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ABSTRACT
Traffic signal control is an important and challenging real-world
problem that has recently received a large amount of interest from
both transportation and computer science communities. In this sur-
vey, we focus on investigating the recent advances in using rein-
forcement learning (RL) techniques to solve the traffic signal con-
trol problem. We classify the known approaches based on the RL
techniques they use and provide a review of existing models with
analysis on their advantages and disadvantages. Moreover, we give
an overview of the simulation environments and experimental set-
tings that have been developed to evaluate the traffic signal control
methods. Finally, we explore future directions in the area of RL-
based traffic signal control methods. We hope this survey could
provide insights to researchers dealing with real-world applications
in intelligent transportation systems.

1. INTRODUCTION
Traffic congestion is a growing problem that continues to plague
urban areas with negative outcomes to both the traveling public
and society as a whole. These negative outcomes will only grow
over time as more people flock to urban areas. In 2014, traffic
congestion costs Americans over $166 billion in lost productivity
and wasted over 3.1 billion gallons of fuel [15]. Traffic conges-
tion was also attributed to over 56 billion pounds of harmful CO2

emissions in 2011 [54]. Mitigating congestion would have signif-
icant economic, environmental, and societal benefits. Signalized
intersections are one of the most prevalent bottleneck types in ur-
ban environments, and thus traffic signal control plays a vital role
in urban traffic management.
The typical approach that transportation researchers take is to cast
traffic signal control as an optimization problem under certain as-
sumptions about the traffic model, e.g., vehicles come in a uniform
and constant rate [52]. Various assumptions have to be made in
order to make the optimization problem tractable. These assump-
tions, however, usually deviate from the real world, where the traf-
fic condition is affected by many factors such as driver’s preference,
interactions with vulnerable road users (e.g., pedestrians, cyclists,
etc.), weather and road conditions. These factors can hardly be
fully described in a traffic model. For a more comprehensive sur-
vey for the methods in transportation, we refer the interested read-
ers to [47; 52; 40; 31; 17; 50; 64].
On the other hand, reinforcement learning methods can directly
learn from the observed data without making unrealistic assump-

tions about the traffic model, by first taking actions to change the
signal plans and then learning from the outcomes. In essence, an
RL-based traffic signal control system observes the traffic condition
first, then generates and executes different actions (i.e., traffic sig-
nal plans). It will then learn and adjust the strategies based on the
feedback from the environment. However, in tradictional RL-based
methods, the states in an environment are required discretized and
low-dimensional, which is one of the major limitations of the tradi-
tional approaches.
Recent advances in RL, especially deep RL, offer the opportunity
to efficiently work with high dimensional input data (like images),
where the agent can learn a state abstraction and a policy approx-
imation directly from its input states. A series of related studies
using deep RL for traffic signal control have appeared in the past
few years. This survey is to provide an overview on the recent
RL-based traffic signal control approaches, including the state-of-
the-art methods and their experimental settings for evaluation.
In this survey, we first introduce the formulation of traffic light
control problems under RL, and then classify and discuss the cur-
rent RL control methods from different aspects: agent formulation,
policy learning approach, and coordination strategy when facing
multiple intersections. In the third section, we review how current
methods are evaluated, including simulators and experimental set-
tings that affect the performance of these methods. We then discuss
some future research directions. While [39; 71] provide surveys
mainly on earlier studies before the popularity of deep RL, in this
survey, we will mainly cover the recent deep RL methods. With the
increasing interest on RL-based control mechanisms in intelligent
transportation systems [24], such as autonomous driving [67] and
road control [46; 68], we hope this survey could also provide in-
sights on dealing with real-world challenges for other applications
in intelligent transportation systems.

2. BACKGROUND
In this section, we first describe the reinforcement learning frame-
work which constitutes the foundation of all the methods presented
in this paper. We then provide background on conventional RL-
based traffic signal control, including the problem of controlling a
single intersection and multiple intersections.

2.1 Reinforcement learning
Usually a single agent RL problem is modeled as a Markov Deci-
sion Process represented by 〈S,A, P,R, γ〉, where their definitions
are given as follows:
• Set of state representations S: At time step t, the agent observes
state st ∈ S.



