
1

Linear Disjunctive Invariant Generation with Farkas’ Lemma
HONGMING LIU, Shanghai Jiao Tong University, China

JINGYU KE, Shanghai Jiao Tong University, China

HONGFEI FU∗, Shanghai Jiao Tong University, China

LIQIAN CHEN, National University of Defense Technology, China

Invariant generation is the classical problem of automatically generating logical assertions that over-approximates

the set of reachable program states in a program. We consider the problem of generating linear invariants

over affine while loops (i.e., loops with affine loop guards, conditional branches and assignment statements),

and explore the automated generation of disjunctive linear invariants. Disjunctive invariants are an important

class of invariants that capture disjunctive features of programs such as multiple phases, transitions between

different modes, etc., and are much more precise than conjunctive invariants over programs with these features.

To generate accurate invariants, existing approaches have investigated the application of Farkas’ Lemma to

conjunctive linear invariant generation, but none of them considers disjunctive linear invariants.

In this work, we propose a novel approach to generate linear disjunctive invariants via Farkas’ Lemma.

While our approach is based on the previous framework to apply Farkas’ Lemma and the existing disjunctive

patterns, our main novelties include (i) an invariant propagation technique (that propagates the invariant at

the initial program location to other program locations) closely related to the disjunctive pattern we follow to

improve the time efficiency, (ii) an extension of our approach to disjunctive loop summary, and (iii) the use of

loop summary to improve the accuracy of disjunctive linear invariant generation over nested while loops. We

implement our approach as a prototype tool under the Frama-C platform and show by experimental results

that our approach can derive substantially more accurate disjunctive linear invariants and loop summaries

than existing approaches, while remaining to be time efficient.

1 INTRODUCTION
Invariant generation is the classical problem of automatically generating invariants at program

locations that can be used to aid the verification of critical program properties. An invariant

at a program location is a logical assertion that over-approximates the set of program states

reachable to that location, i.e., every reachable program state to the location is guaranteed to satisfy

the logical assertion. Since invariants provide an over-approximation for the reachable program

states, they play a fundamental role in program verification and can be used for safety [2, 58, 61],

reachability [3, 6, 11, 17, 19, 27, 63] and time-complexity [14] analysis in program verification.

Automated approaches for invariant generation have been studied over decades and there

have been an abundance of literature along this line of research. From the different types of

target program objects, invariant generation can be divided into the automated generation of

invariants over numerical values (e.g., integers or real numbers) [7, 9, 15, 18, 67, 77], arrays [53,

79], pointers [12, 54], algebraic data types [48], etc. By the different methodologies in existing

approaches, invariant generation can be solved by abstract interpretation [9, 21, 24, 38], constraint

solving [15, 18, 20, 39], logical inference [12, 30, 34, 35, 59, 74, 78, 84], recurrence analysis [32, 50, 51],

machine learning [36, 42, 69, 86], data-driven approaches [16, 26, 54, 60, 66, 76], etc. Most results in

the literature consider a strengthened version of invariants, called inductive invariants, that requires
in extra the inductive condition that the invariant at a program location is preserved upon every
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program execution back and forth to the location (i.e., under the assumption that the invariant

holds at the location, it continues to hold whenever the execution goes back to the location).

An important criterion on the quality of the generated invariants is the accuracy against the

exact set of reachable program states. Invariants that have too much accuracy loss (i.e., including

too much program states that actually are not reachable) may cause the verification of a program

property fail, while invariants with better accuracy can verify more program properties. Thus, to

increase the accuracy of the generated invariants is a important problem in invariant generation. In

this work, we consider the automated generation of disjunctive invariants, i.e., invariants that are in

the form of a disjunction of conjunctive logical assertions. Compared with conjunctive invariants,

disjunctive invariants are capable of capturing disjunctive features such as multiple phases and

mode transitions in programs, and thus can be substantially more accurate than conjunctive ones.

