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Introduction: Why reinforcement
recommendation
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Introduction: News recommendation is

dynamic

The life period for news
is usually very short.

User’s interest may
change during time.
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Introduction: Is there more than click/no-
click?
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Introduction: Should we keep recommending
similar items?

&s Lebron James will be the MVP!

Tony Parker has come back from injury!
Paul Gasol promises to help the Spurs in the playoff.

Will you get bored if all the recommended
news are from NBA when you are browsing
the sports news? -~
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Method: Using reinforcement learning to do

recommendation
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Method: Dueling network structure — value
and advantage function
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Method: user activeness modeling -- survival
analysis
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Method: Effective exploration

Current Network () Explore Network Q
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Dataset Stage Duration # of users # of news

Offline stage 6 months 541,337 1,355,344

Online stage 1 month 64,610 157,088
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Results: Offline

Method CTR nDCG
LR 0.1262 0.3659
FM 0.1489 0.4338
W&D 0.1554 0.4534
LinUCB 0.1447 0.4173
HLinUCB 0.1194 0.3491
DN 0.1587 0.4671
DDON 0.1662 0.4877
DDON + U 0.1662 0.4878
DDON + U + EG 0.1609 0.4723
DDON + U + DBGD 0.1663 0.4854
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Results: Online

Method CTR  Precision@5 nDCG
LR 0.0059 0.0082 0.0326
FM 0.0072 0.0078 0.0353
W&D 0.0052 0.0067 0.0258
LinUCB 0.0075 0.0091 0.0383
HLinUCB 0.0085 0.0128 0.0449
DN 0.0100 0.0135 0.0474
DDON 0.0111 0.0139 0.0477
DDON + U 0.0089 0.0110 0.0425
DDON + U + EG 0.0083 0.0100 0.03391
DDON + U + DBGD 0.0113 0.0149 0.0492

Method ILS

LR 0.1833
FM 0.2014
W&D 0.1647
LinUCB 0.2636
HLinUCB 0.1323
DN 0.1546
DDON 0.1935
DDON + U 0.1713
DDON + U + EG 0.1907
DDON + U + DBGD 0.1216

11/9/18

Accuracy

Diversity



Summary of motivation and solution

Long term effect in recommendation Deep reinforcement learning (DRL)

* Dynamic nature of news * Online learning feature of DRL
recommendation

* Consider more measures for long * Reward function design of DRL

term effect
e Recommendation diversity * Explorein DRL
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Conclusion

* We propose a reinforcement learning framework to do online
personalized news recommendation, taking care of both immediate
and future reward. Our framework can be generalized to many other
recommendation problems.

* We consider user activeness to help improve recommendation
accuracy, which can provide extra information than simply using user
click labels.

e Our system has been deployed online in a commercial news
recommendation application. Extensive offline and online
experiments have shown the superior performance of our methods.
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