• Set of actionA and state transition function P : At time step t, the
agent takes an action at ∈ A, which induces a transition in the envi-
ronment according to the state transition function P (st+1|st, at) :
S ×A → S
• Reward function R: At time step t, the agent obtains a reward rt

by a reward function: R(st, at) : S ×A → R
• Discount factor γ: The goal of an agent is to find a policy that

maximizes the expected return, which is the discounted sum of re-
wards: Gt :=

∑∞
i=0 γ

irt+i, where the discount factor γ ∈ [0, 1]
controls the importance of immediate rewards versus future re-
wards. Here, we only consider continuing agent-environment in-
tersections which do not end with terminal states but goes on con-
tinually without limit.
Solving a reinforcement learning task means, roughly, finding an
optimal policy π∗ that maximizes expected return. While the agent
only receives reward about its immediate, one-step performance,
one way to find the optimal policy π∗ is by following an opti-
mal action-value function or state-value function. The action-value
function (Q-function) of a policy π, Qπ : S × A → R, is the ex-
pected return of a state-action pair Qπ(s, a) = Eπ[Gt|st = s, at =
a]. The state-value function of a policy π, V π : S → R, is the
expected return of a state V π(s) = Eπ[Gt|st = s].

2.2 Problem setting
We now introduce the general setting of RL-based traffic signal
control problem, in which the traffic signals are controlled by an
RL agent or several RL agents. In single traffic signal control prob-
lem, the environment is the traffic conditions on the roads, and the
agent controls the traffic signal. At each time step t, a description
of the environment (e.g., signal phase, waiting time of cars, queue
length of cars, and positions of cars) will be generated as the state
st. The agent will predict the next action at to take that maximizes
the expected return, where the action could be changing to a certain
phase in the single intersection scenario. The action at will be exe-
cuted in the environment, and a reward rt will be generated, where
the reward could be defined on traffic conditions of the intersection.
Usually, in the decision process, an agent combines the exploitation
of learned policy and exploration of a new policy.
In multi-intersection traffic signal control problem, there are N
traffic signals in the environment, controlled by one or several agents.
The goal of the agent(s) is to learn the optimal policies to optimize
the traffic condition of the whole environment. At each timestep
t, each agent i observes part of the environment as the observation
oti and make predictions on the next actions aaat = (at1, . . . , a

t
N ) to

take. The actions will be executed in the environment, and the re-
ward rti will be generated, where the reward could be defined on the
level of individual intersections or a group of intersections within
the environment. We refer readers interested in more detailed prob-
lem settings to [8].

3. RL-BASED TRAFFIC SIGNAL CONTROL
In this section, we introduce three major aspects investigated in
recent RL-based traffic signal control literature: agent formulation,
policy learning approach and coordination strategy.

3.1 Opportunities
In this subsection, we point out some high-level discussions about
why RL and deep RL are appropriate for the traffic signal control
problem.
Reinforcement learning methods learns from trail-and-error with-
out making unrealistic assumptions on traffic model. The typical
approach that conventional transportation methods take is to cast
traffic signal control as an optimization problem under certain as-

sumptions about the traffic model. For example, Webster’s For-
mula method [28] is one of the widely-used method in field for a
single intersection. Assuming the traffic flow is uniform during a
certain period (i.e., past 5 or 10 minutes), it has a closed-form solu-
tion after optimization [52]. Other methods like Maxband [35] or
SCATS [38] also make similar assumptions to make the optimiza-
tion problem tractable. The key issue here is that these assumptions
often deviate from the real world. The real-world traffic condition
evolves in a complicated way, affected by many factors such as
driver’s preference, interactions with vulnerable road users (e.g.,
pedestrians, cyclists, etc.), weather and road conditions. These fac-
tors can hardly be fully described in a traffic model. On the other
hand, reinforcement learning techniques can directly learn from the
observed data without making unrealistic assumptions about the
model. In essence, an RL system generates and executes differ-
ent strategies (e.g., for traffic signal control) based on the current
environment. It will then learn and adjust the strategy based on
the feedback from the environment. This reveals the most signifi-
cant difference between transportation approaches and our RL ap-
proaches: in traditional transportation research, the control model
is static; in reinforcement learning, the control model is dynami-
cally learned through trial-and-error in the real environment.
The combination of deep learning with reinforcement learning helps
alleviate the “curse of dimensionality“ problem. Traditionally, RL
is concerned with the issue of the curse of dimensionality as the
number of state-action pairs can grows exponentialy with the di-
mension of states and actions. Recent advances in deep learning
helps the approximation of functions in RL like Q(s, a) or V (s) by
learning efficiently on a significantly smaller number of features
instead of a large number of state-action pairs. This helps to im-
prove scalability with reduced requirements on memory or storage
capacity, as well as reduced learning time.

