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ABSTRACT
In this paper, we propose a novel Deep Reinforcement Learning
framework for news recommendation. Online personalized news
recommendation is a highly challenging problem due to the dy-
namic nature of news features and user preferences. Although some
online recommendation models have been proposed to address the
dynamic nature of news recommendation, these methods have
three major issues. First, they only try to model current reward
(e.g., Click Through Rate). Second, very few studies consider to use
user feedback other than click / no click labels (e.g., how frequent
user returns) to help improve recommendation. Third, these meth-
ods tend to keep recommending similar news to users, which may
cause users to get bored. Therefore, to address the aforementioned
challenges, we propose a Deep Q-Learning based recommendation
framework, which can model future reward explicitly. We further
consider user return pattern as a supplement to click / no click label
in order to capture more user feedback information. In addition,
an effective exploration strategy is incorporated to find new attrac-
tive news for users. Extensive experiments are conducted on the
offline dataset and online production environment of a commercial
news recommendation application and have shown the superior
performance of our methods.
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1 INTRODUCTION
The explosive growth of online content and services has provided
tons of choices for users. For instance, one of the most popular on-
line services, news aggregation services, such as Google News [15]
can provide overwhelming volume of content than the amount that
users can digest. Therefore, personalized online content recommen-
dation are necessary to improve user experience.

Several groups of methods are proposed to solve the online per-
sonalized news recommendation problem, including content based
methods [19, 22, 33], collaborative filtering based methods [11, 28,
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34], and hybrid methods [12, 24, 25]. Recently, as an extension and
integration of previous methods, deep learning models [8, 45, 52]
have become the new state-of-art methods due to its capability
of modeling complex user item (i.e., news) interactions. However,
these methods can not effectively address the following three chal-
lenges in news recommendation.

First, the dynamic changes in news recommendations are difficult
to handle. The dynamic change of news recommendation can be
shown in two folds. First, news become outdated very fast. In our
dataset, the average time between the time that one piece of news is
published and the time of its last click is 4.1 hours. Therefore, news
features and news candidate set are changing rapidly. Second, users’
interest on different news might evolve during time. For instance,
Figure 1 displays the categories of news that one user has read
in 10 weeks. During the first few weeks, this user prefers to read
about “Politics” (green bar in Figure 1), but his interest gradually
moves to “Entertainment” (purple bar in Figure 1) and “Technology”
(grey bar in Figure 1) over time. Therefore, it is necessary to update
the model periodically. Although there are some online recommen-
dation methods [11, 24] that can capture the dynamic change of
news features and user preference through online model updates,
they only try to optimize the current reward (e.g., Click Through
Rate), and hence ignore what effect the current recommendation
might bring to the future. An example showing the necessity of
considering future is given in Example 1.1.

Example 1.1. When a user Mike requests for news, the recom-
mendation agent foresees that he has almost the same probability
to click on two pieces of news: one about a thunderstorm alert, and
the other about a basketball player Kobe Bryant. However, accord-
ing to Mike’s reading preference, features of the news, and reading
patterns of other users, our agent speculates that, after reading
about the thunderstorm, Mike will not need to read news about this
alert anymore, but he will probably read more about basketball after
reading the news about Kobe. This suggests, recommending the
latter piece of news will introduce larger future reward. Therefore,
considering future rewards will help to improve recommendation
performance in the long run.

Second, current recommendation methods [23, 35, 36, 43] usually
only consider the click / no click labels or ratings as users’ feedback.
However, how soon one user will return to this service [48] will
also indicate how satisfied this user is with the recommendation.
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Figure 1: Distribution of clicked categories of an active user
in ten weeks. User interest is evolving over time.

Nevertheless, there has been little work in trying to incorporate
user return pattern to help improve recommendation.

The third major issue of current recommendation methods is its
tendency to keep recommending similar items to users, which might
decrease users’ interest in similar topics. In the literature, some rein-
forcement learning methods have already proposed to add some
randomness (i.e., exploration) into the decision to find new items.
State-of-art reinforcement learning methods usually apply the sim-
ple ϵ-greedy strategy [31] orUpper Confidence Bound (UCB) [23, 43]
(mainly for Multi-Armed Bandit methods). However, both strategies
could harm the recommendation performance to some extent in a
short period. ϵ-greedy strategy may recommend the customer with
totally unrelated items, while UCB can not get a relatively accurate
reward estimation for an item until this item has been tried several
times. Hence, it is necessary to do more effective exploration.

