we can
see from Figure 8, IntelliLight can adjust its phase duration as the
traffic changes.

Traffic comes equally

Traffic switches from
 WE to SN

Traffic on WE arises

Figure 8: Percentage of the time duration of learned policy
for phase Green-WE (green light on W-E and E-W direction,
while red light on N-S and S-N direction) in every 2000 sec-
onds for different methods under configuration 4.

5.7 Performance on Real-world Data
5.7.1 Comparison of different methods. In this section, we com-

pare our method with baseline methods on real-world data. The
overall results are shown in Table 10. Our method IntelliLight
achieves the best reward, queue length, delay and duration over
all the compared methods, with a relative improvement of 32%,
38%, 19% and 22% correspondingly over the best baseline method.
In addition, our method has a relatively steady performance over
multiple intersections (small standard deviation).

5.7.2 Observations with respect to real traffic. In this section,
we make observations on the policies we learned from the real
data. We analyze the learned traffic light policy for the intersection
of Jingliu Road (WE direction) and Erhuanxi Auxiliary Road (SN
direction) under different scenarios: peak hours vs. non-peak hours,
weekdays vs. weekends, and major arterial vs. minor arterial.

1. Peak hour vs. Non-peak hour. Figure 9 (a) shows the av-
erage traffic flow from both directions (WE and SN ) on a Monday.
On this day, there is more traffic onWE direction than SN for most
of the time, during which an ideal traffic light control method is
expected to give longer time for WE direction. It can be seen from
Figure 9 (c) that, the ratio of the time duration for phase Green-WE
(i.e., green light onWE, while red light on SN ) is usually larger than
0.5, which means for most of the time, our method gives longer time
forWE. And during peak hours (around 7:00, 9:30 and 18:00), the
policies learned from our method also give longer time for green
light on WE than non-peak hours. In early morning, the vehicle
arrival rates on SN are larger than the rates onWE, and our method
automatically gives longer time to SN . This shows our method can
intelligently adjust to different traffic conditions.

2. Weekday vs. Weekend. Unlike weekdays, weekend shows
different patterns about traffic condition and traffic light control
policies. Our policy gives less green light on WE (more green light
on SN ) during weekend daytime than it gives on weekday. This is
because there is more traffic on SN than on WE during weekend
daytime in Figure 9 (b), while during weekday traffic on SN is less
than onWE. Besides, by comparing Figure 9 (a) with Figure 9 (b),
we can see that the traffic of WE and SN during late night time on
Monday is similar, making the ratio of duration Green-We close to
0.5.



Table 10: Performances of different methods on real-world data. The number after ± means standard deviation. Reward: the
higher the better. Other measures: the lower the better.

Methods Reward Queue Length Delay Duration

FT -5.727 ± 5.977 19.542 ± 22.405 3.377 ± 1.057 84.513 ± 60.888
SOTL -35.338 ± 65.108 16.603 ± 17.718 4.070 ± 0.420 64.833 ± 23.136
DRL -30.577 ± 26.242 54.148 ± 43.420 4.209 ± 1.023 166.861 ± 93.985

IntelliLight -3.892 ± 7.609 10.238 ± 20.949 2.730 ±1.086 50.487 ± 46.439

7:00 9:30 18:00

Early morning

Noon time

Late night
10:00 17:30

Weekend morning

Weekend daytime

Late night

(a) Average arrival rate of August 1st (Monday) (b) Average arrival rate of August 7th (Sunday)

7:00 9:30 18:00

Early morning Noon time Late night

Weekend daytime

Late night

10:00 17:30

Weekend morning

(c) Phase time ratio from learned policy on August 1st (Monday) (d) Phase time ratio from learned policy on August 7th (Sunday)

Figure 9: Average arrival rate on two directions (WE and SN ) and time duration ratio of two phases (Green-WE and Red-WE)
from learned policy for Jingliu Road (WE) and Erhuanxi Auxiliary Road (SN ) in Jinan on August 1st and August 7th, 2016.

Hour

Switch to Green-WE

Keep Green-WE

Hour

(a) Early morning when traffic on
WE-EW is less than SN -NS (b) Noon when traffic on

WE-EW is more than SN -NS (c) Late night when traffic on
WE-EW is more than SN -NS

Figure 10: Detailed average arrival rate on two directions (dotted lines) and changes of two phases (dashed areas) in three
periods of time for Jingliu Road (WE) and Erhuanxi Auxiliary Road (SN ) in Jinan on August 1st, 2016. X-axis of each figure
indicates the time of a day; left Y-axis of each figure indicates the number of cars approaching the intersection every second;
right Y-axis for each figure indicates the phase over time.



3. Major arterial vs. Minor arterial.Major arterials are roads
that have higher traffic volume within a period, and are expected
to have a longer green light time. Without prior knowledge about
major arterial, learned traffic light control policy using our method
prefer giving the major arterial green light (including keeping the
green light already on major arterial, and tend to switching red light
to green light for major arterial). Specifically, we look into three
periods of time (3:00, 12:00 and 23:30) of August 1st. From Figure 9
(a), we can tell that the road onWE direction is the main road, since
traffic on WE is usually heavier than traffic on SN . As is shown in
Figure 10, the dotted lines indicates the number of arriving cars for
every second on two different directions. Along with the arrival
rate, we also plot the change of phases (dashed area). It can be seen
from Figure 10 (a) that: 1) the overall time period of phase Red-WE
is longer than Green-WE, which is compatible with traffic volume
at this time. 2) although the traffic volume of SN is larger than
WE, the traffic light change from Green-WE to Red-WE is usually
not triggered by waiting cars on SN direction. On the contrary,
in Figure 10 (b) and Figure 10 (c), the change from Green-WE to
Red-WE is usually triggered by waiting cars on SN direction. This
is mainly because the road on WE is the main road during these
time periods, and the traffic light tends to favor phase Green-WE.

6 CONCLUSION
In this paper, we address the traffic light control problem using a
well-designed reinforcement learning approach. We conduct exten-
sive experiments using both synthetic and real world experiments
and demonstrate the superior performance of our proposed method
over state-of-the-art methods. In addition, we show in-depth case
studies and observations to understand how the agent adjust to
the changing traffic, as a complement to quantitative measure on
rewards. These in-depth case studies can help generate traffic rules
for real world application.

We also acknowledge the limitations of our current approach
and would like to point out several important future directions to
make the method more applicable to real world. First, we can extend
the two-phase traffic light to multi-phase traffic light, which will in-
volve more complicated but more realistic state transition. Second,
our paper addresses a simplified one intersection case, whereas
the real world road network is much more complicated than this.
Although some studies have tried to solve the multi-intersection
problem by using multiple reinforcement learning agents, they do
not explicitly consider the interactions between different intersec-
tions (i.e., how can the phase of one intersection affect the state of
nearby intersections) and they are still limited to small number of
intersections. Lastly, our approach is still tested on a simulation
framework and thus the feedback is simulated. Ultimately, a field
study should be conducted to learn the real-world feedback and to
validate the proposed reinforcement learning approach.
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