3.2 Agent formulation
A key question for RL is how to formulate the RL agent, i.e., the
reward, state, and action definition. In this subsection, we focus on
the advances in the reward, state, and action design in recent deep
RL-based methods, and refer readers interested in more detailed
definitions to [16; 39; 71].

3.2.1 Reward
The choice of reward reflects the learning objective of an RL agent.
In the traffic signal control problem, although the ultimate objective
is to minimize the travel time of all vehicles, travel time is hard to
serve as a valid reward in RL. Because the travel time of a vehicle is
affected by multiple actions from traffic signals and vehicle move-
ments, the travel time as reward would be delayed and ineffective in
indicating the goodness of the signals’ action. Therefore, the exist-
ing literature often uses a surrogate reward that can be effectively
measured after an action, considering factors like average queue
length, average waiting time, average speed or throughput [55; 65].
The authors in [58] also take the frequency of signal changing and
the number of emergency stops into reward. With different reward
functions being proposed, researchers in [78; 62] find out that the
weight on each factor in reward is tricky to set, and a minor differ-
ence in weight setting could lead to dramatically different results.
Thus they set out to find a minimal set of factors, proving that us-
ing queue length as the reward for a single intersection scenario and
using pressure, a variant of queue length in the multi-intersection
scenario are equivalent to optimizing the global travel time.

3.2.2 State
At each time step, the agent receives some quantitative descriptions



of the environment as state to decide its action. Various kinds of el-
ements have been proposed to describe the environment state, such
as queue length, waiting time, speed and phase, etc. These ele-
ments can be defined on the lane level or road segment level, and
then concatenated as a vector. In earlier work using RL for traffic
signal control, people need to discretize the state space and use a
simple tabular or linear model to approximate the state functions
for efficiency [1; 7; 49]. However, the real-world state space is
usually huge, which confines the traditional RL methods in terms
of memory or performance. With advances in deep learning, deep
RL methods are proposed to handle large state space as an effective
function approximator. Recent studies propose to use images [9;
14; 18; 20; 22; 23; 32; 33; 42; 58; 65] to represent the state, where
the position of vehicles are extracted as an image representation.
With variant information used in state representation in different
studies, [62; 78] shows that complex state definition and large state
space do not necessarily lead to significant performance gain, and
proposes to use simple state like lane-level queue length and phase
to represent the environment state.

3.2.3 Action scheme
Now there are different types of action definitions for an RL agent
in traffic signal control: (1) set current phase duration [4; 5], (2)
set the ratio of the phase duration over pre-defined total cycle dura-
tion [1; 10], (3) change to the next phase in pre-defined cyclic phase
sequence [39; 48; 58; 65], and (4) choose the phase to change to
among a set of phases [2; 9; 12; 44; 42; 78]. The choice of action
scheme is closely related to specific settings of traffic signals. For
example, if the phase sequence is required to be cyclic, then the
first three action schemes should be considered, while “choosing
the phase to change to among a set of phases” can generate flexible
phase sequences.

3.3 Policy learning
RL methods can be categorized in different ways. [3; 26] divide
current RL methods to model-based methods and model-free meth-
ods. Model-based methods try to model the transition probability
among states explicitly, while model-free methods directly estimate
the reward for state-action pairs and choose the action based on this.
In the context of traffic signal control, the state transition between
states is primarily influenced by people’s driving behaviors, which
are diverse and hard to predict. Therefore, currently, most RL-
based methods for traffic signal control are model-free methods.
In this subsection, we take the categorization in [43]: value-based
methods and policy-based methods.

3.3.1 Value-based methods
Value-based methods approximate the state-value function or state-
action value function (i.e., how rewarding each state is or state-
action pair is), and the policy is implicitly obtained from the learned
value function. Most of the RL-based traffic signal control meth-
ods use DQN [41], where the model is parameterized by neural
networks and takes the state representation as input [58; 30]. In
DQN, discrete actions are required as the model directly outputs
the action’s value given a state, which is especially suitable for ac-
tion schema (3) and (4) mentioned in Section 3.2.3.