Therefore, in this paper, we propose a Deep Reinforcement Learn-
ing framework that can help to address these three challenges in
online personalized news recommendation. First, in order to bet-
ter model the dynamic nature of news characteristics and user pref-
erence, we propose to use Deep Q-Learning (DQN) [31] framework.
This framework can consider current reward and future reward
simultaneously. Some recent attempts using reinforcement learn-
ing in recommendation either do not model the future reward
explicitly (MAB-based works [23, 43]), or use discrete user log
to represent state and hence can not be scaled to large systems
(MDP-based works [35, 36]). In contrast, our framework uses a
DQN structure and can easily scale up. Second, we consider user re-
turn as another form of user feedback information, by maintaining
an activeness score for each user. Different from existing work [48]
that can only consider the most recent return interval, we con-
sider multiple historical return interval information to better mea-
sure the user feedback. In addition, different from [48], our model
can estimate user activeness at any time (not just when user re-
turns). This property enables the experience replay update used in
DQN. Third, we propose to apply a Dueling Bandit Gradient Descent
(DBGD)method [16, 17, 49] for exploration, by choosing random item
candidates in the neighborhood of the current recommender. This ex-
ploration strategy can avoid recommending totally unrelated items
and hence maintain better recommendation accuracy.
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Figure 2: Deep Reinforcement Recommendation System

Our deep reinforcement recommender system can be shown as
Figure 2. We follow the common terminologies in reinforcement
learning [37] to describe the system. In our system, user pool and
news pool make up the environment, and our recommendation
algorithms play the role of agent. The state is defined as feature
representation for users and action is defined as feature represen-
tation for news. Each time when a user requests for news, a state
representation (i.e., features of users) and a set of action represen-
tations (i.e., features of news candidates) are passed to the agent.
The agent will select the best action (i.e., recommending a list of
news to user) and fetch user feedback as reward. Specifically, the
reward is composed of click labels and estimation of user activeness.
All these recommendation and feedback log will be stored in the
memory of the agent. Every one hour, the agent will use the log in
the memory to update its recommendation algorithm.

Our contribution can be summarized as below:
• We propose a reinforcement learning framework to do online
personalized news recommendation. Unlike previous studies,
this framework applies a DQN structure and can take care
of both immediate and future reward. Although we focus on
news recommendation, our framework can be generalized
to many other recommendation problems.

• We consider user activeness to help improve recommenda-
tion accuracy, which can provide extra information than
simply using user click labels.

• A more effective exploration method Dueling Bandit Gra-
dient Descent is applied, which avoids the recommendation
accuracy drop induced by classical exploration methods, e.g.,
ϵ-greedy and Upper Confidence Bound.

• Our system has been deployed online in a commercial news
recommendation application. Extensive offline and online
experiments have shown the superior performance of our
methods.

The rest of the paper is organized as follows. Related work is
discussed in Section 2. Then, in Section 3 we present the problem
definitions. Our method is introduced in Section 4. After that, the ex-
perimental results are shown in Section 5. Finally, brief conclusions
are given in Section 6.



2 RELATEDWORK
2.1 News recommendation algorithms
Recommender systems [3, 4] have been investigated extensively
because of its direct connection to profits of products. Recently,
due to the explosive grow of online content, more and more atten-
tion has been drawn to a special application of recommendation
– online personalized news recommendation. Conventional news
recommendation methods can be divided into three categories.
Content-based methods [19, 22, 33] will maintain news term fre-
quency features (e.g., TF-IDF) and user profiles (based on historical
news). Then, recommender will select news that is more similar to
user profile. In contrast, collaborative filtering methods [11] usually
make rating prediction utilizing the past ratings of current user
or similar users [28, 34], or the combination of these two [11]. To
combine the advantages of the former two groups of methods, hy-
brid methods [12, 24, 25] are further proposed to improve the user
profile modeling. Recently, as an extension and integration of pre-
vious methods, deep learning models [8, 45, 52] have shown much
superior performance than previous three categories of models due
to its capability of modeling complex user-item relationship. Dif-
ferent from the effort for modeling the complex interaction between
user and item, our algorithm focuses on dealing with the dynamic
nature of online news recommendation, and modeling of future re-
ward. However, these feature construction and user-item modeling
techniques can be easily integrated into our methods.