In this work, we consider the automated generation of numerical invariants (i.e., invariants over

the numerical values of program variables). Numerical invariants are an important subclass of

invariants that is closely related to numerical program failures such as array out-of-bound and

division by zero. To be more precise, we focus on linear disjunctive invariants over affine while

loops. An affine while loop is a while loop in which each conditional branch and loop guard is

specified by linear inequalities, and each assignment statement is in the form of an affine expression

over program variables that specifies an affine update on the current program state. Moreover, we

consider the method of constraint solving that typically ensures good accuracy on the generated

invariants. We follow the existing constraint-solving approaches [18, 47, 57, 71] that apply Farkas’

Lemma (a fundamental mathematical theorem in the theory of linear inequalities) to linear invariant

generation, and extend these approaches to the automated generation of disjunctive linear-invariant

and loop-summary generation. Our detailed contributions are as follows.

• First, we apply Farkas’ Lemma and the disjunctive pattern of path dependency automata

(PDA) [83] to disjunctive linear invariant generation, which to our best knowledge has not

been investigated in the literature.

• Second, we improve the existing Farkas-based approaches [18, 57, 71] by a novel invariant

propagation technique that first generates the invariants at the initial location and then

obtains the invariants at other locations by a propagation from the initial location. The

invariant propagation technique improves the overall time efficiency by reducing the amount

of costly polyhedron operations (e.g., polyhedron projection and the generator computation

of polyhedral cones).

• Third, we extend our approach to disjunctive loop summary of affine while loops. Loop

summary is the classical problem of automatically deriving the input-output relationship

for a while loop. In the extension, we follow a standard method (see e.g. Boutonnet and

Halbwachs [9]) that incorporates fresh variables to represent the initial values of the program

variables in the loop.

• Fourth, we handle nested while loops by integrating the loop summaries of the nesting loops

into the PDA pattern to improve the accuracy of the generated invariants.

• Finally, we implement our approach as a prototype tool that can be embedded into the

Frama-C program analysis platform [33].

Experimental results show that our approach outperforms previous approaches on the accuracy

of disjunctive linear invariants and loop summaries, while remaining to be time efficient.

2 PRELIMINARIES
In this section, we review the model of linear transition systems [71] and linear invariant generation

over such model via Farkas’ Lemma. In our invariant generation algorithm, we use linear transition
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systems as the abstract model for programs with affine conditions and updates. We first present

the necessary definitions for linear transition systems and invariants, and then the application of

Farkas’ Lemma to linear invariant generation.

2.1 Linear Transition Systems and Invariants
To present linear transition systems, we first define several basic concepts related to linear inequal-

ities as follows. A linear inequality (resp. linear equality) over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of real-valued
variables is of the form 𝑎1𝑥1 + · · · +𝑎𝑛𝑥𝑛 +𝑏 Z 0, where 𝑎𝑖 ’s and 𝑏 are real coefficients, and Z ∈ {≥}
(resp. Z ∈ {=}), respectively. A linear assertion over 𝑉 is a conjunction of linear inequalities and

equalities over 𝑋 . Moreover, a propositional linear predicate (PLP) over 𝑋 is a propositional formula

whose atomic propositions are linear inequalities and equalities. A PLP is in disjunctive (resp.

conjunctive) normal form (DNF) (resp. CNF) if it is a finite disjunction of linear assertions (resp.

a finite conjunction of finite disjunctions of linear assertions), respectively. Note that we only

consider non-strict no-smaller-than operator ≥ for linear inequalities, and the no-greater-than

inequalities 𝛼 ≤ 𝛽 could be equivalently transformed into −𝛼 ≥ −𝛽 . Moreover, although a linear

equality 𝛼 = 𝛽 could be equivalently expressed by the conjunction of the two inequalities 𝛼 ≤ 𝛽
and 𝛼 ≥ 𝛽 , we handle each linear equality directly since one can apply algorithmic optimizations

to linear equalities. Below we present the definition of linear transition systems.

Definition 1 (Linear Transition Systems [71]). A linear transition system (LinTS) is a tuple
Γ = ⟨𝑋,𝑋 ′, 𝐿, T, ℓ∗, 𝜃⟩ where we have:
• 𝑋 is a finite set of real-valued variables and 𝑋 ′ = {𝑥 ′ | 𝑥 ∈ 𝑋 } is the set of primed variables
from 𝑋 . Throughout the work, we abuse the notations so that (i) each variable 𝑥 ∈ 𝑋 also
represents its value in the current execution step of the system and (ii) each primed variable
𝑥 ′ ∈ 𝑋 ′ represents the value of the unprimed counterpart 𝑥 ∈ 𝑋 in the next execution step.
• 𝐿 is a finite set of locations and ℓ∗ ∈ 𝐿 is the initial location.
• T is a finite set of transitions such that each transition 𝜏 is a triple ⟨ℓ, ℓ ′, 𝜌⟩ that specifies the
jump from the current location ℓ to the next location ℓ ′ with the guard condition 𝜌 as a PLP over
𝑋 ∪ 𝑋 ′.
• 𝜃 is a PLP in DNF over the variables 𝑋 . Informally, each disjunctive clause of PLP 𝜃 in DNF
specifies an independent initial condition at the initial location ℓ∗, which is processed separately.