3.3.2 Policy-based methods
Policy-based methods directly update the policy parameters (e.g.,
a vector of probabilities to conduct actions under specific state) to-
wards the direction to maximizing a predefined objective (e.g., av-
erage expected return). The advantage of policy-based methods is
that it does not require the action to be discrete like DQN. Also, it

can learn a stochastic policy and keep exploring potentially more
rewarding actions. To stabilize the training process, the actor-critic
framework is widely adopted. It utilizes the strengths of both value-
based and policy-based methods, with an actor controls how the
agent behaves (policy-based), and the critic measures how good the
conducted action is (value-based). In the traffic signal control prob-
lem, [10] uses DDPG [34] to learn a deterministic policy which
directly maps states to actions, while [4; 42; 69] learn a stochas-
tic policy that maps states to action probability distribution, all of
which have shown excellent performance in traffic signal control
problems. To further improve convergence speed for RL agents,
[51] proposed a time-dependent baseline to reduce the variance of
policy gradient updates to specifically avoid traffic jams.
In the above-mentioned methods, including both value-based and
policy-based methods, deep neural networks are used to approxi-
mate the value functions. Most of the literature use vanilla neural
networks with their corresponding strengths. For example, Con-
volutional Neural Networks (CNN) are used since the state repre-
sentation contains image representation [9; 20; 22; 23; 32; 33;
42; 58]; Recurrent Neural Networks (RNN) are used to capture the
temporal dependency of historical states [60]. Special neural net-
work structures are also proposed to incorporate prior knowledge
about the states into the learning process [65; 77].

3.4 Coordination
Coordination could benefit signal control for multi-intersection sce-
narios. Since recent advances in RL improve the performance on
isolated traffic signal control, efforts have been performed to de-
sign strategies that cooperate with multi-agent reinforcement learn-
ing (MARL) agents. Literature [13] categorizes MARL into two
classes: Joint action learners and independent learners. Here we
extend this categorization for the traffic signal control problem.

3.4.1 Joint action learners
A straightforward solution is to use a single global agent to con-
trol all the intersections [49]. It directly takes the state as input
and learns to set the joint actions of all intersections at the same
time. However, these methods can result in the curse of dimension-
ality, which encompasses the exponential growth of the state-action
space in the number of state and action dimensions. Joint action
modeling methods explicitly learns to model the joint action value
of multiple agents Q(o1, . . . , oN ,aaa). The joint action space grows
with the increase in the number of agents to model. To alleviate this
challenge, [58] factorizes the global Q-function as a linear combi-
nation of local subproblems, extending [66] using max-plus [27] al-
gorithm: Q̂(o1, . . . , oN ,aaa) = Σi,jQi,j(oi, oj , ai, aj), where i and
j correspond to the index of neighboring agents. In other works,
[74; 12; 57] regard the joint Q-value as a weighted sum of local
Q-values, Q̂(o1, . . . , oN ,aaa) = Σi,jwi,jQi,j(oi, oj , ai, aj), where
wi,j is the pre-defined weights. They attempt to ensure individ-
ual agents to consider other agents’ learning process by adding a
shaping term in the loss function of the individual agent’s learning
process and minimizing the difference between the weighted sum
of individual Q-values and the global Q-value.

3.4.2 Independent learners
There is also a line of studies that use independent RL (IRL) agents
to control the traffic signals, where each RL agent controls an inter-
section. Unlike joint action learning methods, each agent learns its
control policy without knowing the reward signal of other agents.
IRL without communication methods treat each intersection indi-
vidually, with each agent observing its own local environment and
do not use explicit communication to resolve conflicts [39; 10; 78;



Table 1: Representative deep RL-based traffic signal control methods.