2.2 Reinforcement learning in
recommendation

2.2.1 ContextualMulti-Armed Bandit models. Agroup ofwork [5,
7, 23, 40, 44, 50] begin to formulate the problem as a Contextual
Multi-Armed Bandit (MAB) problem, where the context contains
user and item features. [23] assumes the expected reward is a linear
function of the context. [39] uses an ensemble of bandits to improve
the performance, [40] proposes a parameter-free model, and [50]
addresses the time-varying interest of users. Recently, some people
try to combine bandit with clustering based collaborative filtering
[14], andmatrix factorization [6, 21, 32, 42, 43, 51], in order to model
more complex user and item relationship, and utilize the social net-
work relationship in determining the reward function. However, our
model is significantly different from these works, because by applying
Markov Decision Process, our model is able to explicitly model future
rewards. This will benefit the recommendation accuracy significantly
in the long run.

2.2.2 Markov Decision Process models. There are also some lit-
erature trying to use Markov Decision Process to model the recom-
mendation process. In contrast to MAB-based methods, MDP-based
methods can not only capture the reward of current iteration, but
also the potential reward in the future iterations. [26, 27, 35, 36, 38]
try to model the item or n-gram of items as state (or observation in
Partially Observed MDP), and the transition between items (recom-
mendation for the next item) as the action. However, this can not
scale to large dataset, because when the item candidate set becomes
larger, the size of state space will grow exponentially. In addition,
the state transitions data is usually very sparse, and can only be
used to learn the model parameters corresponding to certain state

transitions. Therefore, the model is really hard to learn. Different
from the literature, we propose a MDP framework with continuous
state and action representation, which enables the system to scale up
and the effective learning of model parameters by using all the state,
action, reward tuples.

3 PROBLEM DEFINITION
We define our problem as follows:

When a user u sends a news request to the recommendation
agent G at time t , given a candidate set I of news, our algorithm is
going to select a list L of top-k appropriate news for this user. The
notations used in this paper are summarized in Table 1.

Table 1: Notations

Notation Meaning

G Agent
u, U User, User set
a Action
s State
r Reward
i, I News, Candidate news pool
L List of news to recommend
B List of feedback from users
Q Deep Q-Network
W Parameters of Deep Q-Network

4 METHOD
Personalized news recommendation has attracted a lot of attention
in recent years [11, 23, 45]. The current methods can be generally
categorized as content based methods [19, 22, 33], collaborative
filtering based methods [11, 28, 34], and hybrid methods [12, 24,
25]. Recently, many deep learning models [8, 45, 52] are further
proposed in order to model more complex user item interactions.
News recommendation problem becomes even more challenging
when it happens in an online scenario due to three reasons. First,
online learning are needed due to the highly dynamic nature of
news characteristics and user preference. Second, only using click /
no click labels will not capture users’ full feedback towards news.
Third, traditional recommendation methods tend to recommend
similar items and will narrow down user’s reading choices. This
will make users bored and lead to decrease of user satisfaction in
the long run.

To address these three challenges, we propose a DQN-based
Deep Reinforcement Learning framework to do online personal-
ized news recommendation. Specifically, we use a continuous state
feature representation of users and continuous action feature rep-
resentation of items as the input to a multi-layer Deep Q-Network
to predict the potential reward (e.g., whether user will click on this
piece of news). First, this framework can deal with the highly dy-
namic nature of news recommendation due to the online update of
DQN. Meanwhile, DQN is different from common online methods,
because of its capability to speculate future interaction between
user and news. Second, we propose to combine user activeness (i.e.,



how frequent a user returns to the App after one recommendation)
and click labels as the feedback from users. Third, we propose to ap-
plyDueling Bandit Gradient Descent exploration strategy [16, 49] to
our algorithm which can both improve recommendation diversity
and avoid the harm to recommendation accuracy induced by classi-
cal exploration strategies like ϵ-greedy [31] and Upper Confidence
Bound [23].

Our method is significantly different from the MAB group of
methods [5, 7, 23, 40, 44, 50] due to its explicit modeling of future
rewards, and different from previous MDP methods [27, 35, 36, 38]
using user log due to its continuous representation of state and
action, and the capability to scale to large systems.