We define the directed graph DG(Γ) of a LinTS Γ as the graph in which the vertices are the

locations of Γ and there is an edge (ℓ, ℓ ′) iff there is a transition ⟨ℓ, ℓ ′, 𝜌⟩ with source location ℓ and

target location ℓ ′. To describe the semantics of a LinTS, we further define the notions of valuations,

configurations and their associated satisfaction relation as follows.

A valuation over a finite set 𝑉 of variables is a function 𝜎 : 𝑉 → R that assigns to each variable

𝑥 ∈ 𝑉 a real value 𝜎 (𝑥) ∈ R. In this work, we mainly consider valuations over the variables 𝑋 of a

LinTS and simply abbreviate “valuation over 𝑋 ” as “valuation” (i.e., omitting 𝑋 ). Given a LinTS, a

configuration is a pair (ℓ, 𝜎) with the intuition that ℓ is the current location and 𝜎 is a valuation

that specifies the current values for the variables. For the sake of convenience, we always assume

an implicit linear order over the variable set 𝑉 and treat each valuation 𝜎 over 𝑉 equivalently as a

real vector so that its 𝑖th coordinate 𝜎 [𝑖] is the value for the 𝑖th variable in the linear order.

We introduce the following satisfaction relations. Given a linear assertion 𝜑 over a variable set

𝑉 and a valuation 𝜎 , we write 𝜎 |= 𝜑 to mean that 𝜎 satisfies 𝜑 , i.e., 𝜑 is true when one substitutes

the corresponding values 𝜎 (𝑥) to all the variables 𝑥 in 𝜑 . Given a LinTS Γ, two valuations 𝜎, 𝜎 ′

(over 𝑋 ) and a linear assertion 𝜑 over 𝑋 ∪ 𝑋 ′, we write 𝜎, 𝜎 ′ |= 𝜑 to mean that 𝜑 is true when one

substitutes every variable 𝑥 ∈ 𝑋 by 𝜎 (𝑥) and every variable 𝑥 ′ ∈ 𝑋 ′ by 𝜎 ′ (𝑥) in 𝜑 . Moreover, given
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two linear assertions 𝜑,𝜓 over a variable set 𝑉 , we write 𝜑 |= 𝜓 to mean that 𝜑 implies𝜓 , i.e., for

every valuation 𝜎 over 𝑉 we have that 𝜎 |= 𝜑 implies 𝜎 |= 𝜓 .
Below we describe the semantics of linear transition systems. Formally, the semantics of a LinTS

Γ is specified by the notion of paths. A path 𝜋 of the LinTS Γ is a finite sequence of configurations

(ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘 ) such that

• (Initialization) ℓ0 = ℓ∗ and 𝜎0 |= 𝜃 , and
• (Consecution) for every 0 ≤ 𝑗 ≤ 𝑘 − 1, there exists a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ such that ℓ = ℓ𝑗 ,

ℓ ′ = ℓ𝑗+1 and 𝜎 𝑗 , 𝜎 𝑗+1 |= 𝜌 .
We say that a configuration (ℓ, 𝜎) is reachable if there exists a path (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘 ) such that

(ℓ𝑘 , 𝜎𝑘 ) = (ℓ, 𝜎). Intuitively, a path starts with some legitimate initial configuration (as specified by

Initialization) and proceeds by repeatedly applying the transitions to the current configuration