Citation Method Cooperation Simulator Road net (# signals) Traffic flow∗

[2] Value-based With communication Matlab Synthetic (5) 2,4
[5] Policy-based Without communication Aimsun Real (50) 5
[10] Policy-based Without communication Aimsun Real (43) 5
[11] Value-based Without communication CityFlow Real (2510) 5
[12] Policy-based Joint action SUMO Real (30) 4
[22] Value-based - SUMO Synthetic (1) 2
[30] Value-based - Paramics Synthetic (1) 4
[39] Value-based Without communication SUMO Synthetic (9) 2
[42] Both studied - SUMO Synthetic (1) 1
[44] Value-based With communication SUMO Synthetic (6) 2
[48] Value-based Without communication AIM Synthetic (4) 1
[49] Both studied Single global GLD Sythetic (5) 3
[51] Policy-based - SUMO Real (1) 5
[58] Value-based Joint action SUMO Synthetic (4) 2
[60] Value-based With communication SUMO Real (4) 5
[65] Value-based - SUMO Synthetic (1) 1,3,4,5
[62] Value-based Without communication CityFlow Real (16) 2,5
[63] Value-based With communication CityFlow Real (196) 2,5
[74] Value-based Joint action SUMO Synthetic (36) 1,2,3,4
[78] Value-based Without communication CityFlow Real (16) 3,5
[77] Value-based Without communication CityFlow Real (5) 4,5
∗ Traffic with arrival rate less than 500 vehicles/hour/lane is considered as light traffic in this survey, otherwise considered as heavy.
1. Synthetic light uniform; 2. Synthetic light dynamic; 3. Synthetic heavy uniform; 4. Synthetic heavy dynamic; 5. Real-world data

48; 36; 9; 23]. In some simple scenarios like arterial networks, this
approach has performed well with the formation of several mini
green waves. However, when the environment becomes compli-
cated, the non-stationary impacts from neighboring agents will be
brought into the environment, and the learning process usually can-
not converge to stationary policies if there are no communication
or coordination mechanisms among agents [45]. To deal with this
challenge, the authors in [62] propose a specified reward that de-
scribes the demand for coordination between neighbors to achieve
coordination.
IRL with communication methods enable agents to communicate
between agents about their observations and behave as a group,
rather than a collection of individuals in complex tasks where the
environment is dynamic, and each agent has limited capabilities
and visibility of the world [56]. Typical methods directly add neigh-
bor’s traffic condition [70] or past actions [21] into the observation
of the ego agent, other than just using the local traffic condition of
the ego agent. In this method, all the agents for different intersec-
tion share one learning model, which requires the consistent index-
ing of neighboring intersections. [44] attempts to remove this re-
quirement by utilizing the road network structure with Graph Con-
volutional Network [53] to cooperate multi-hop nearby intersec-
tions. [44] models the influence of neighboring agents by the fixed
adjacency matrix defined in Graph Convolutional Network, which
indicates their assumption that the influences between neighbors is
static. In other work, [63; 60] proposes to use Graph Attentional
Networks [59] to learn the dynamic interactions between the hid-
den states of neighboring agents and the ego agent. It should be
pointed out that there is a strong connection between methods em-
ploying max-plus [27] to learn joint action-learners and methods
using Graph Convolutional Network to learn the communication,
as both of them can be seen to learn the message passing on the
graph, where the former kind of methods passing the reward and
the later passing the state obervations.

4. EVALUATION
In this section, we will introduce some experimental settings that
will influence the evaluation of traffic signal control strategies: eval-
uation metrics, simulation environment, road network setting, and
traffic flow setting. A comparison of the settings that influence the
evaluation are summarized in Table 1.

4.1 Evaluation metrics
The objective of traffic signal control is to facilitate safe and effi-
cient movement of vehicles at the intersection. Safety is achieved
by separating conflicting movements in time and is not considered
in most related literature. Various measures have been proposed to
quantify efficiency of the intersection from different perspectives,
including the average travel time of all vehicles, the average num-
ber of stops that vehicles experience in the network, the average
queue length in the road network, and the throughput of the road
network. While the performance of the same method on queue
length might differ with different definitions of a ”waiting” state of
a vehicle, travel time and throughput are widely adopted as evalua-
tion metrics by recent literature.

4.2 Simulation environment
Since deploying and testing traffic signal control strategies in the
real world involves high cost and intensive labor, simulation is a
useful alternative before actual implementation. Simulations of
traffic signal control often involve large, heterogeneous scenarios
and vehicle-level information, thus most literature relies on mi-
croscopic simulation, in which movements of individual vehicles
are represented through microscopic properties such as the posi-
tion and velocity of each vehicle. Some representative open-source
microscopic simulators are: The Green Light District (GLD)1, The
Autonomous Intersection Management (AIM)2, Simulation of Ur-

1https://sourceforge.net/projects/stoplicht/
2http://www.cs.utexas.edu/˜aim/



ban MObility (SUMO)3, and CityFlow [73]. Other proprietary sim-
ulators like Paramics4 and Aimsun5 are also adopted in [30; 10;
5]. For a detailed comparison of the open-source simulators, please
refer to [40].