In this section, we will first introduce the model framework
in Section 4.1. Then, we will illustrate the feature construction in
Section 4.2 and the deep reinforcement learningmodel in Section 4.3.
After that, the design of user activeness consideration is discussed
in Section 4.4. Finally, the exploration module is introduced in
Section 4.5.

4.1 Model framework
As shown in Figure 3, our model is composed of offline part and
online part. In offline stage, four kinds of features (will be discussed
in Section 4.2) are extracted from news and users. A multi-layer
Deep Q-Network is used to predict the reward (i.e., a combination
of user-news click label and user activeness) from these four kinds
of features. This network is trained using the offline user-news click
logs. Then, during the online learning part, our recommendation
agent G will interact with users and update the network in the
following way:

(1) PUSH: In each timestamp (t1, t2, t3, t4, t5, ...), when a user
sends a news request to the system, the recommendation
agent G will take the feature representation of the current
user and news candidates as input, and generate a top-k
list of news to recommend L. L is generated by combining
the exploitation of current model (will be discussed in Sec-
tion 4.3) and exploration of novel items (will be discussed in
Section 4.5).

(2) FEEDBACK: User u who has received recommended news
L will give their feedback B by his clicks on this set of news.

(3) MINOR UPDATE: After each timestamp (e.g., after times-
tamp t1), with the feature representation of the previous user
u and news list L, and the feedback B, agent G will update
the model by comparing the recommendation performance
of exploitation network Q and exploration network Q̃ (will
be discussed in Section 4.5). If Q̃ gives better recommen-
dation result, the current network will be updated towards
Q̃ . Otherwise, Q will be kept unchanged. Minor update can
happen after every recommendation impression happens.

(4) MAJORUPDATE:After certain period of timeTR (e.g., after
timestamp t3), agent G will use the user feedback B and user
activeness stored in the memory to update the network Q .
Here, we use the experience replay technique [31] to update
the network. Specifically, agent G maintains a memory with
recent historical click and user activeness records. When
each update happens, agent G will sample a batch of records
to update the model. Major update usually happens after a

certain time interval, like one hour, during which thousands
of recommendation impressions are conducted and their
feedbacks are collected.

(5) Repeat step (1)-(4).

4.2 Feature construction
In order to predict whether user will click one specific piece of
news or not, we construct four categories of features:

• News features includes 417 dimension one hot features that
describe whether certain property appears in this piece of
news, including headline, provider, ranking, entity name,
category, topic category, and click counts in last 1 hour, 6
hours, 24 hours, 1 week, and 1 year respectively.

• User features mainly describes the features (i.e., headline,
provider, ranking, entity name, category, and topic category)
of the news that the user clicked in 1 hour, 6 hours, 24 hours,
1 week, and 1 year respectively. There is also a total click
count for each time granularity. Therefore, there will be
totally 413 × 5 = 2065 dimensions.

• User news features. These 25-dimensional features describe
the interaction between user and one certain piece of news,
i.e., the frequency for the entity (also category, topic category
and provider) to appear in the history of the user’s readings.

• Context features. These 32-dimensional features describe
the context when a news request happens, including time,
weekday, and the freshness of the news (the gap between
request time and news publish time).

In order to focus on the analysis of the reinforcement learning
recommendation framework, we did not try to add more features,
e.g., textual features [45]. But they can be easily integrated into our
framework for better performance.

4.3 Deep Reinforcement Recommendation
Considering the previous mentioned dynamic feature of news rec-
ommendation and the need to estimate future reward, we apply
a Deep Q-Network (DQN) [31] to model the probability that one
user may click on one specific piece of news. Under the setting of
reinforcement learning, the probability for a user to click on a piece
of news (and future recommended news) is essentially the reward
that our agent can get. Therefore, we can model the total reward as
Equation 1.

ys,a = Q(s, a) = rimmediate + γ rf uture (1)
where state s is represented by context features and user features,
action a is represented by news features and user-news interac-
tion features, rimmediate represents the rewards (e.g., whether user
click on this piece of news) for current situation, and rf uture rep-
resents the agent’s projection of future rewards. γ is a discount
factor to balance the relative importance of immediate rewards and
future rewards. Specifically, given s as the current state, we use the
DDQN [41] target to predict the total reward by taking action a at
timestamp t as in Equation 2.