(as described in Consecution). Thus, any path 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘 ) corresponds to a possible

execution of the underlying LinTS. Informally, a LinTS starts at the initial location ℓ∗ with an

arbitrary initial valuation 𝜎∗ such that 𝜎∗ |= 𝜃 , constituting an initial configuration (ℓ0, 𝜎0); then
at each step 𝑗 ( 𝑗 ≥ 0), given the current configuration (ℓ𝑗 , 𝜎 𝑗 ), the LinTS determines the next

configuration (ℓ𝑗+1, 𝜎 𝑗+1) by first selecting a transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩ such that ℓ = ℓ𝑗 and then

choosing (ℓ𝑗+1, 𝜎 𝑗+1) to be any configuration that satisfies ℓ𝑗+1 = ℓ ′ and 𝜎 𝑗 , 𝜎 𝑗+1 |= 𝜌 .
In the following, we assume that the guard condition 𝜌 of each transition in a LinTS is a linear

assertion. This follows from the fact that one can always transform the guard condition into a

DNF and then split the transition into multiple sub-transitions where the guard condition of each

sub-transition is a linear assertion that is a disjunctive clause of the DNF; a small detail here is that

to handle strict inequalities such as 𝛼 < 𝛽 which arise from taking the negation of a non-strict

linear inequality, we either have the over-approximation 𝛼 ≤ 𝛽 or tighten it as 𝛼 ≤ 𝛽 − 1 in the

integer case (i.e., every variable is integer valued, and every coefficient is an integer).

Linear transition systems can be used to model the transitions between the program states of a

program with affine conditions and updates. In this work, we follow the pattern of path dependency
automata (PDAs) proposed by Xie et al. [83] that each location of a LinTS corresponds to the choices

of truth values (i.e., either true or false) of the conditional branches the loop body of a while loop.

Below we present an example on the PDA pattern.

𝑥 = 0 ;

𝑦 = 50 ;

while (𝑥 < 100 ) {

𝑥 = 𝑥 + 1 ;
i f (𝑥 > 50 )

𝑦 = 𝑦 + 1 ;
}

(a) The source code

𝑋 = {𝑥,𝑦}, 𝐿 = {ℓ1, ℓ2, ℓ𝑒 }, T = {𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6}, 𝜃 : 𝑥 = 0 ∧ 𝑦 = 50, 𝜏1 : ⟨ℓ1, ℓ1, 𝜌1⟩,
𝜏2 : ⟨ℓ1, ℓ2, 𝜌2⟩, 𝜏3 : ⟨ℓ1, ℓ𝑒 , 𝜌3⟩, 𝜏4 : ⟨ℓ2, ℓ2, 𝜌4⟩, 𝜏5 : ⟨ℓ2, ℓ1, 𝜌5⟩, 𝜏6 : ⟨ℓ2, ℓ𝑒 , 𝜌6⟩,

𝜌1 :


50 ≤ 𝑥 ≤ 99

50 ≤ 𝑥 ′ ≤ 99

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦 + 1

 , 𝜌2 :

50 ≤ 𝑥 ≤ 99

𝑥 ′ ≤ 49

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦 + 1

 , 𝜌3 :

50 ≤ 𝑥 ≤ 99

100 ≤ 𝑥 ′
𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦 + 1

 ,
𝜌4 :


𝑥 ≤ 49

𝑥 ′ ≤ 49

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦

 , 𝜌5 :


𝑥 ≤ 49

50 ≤ 𝑥 ′ ≤ 99

𝑥 ′ = 𝑥 + 1
𝑦′ = 𝑦

 , 𝜌6 :


𝑥 ≤ 49

100 ≤ 𝑥 ′
𝑥 ′ = 𝑥 + 1

𝑦′ = 𝑦


(b) The LinTS

Fig. 1. An affine loop from Sharma et al. [75] and its corresponding LinTS

Example 1. Consider an affine program in Figure 1a taken from Sharma et al. [75]. The program
first initializes the values of the variables 𝑥,𝑦 to 0, 50, respectively. In the loop body, the execution
passes through the if-branch and increments the value of 𝑦 if the value of the variable 𝑥 at the branch
is greater than 50 (i.e., requiring that the value of 𝑥 is no less than 50 at the start of the loop body);
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otherwise, the execution goes through the else-branch (omitted in the program of Figure 1a) and does
nothing if the value of 𝑥 is no greater than 50 (i.e., requiring that the value of 𝑥 is no greater than 49

at the start of the loop body).
In Figure 1b, we present a LinTS as a transformation of the program in Figure 1a that follows the