4.3 Road network
Different road networks are explored in the current literature, in-
cluding synthetic and real-world road network. At a coarse scale, a
road network is a directed graph with nodes and edges representing
intersections and roads, respectively. Specifically, a real-world road
network can be more complicated than the synthetic network in
the road properties (e.g., the number of lanes, speed limit of every
lane), intersection structures and signal phases settings. Among all
the road network properties, the number of traffic signals in the net-
work largely influences the experiment results because the scale of
explorations for RL agents to take increases with the scale of road
network. Currently, most of the work still conducts experiments
on relatively small road networks compared to the scale of a city,
which could include thousands of traffic signals. Aslani et al. [5;
4] test their method in a real-world road network with 50 signals.
In [63], a district with 196 signals is investigated. One of the most
recent work [11] tests their methods on the real road network of
Manhattan, New York, with 2510 traffic signals.

4.4 Traffic flow
Traffic flow demand in the simulation can influence the evaluation
of control strategies. The simulator takes traffic demand data as in-
put, with each vehicle described as (o, t, d), where o is the origin
location, t is time, and d is the destination location. Locations o
and d are both locations on the road network. Usually, the more
dynamic and heavier the traffic demand is, the harder for an RL
method to learn an optimal policy. This is because the dynamic traf-
fic would require the RL agents learn in a non-stationary environ-
ment, and heavier traffic would require fast adaptation for RL poli-
cies. The vehicle behavior models, such as lane changing, speed
changing and routing models, could also influence the traffic flow
and further influence the evaluation of traffic signal control poli-
cies. But in existing literature, they are usually kept fixed during
the learning process of traffic signal control methods.

5. CONCLUSION AND FUTURE WORK
In this survey, we present an overview of recent advances in rein-
forcement learning methods for traffic signal control, and provide
an organization considering both the learning approach and evalu-
ations of the research in this field. Here, we briefly discuss some
directions for future research.

5.1 Benchmarking datasets and baselines
As discussed in Section 4.4, researchers use different road networks
and traffic flow datasets, which could introduce large variances in
final performance. Therefore, evaluating control policies using a
standard setting could save the effort and assure a fair compari-
son and reproducability of RL methods [25]. An effort that could
greatly facilitate research in this field is to create publicly available
benchmark. Another concern for RL-based traffic signal control
is that for this interdisciplinary research problem, existing litera-
ture of RL-based methods is often lack of comparison with typical
methods from transportation area, like Webster’s Formula [28] and
MaxPressure [29].
3http://sumo.sourceforge.net
4https://www.paramics-online.com/
5https://www.aimsun.com

5.2 Learning efficiency
Existing RL methods for games usually require a massive number
of update iterations and trial-and-errors for RL models to yield im-
pressive results in simulated environments. These trial-and-error
attempts will lead to real traffic jams in the traffic signal control
problem. Therefore, how to learn efficiently is a critical question
for the application of RL in traffic signal control. While there is
some previous work using Meta-Learning [72] or imitation learn-
ing [69], there is still much to investigate on learning with limited
data samples and efficient exploration in traffic signal control prob-
lem.

5.3 Safety issue
While RL methods learn from trial-and-error, the learning cost of
RL could be critical or even fatal in the real world as the malfunc-
tion of traffic signals might lead to accidents. An open problem for
RL-based traffic signal control problem is to find ways to adapt risk
management to make RL agents acceptably safe in physical envi-
ronments [19]. [37] directly integrates real-world constraints into
the action selection process. If pedestrians are crossing the inter-
section, their method will not change the control actions, which can
protect crossing pedestrians. However, more safety problems like
handling collisions are still to be explored.

5.4 Transferring from simulation to reality
Most RL-based traffic signal control methods mainly conduct ex-
periments in the simulator since the simulator can generate data in
a cheaper and faster way than real experimentation. Discrepancies
between simulation and reality confine the application of learned
policies in the real world. While some work considers to learn an
interpretable policy before applying to the real world [6] or to build
a more realistic simulator [61; 75; 76] for direct transferring, there
is still a challenge to transfer the control policies learned in simu-
lation to reality.
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