ys,a,t = ra,t+1 + γQ(sa,t+1, argmax
a′

Q(sa,t+1, a′;Wt );W′
t ) (2)

where ra,t+1 represents the immediate reward by taking action
a (the subscript t + 1 is because the reward is always delayed 1
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Figure 3: Model framework

timeslot than the action). Here, Wt and W′
t are two different sets

of parameters of the DQN. In this formulation, our agent G will
speculate the next state sa,t+1, given action a is selected. Based on
this, given a candidate set of actions {a′}, the action a′ that gives
the maximum future reward is selected according to parameter
Wt . After this, the estimated future reward given state sa,t+1 is
calculated based on W′

t . Every a few iterations, Wt and W′
t will be

switched. This strategy has been proven to eliminate the overopti-
mistic value estimates of Q [41]. Through this process, DQN will
be able to make decision considering both immediate and future
situations.

As shown in Figure 4, we feed the four categories of features
into the network.User features andContext features are used as
state features, while User news features and Context features
are used as action features. On one hand, the reward for taking
action a at certain state s is closely related to all the features. On
the other hand, the reward that determined by the characteristics
of the user himself (e.g., whether this user is active, whether this
user has read enough news today) is more impacted by the status of
the user and the context only. Based on this observation, like [47],
we divide the Q-function into value function V (s) and advantage
functionA(s, a), whereV (s) is only determined by the state features,
and A(s, a) is determined by both the state features and the action
features.

4.4 User Activeness
Traditional recommender systems only focus on optimizing CTR-
like metrics (i.e., only utilizing click / no click labels), which only de-
picts part of the feedback information from users. The performance

V(s) A(s, a)

Q(s, a)

User features Context 
features

User-news 
features News features

Figure 4: Q network

of recommendation might also influence whether users want to use
the application again, i.e., better recommendation will increase the
frequency for users to interact with the application. Therefore, the
change of user activeness should also be considered properly.

Users request for news in a non-uniform pattern. Users usu-
ally read news for a short period (e.g., 30 minutes), during which
they will request or click news with high frequency. Then they
might leave the application and return to the application when they
want to read more news after several hours. A user return happens
when a user requests for news (users will always request for news
before they click on news, therefore, user click is also implicitly
considered).



We use survival models [18, 30] to model user return and user
activeness. Survival analysis [18, 30] has been applied in the field
of estimating user return time [20]. Suppose T is the time until
next event (i.e., user return) happens, then the hazard function
(i.e., instantaneous rate for the event to happen) can be defined as
Equation 3 [1, 30]

λ(t) = lim
dt→0

Pr {t ≤ T < t + dt |T ≥ t}
dt

(3)

Then the probability for the event to happen after t can be defined
as Equation 4 [1, 30]

S(t) = e−
∫ t
0 λ(x )dx (4)

and the expected life span T0 can be calculated as [1, 30]

T0 =

∫ ∞

0
S(t)dt (5)

In our problem, we simply set λ(t) = λ0, which means each user
has a constant probability to return. Every time we detect a return
of user, we will set S(t) = S(t) + Sa for this particular user. The
user activeness score will not exceed 1. For instance, as shown in
Figure 5, user activeness for this specific user starts to decay from S0
at time 0. At timestamp t1, the user returns and this results in a Sa
increase in the user activeness. Then, the user activeness continues
to decay after t1. Similar things happen at t2, t3, t4 and t5. Note that,
although this user has a relatively high request frequency during
t4 to t9, the maximum user activeness is truncated to 1.

The parameters S0, Sa , λ0, T0 are determined according to the
real user pattern in our dataset. S0 is set to 0.5 to represent the
random initial state of a user (i.e., he or she can be either active
or inactive). We can observe the histogram of the time interval
between every two consecutive requests of users as shown in Fig-
ure 6. We observe that besides reading news multiple times in a
day, people usually return to the application on a daily regular
basis. So we set T0 to 24 hours. The decaying parameter λ0 is set
to 1.2 × 10−5second−1 according to Equation 4 and Equation 5. In
addition, the user activeness increase Sa for each click is set to 0.32
to make sure user will return to the initial state after one daily basis
request, i.e., S0e−λ0T0 + Sa = S0.

The click / no click label rclick and the user activeness ractive
are combined as in Equation 6.

rtotal = rclick + βractive (6)

Although we use survival models here to estimate the user active-
ness, other alternatives like Poisson point process [13] can also be
applied and should serve similar function.