PDA pattern by Xie et al. [83]. The details are as follows.
• We have the set of variables𝑋 = {𝑥,𝑦} and the initial condition 𝜃 corresponds to the initialization
of the variables before the while loop in Figure 1a.
• We have three locations. The location ℓ1 (resp. ℓ2) represents the execution in the loop body that
passes through the if-branch (resp. else-branch), and the location ℓ𝑒 is the termination location
after the whole execution of the while loop. The initial location is ℓ2 since under the initial
condition 𝜃 , the first execution of the loop body does not pass into the if-branch.
• We have six transitions, namely 𝜏1, . . . , 𝜏6. The transition 𝜏1 specifies the situation that the
executions of both the current and the next loop iterations pass into the if-branch, for which
the guard condition 𝜌 is the conjunction of 50 ≤ 𝑥 ≤ 99 (which specifies the condition for the
values at the start of the current loop iteration derived from the loop guard and the pass into the
if-branch) and 50 ≤ 𝑥 ′ ≤ 99 (which specifies the similar condition for the values at the start of
the next loop iteration). The transitions 𝜏3, 𝜏4, 𝜏5 can be derived by similar reasonings (i.e., from
the loop guard and the pass into the if/else-branch) to the transition 𝜏1. Note that, the transitions
𝜏2, 𝜏6 will be rejected. Since the transition 𝜏6 is infeasible to jump from ℓ2 to ℓ𝑒 , as the condition
to pass into the else-branch is 𝑥 ≤ 49, making a jump out of the while loop after the current loop
iteration impossible. The transition 𝜏2 from ℓ1 to ℓ2 is infeasible following a similar argument.

A path of the LinTS that describes the whole execution of the while loop is (ℓ2, (𝑥,𝑦) = (0, 50)),. . . ,
(ℓ2, (49, 50)), (ℓ1, (50, 50)), . . . , (ℓ1, (99, 99)), (ℓ𝑒 , (100, 100)). □

Below we define invariants over linear transition systems. An invariant at a location ℓ of a

LinTS is a logical formula 𝜑 such that for every path 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘 ) of the LinTS and each

0 ≤ 𝑖 ≤ 𝑘 , it holds that ℓ𝑖 = ℓ implies 𝜎𝑖 |= 𝜑 . An invariant 𝜑 is (conjunctively) linear if 𝜑 is a linear

assertion over the variable set 𝑋 , and is disjunctively linear if 𝜑 is a PLP in DNF over the variable set

𝑋 . Intuitively, an invariant 𝜑 at a location ℓ is a logical formula in any form that over-approximates

the set of reachable configurations at ℓ ; the invariant is linear if it is in the form of a linear assertion,

and disjunctively linear if it is in the form of a disjunction of linear assertions.

To automatically generate invariants, one often investigates a strengthened notion called inductive
invariants. In this work, we present inductive linear invariants in the form of inductive linear

assertion maps [18, 57, 71] as follows. We say that a linear assertion map (LAM) over a LinTS is a

function 𝜂 that maps every location ℓ of the LinTS to a linear assertion 𝜂 (ℓ) over the variables 𝑋 .
Then an LAM 𝜂 is inductive if the following conditions hold:
• (Initialization) 𝜃 |= 𝜂 (ℓ∗);
• (Consecution) For every transition 𝜏 = ⟨ℓ, ℓ ′, 𝜌⟩, we have that 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′)′, where
𝜂 (ℓ ′)′ is the linear assertion obtained by replacing every variable 𝑥 ∈ 𝑋 in 𝜂 (ℓ ′) with its

next-value counterpart 𝑥 ′ ∈ 𝑋 ′.
Informally, an LAM is inductive if it is (i) implied by the initial condition given by 𝜃 at the initial

location ℓ∗ (i.e., Initialization) and (ii) preserved under the application of every transition (i.e.,

Consecution). By a straightforward induction on the length of a path under a LinTS, one could

verify that the linear assertion in an inductive LAM is indeed an invariant. In the rest of the work,

we focus on the automated synthesis of inductive LAMs, and the disjunctive linear invariants are

obtained by taking a disjunction of relevant linear assertions in an LAM.