4.5 Explore
The most straightforward strategies to do exploration in reinforce-
ment learning are ϵ-greedy [31] and UCB [23]. ϵ-greedy will ran-
domly recommend new items with a probability of ϵ , while UCB
will pick items that have not been explored for many times (because
these items may have larger variance). It is evident that these trivial
exploration techniques will harm the recommendation performance
in a short period. Therefore, rather than doing random exploration,
we apply a Dueling Bandit Gradient Descent algorithm [16, 17, 49]
to do the exploration. Intuitively, as shown in Figure 7, the agent
G is going to generate a recommendation list L using the current
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network Q and another list L̃ using an explore network Q̃ . The
parameters W̃ of network Q̃ can be obtained by adding a small dis-
turb ∆W (Equation 7) to the parameters W of the current network



Q .
∆W = α · rand(−1, 1) · W (7)

where α is the explore coefficient, and rand(−1, 1) is a random
number between -1 and 1. Then, the agent G will do a probabilistic
interleave [16] to generate the merged recommendation list L̂ using
L and L̃. To determine the item for each position in the recommen-
dation list L̂, the probabilistic interleave approach basically will first
randomly select between list L and L̃. Suppose L is selected, then
an item i from L will be put into L̂ with a probability determined
by its ranking in L (items with top rankings will be selected with
higher probability). Then, list L̂ will be recommended to user u
and agent G will obtain the feedback B. If the items recommended
by the explore network Q̃ receive a better feedback, the agent G
will update the network Q towards Q̃ , with the parameters of the
network being updated as Equation 8

W′ =W + ηW̃. (8)

Otherwise, the agent G will keep network Q unchanged. Through
this kind of exploration, the agent can do more effective exploration
without losing too much recommendation accuracy.

5 EXPERIMENT
5.1 Dataset
We conduct experiment on a sampled offline dataset collected from
a commercial news recommendation application and deploy our
system online to the App for one month. Each recommendation
algorithm will give out its recommendation when a news request
arrives and user feedback will be recorded (click or not). The basic
statistics for the sampled data is as in Table 2. In the first offline
stage, the training data and testing data are separated by time
order (the last two weeks are used as testing data), to enable the
online models to learn the sequential information between different
sessions better. During the second online deploying stage, we use
the offline data to pre-train the model, and run all the compared
methods in the real production environment.

Table 2: Statistics of the sampled dataset

Stage Duration # of users # of news

Offline stage 6 months 541,337 1,355,344
Online stage 1 month 64,610 157,088

As shown in Figure 8, the dataset is very skewed. The number
of requests for each user follows a long tail distribution and most
users only request news for less than 500 times. The number of
times each news are pushed also follow a long tail distribution and
most news are pushed to user less than 200 times.

5.2 Evaluation measures
• CTR. [10] Click through rate is calculated as Equation 9.

CTR =
number of clicked items
number of total items

(9)
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• Precision@k [10]. Precision at k is calculated as Equation 10

Precision@k =
number of clicks in top-k recommended items

k
(10)

• nDCG. We apply the standard Normalized Discounted Cu-
mulative Gain proved in [46] as Equation 11, where r is the
rank of items in the recommendation list, n is the length of
the recommendation list, f is the ranking function or algo-
rithm, yfr is the 1 or 0 indicating whether a click happens
and D(r ) is the discount.

DCG(f ) =
n∑
r=1

y
f
r D(r ) (11)

with
D(r ) = 1

loд(1 + r ) (12)

5.3 Experiment setting
In our experiment, the parameters are determined by grid search
of parameter space to find the ones with best CTR. The detailed
settings are shown in Table 3.

Table 3: Parameter setting

Parameter Setting

Future reward discount γ (Equation 1) 0.4
User activeness coefficient β (Equation 6) 0.05
Explore coefficient α (Equation 7) 0.1
Exploit coefficient η (Equation 8) 0.05
Major update period TR (for DQN experience replay) 60 minutes
Minor update period TD (for DBGD) 30 minutes

5.4 Compared methods
Variations of our model. Our basic model is named as “DN ”,
which uses a dueling-structure [47] Double Deep Q-network [41]
without considering future reward. Then, by adding future reward
into consideration, this becomes “DDQN ”. After that, we add more
components to “DDQN ”. “U ” stands for user activeness, “EG” stands
for ϵ-greedy, and “DBGD” stands for Dueling Bandit Gradient De-
scent.
Baseline algorithms.We compared our algorithmswith following
five baseline methods. All these five methods will conduct online



update during the testing stage. Some state-of-art methods can not
be applied due to their inapplicability to our problem, like [43]
(user graph and item graph is oversized and can not be updated
incrementally), [45] (similar withW&D when textual features are
removed), and [48] (user return is not applicable to experience
replay update).

• LR. Logistic Regression is widely used in industry as baseline
methods due to its easy implementation and high efficiency.
It takes all the four categories of features as input. It is im-
plemented using Keras [9].

• FM [29, 34]. Factorization Machines is a state-of-art context-
aware recommendation methods. It takes all the four cate-
gories of features as input, use the combination of features
and their interactions to do the click prediction.

• W&D [8]. Wide & Deep is a widely used state-of-art deep
learning model combining the memorization (through a lo-
gistic regression on wide combinations of categorical fea-
tures) and generalization (through a deep neural network
embedding of the raw features) to predict the click label.

• LinUCB [23]. Linear Upper Confidence Bound [23] can select
an arm (i.e., recommend a piece of news) according to the
estimated upper confidence bound of the potential reward.
Due to the long tail distribution of news request and click
counts, we apply the same set of parameters for different
news, which actually performs better than the original set-
ting in [23] on our dataset.(An improved version of the orig-
inal LinUCB– HLinUCB will also be compared.)

• HLinUCB [42] is another state-of-art bandit-based approach
in recommendation problem. Hidden Linear Upper Confi-
dence Bound [42] further allows learned hidden feature to
model the reward. We follow the original setting of keeping
different sets of parameters for different users and different
news. However, under this case, only News features intro-
duced in Section 4.2 can be directly applied, while the other
features describing the interaction between user and news
are expected to be learned in the hidden features.

For all compared algorithms, the recommendation list is generated
by selecting the items with top-k estimated potential reward (for
LinUCB, HLinUCB and our methods) or probability of click (for LR,
FM and W&D) of each item.

5.5 Offline evaluation
We first compare our methods with other baselines on the offline
dataset. The offline dataset is static and only certain pairs of user-
news interaction have been recorded. As a result, we can not observe
the change of user activeness due to different recommendation de-
cisions. Similarly, the exploration strategy can not explore well due
to the limited candidate news set (i.e., only the click labels of a few
candidate news are recorded). Hence, the benefit of considering
user activeness and exploration is not very evident in the offline set-
ting. Therefore, we only show the comparison of recommendation
accuracy under this situation.

For the offline experiment, we down-sample the click / no-click
to approximately 1:11 for better model fitting purpose.

We design the algorithm to recommend the top-5 news, and show
the results in terms of CTR and nDCG (we omit top-5 precision
because it will be the same with CTR).

5.5.1 Accuracy. The accuracy result is shown in Table 4. As ex-
pected, our algorithms outperform all the baseline algorithms. Our
base model DN already achieves very good results compared with
the baselines. This is because the dueling network structure can
better model the interaction between user and news. Adding future
reward consideration (DDQN ), we achieve another significant im-
provement. Then, incorporating user activeness and exploration do
not necessarily improve the performance under the offline setting,
which might because under offline setting, the algorithm can not
make the best interaction with user due to the limited static set of
candidate news. (It is possible that our agent G want to recommend
user u a news i for user activeness or exploration consideration, but
actually the information about whether user u will click on news i
or not does not exist in the offline log.) In addition, naive random
exploration like ϵ-greedy will harm the recommendation accuracy.

Table 4: Offline recommendation accuracy

Method CTR nDCG

LR 0.1262 0.3659
FM 0.1489 0.4338
W&D 0.1554 0.4534

LinUCB 0.1447 0.4173
HLinUCB 0.1194 0.3491

DN 0.1587 0.4671
DDQN 0.1662 0.4877
DDQN + U 0.1662 0.4878
DDQN + U + EG 0.1609 0.4723
DDQN + U + DBGD 0.1663 0.4854

5.5.2 Model converge process. We further show the cumulative
CTR of different methods in Figure 9 to illustrate the convergence
process. The offline data are ordered by time and simulate the pro-
cess that users send news request as time goes by. All the compared
methods will update their models every 100 request sessions. As
expected, our algorithm (DDQN + U + DBGD) converges to a better
CTR faster than other methods.

5.6 Online evaluation
In the online evaluation stage, we deployed our models and com-
pared algorithms on a commercial news recommendation appli-
cation. Users are divided evenly to different algorithms. In online
setting, we can not only measure the accuracy of recommendation,
but also observe the recommendation diversity for different algo-
rithms. All the algorithms are designed to recommend the top-20
news to a user when a news request is received.

5.6.1 Accuracy. We compare different algorithms in terms of
CTR, Precision@5, and nDCG. As shown in Table 5, our full model
DDQN + U + DBGD outperforms all the other models significantly
in terms of CTR, Precision@5 and nDCG. Here are the observations
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Figure 9: Offline cumulative CTR of different methods

for adding each component. Adding future reward (DDQN ) does
improve the recommendation accuracy over basic DN . However,
further adding user activeness consideration U seems not very help-
ful in terms of recommendation accuracy. (But this component is
helpful for improving user activeness and recommendation diver-
sity. This will be demonstrated later.) In addition, using DBGD as
exploration methods will help avoid the performance loss induced
by classic ϵ-greedy methods.

Table 5: Online recommendation accuracy

Method CTR Precision@5 nDCG

LR 0.0059 0.0082 0.0326
FM 0.0072 0.0078 0.0353
W&D 0.0052 0.0067 0.0258

LinUCB 0.0075 0.0091 0.0383
HLinUCB 0.0085 0.0128 0.0449

DN 0.0100 0.0135 0.0474
DDQN 0.0111 0.0139 0.0477
DDQN + U 0.0089 0.0110 0.0425
DDQN + U + EG 0.0083 0.0100 0.03391
DDQN + U + DBGD 0.0113 0.0149 0.0492

5.6.2 Recommendation diversity. Finally, in order to evaluate
the effectiveness of exploration, we calculate the recommendation
diversity of different algorithms using ILS . [2, 53]. It is calculated
by Equation 13

ILS(L) =
∑
bi ∈L

∑
bj ∈L,bj,bi S(bi ,bj )∑

bi ∈L
∑
bj ∈L,bj,bi 1

(13)

where S(bi ,bj ) represents the cosine similarity between item bi
and item bj . We show the diversity for the news clicked by users as
in Table 6. In general, users in our algorithm DDQN + U + DBGD
achieves the best click diversity. Interestingly, adding EG seems not

improving the recommendation diversity. This is probably because,
when random exploration (i.e., EG) is conducted, the recommender
might recommend some totally unrelated items to users. Although
these items have high diversity, users might be not interested in
reading them and turn back to read more about the items that fit
their interest better. This way, this exploration will not help im-
prove the recommendation diversity. To our surprise, some baseline
methods, like HLinUCB, also achieve comparable recommendation
diversity, which indicates that UCB can also achieve reasonable
exploration result (but this kind of unguided exploration will harm
the recommendation accuracy).

Table 6: Diversity of user clicked news in the online exper-
iment. Smaller ILS indicates better diversity. Similarity be-
tween news is measured by the cosine similarity between
the bag-of-words vectors of news.

Method ILS

LR 0.1833
FM 0.2014
W&D 0.1647

LinUCB 0.2636
HLinUCB 0.1323

DN 0.1546
DDQN 0.1935
DDQN + U 0.1713
DDQN + U + EG 0.1907
DDQN + U + DBGD 0.1216

6 CONCLUSION
In this paper, we propose a DQN-based reinforcement learning
framework to do online personalized news recommendation. Differ-
ent from previous methods, our method can effectively model the
dynamic news features and user preferences, and plan for future
explicitly, in order to achieve higher reward (e.g., CTR) in the long
run. We further consider user return pattern as a supplement to
click / no click label in order to capture more user feedback infor-
mation. In addition, we apply an effective exploration strategy into
our framework to improve the recommendation diversity and look
for potential more rewarding recommendations. Experiments have
shown that our method can improve the recommendation accuracy
and recommendation diversity significantly. Our method can be
generalized to many other recommendation problems.

For the future work, it will be more meaningful to design models
for different users correspondingly (e.g., heavy users and one-time
users), especially the user-activeness measure. It can bring more
insights if different patterns are observed for different groups of
users.
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