Sometimes we need to consider the LinTS Γ [ℓ, 𝐾] derived from a LinTS Γ, a location ℓ of Γ and a

subset 𝐾 of valuations. In detail, the LinTS Γ [ℓ, 𝐾] is obtained by having the location ℓ as the only
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location, the self-loop transitions at ℓ (i.e., transitions ⟨ℓ ′′, ℓ ′, 𝜌⟩ in Γ such that ℓ ′′ = ℓ ′ = ℓ) as the
only transitions, and the initial condition as the subset 𝐾 . Here we slightly abuse the type of the

initial condition so that the initial condition can also be a subset of valuations. This will not cause

any problem as we consider any initial condition equivalently as the set of valuations that satisfy it.

In this work, we also consider the problem of loop summary. Loop summary is the classical

subject to generate logical formulas that over-approximate the relationship between the input and

output of a while loop. Given a LinTS that describes the execution of a while loop, we denote by

𝑋in := {𝑥in | 𝑥 ∈ 𝑋 } a copy of input variables from 𝑋 and 𝑋out := {𝑥out | 𝑥 ∈ 𝑋 } a copy of output

variables. We write xin (resp. xout) for the vector of input (resp. output) variables, respectively. With

the designated termination location ℓ𝑒 at the end of the while loop, a loop summary 𝑆 is a logical

formula 𝑆 (xin, xout) with free variables xin, xout such that for all paths 𝜋 = (ℓ0, 𝜎0) . . . (ℓ𝑘 , 𝜎𝑘 ) such
that ℓ𝑘 = ℓ𝑒 , we have 𝑆 (𝜎0, 𝜎𝑘 ).

2.2 Applying Farkas’ Lemma to Linear Invariant Generation
Farkas’ Lemma [31] is a classical theorem in the theory of linear inequalities and previous results

have applied the theorem to linear invariant generation. In this work, we follow the previous

results [18, 57, 71] and consider a variant form of Farkas’ Lemma [72, Corollary 7.1h] as follows.

Theorem 2.1 (Farkas’ Lemma). Consider a linear assertion 𝜑 over a set 𝑉 = {𝑥1, . . . , 𝑥𝑛} of real-
valued variables as in Figure 2a. When 𝜑 is satisfiable (i.e., there is a valuation over 𝑉 that satisfies 𝜑),
it implies a linear inequality𝜓 as in Figure 2b (i.e., 𝜑 |= 𝜓 ) if and only if there exist non-negative real
numbers 𝜆0, 𝜆1, . . . , 𝜆𝑚 such that (i) 𝑐 𝑗 =

∑𝑚
𝑖=1 𝜆𝑖 · 𝑎𝑖 𝑗 for all 1 ≤ 𝑗 ≤ 𝑛, and (ii) 𝑑 = 𝜆0 +

∑𝑚
𝑖=1 𝜆𝑖 · 𝑏𝑖 .

Moreover, 𝜑 is unsatisfiable if and only if the inequality −1 ≥ 0 (as𝜓 ) can be derived from above.

𝜑 :

𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛 + 𝑏1 ≥ 0
...

...
...

𝑎𝑚1 · 𝑥1 + · · · +𝑎𝑚𝑛 · 𝑥𝑛 +𝑏𝑚 ≥ 0
(a) 𝜑 in Farkas’ Lemma

𝜓 : 𝑐1 · 𝑥1 + · · · + 𝑐𝑛 · 𝑥𝑛 + 𝑑 ≥ 0

(b)𝜓 in Farkas’ Lemma

𝜆0 1 ≥ 0

𝜆1 𝑎11 · 𝑥1 + · · · + 𝑎1𝑛 · 𝑥𝑛 + 𝑏1 Z1 0

.

.

.
.
.
.

.

.

.
.
.
.

𝜆𝑚 𝑎𝑚1 · 𝑥1 + · · · + 𝑎𝑚𝑛 · 𝑥𝑛 +𝑏𝑚 Z𝑚 0

𝑐1 · 𝑥1 + · · · + 𝑐𝑛 · 𝑥𝑛 + 𝑑 ≥ 0

−1 ≥ 0

 𝜑

← 𝜓

← false

(c) The Tabular Form for Farkas’ Lemma [18, 71]

Fig. 2. The 𝜑 and𝜓 and Tabular Form for Farkas’ Lemma

One direction of Farkas’ Lemma is straightforward, as one easily sees that if we have a non-

negative linear combination of the inequalities in 𝜑 that can derive𝜓 , then it is guaranteed that𝜓

holds whenever 𝜑 is true. Farkas’ Lemma further establishes that the other direction is also valid.

In general, Farkas’ Lemma simplifies the inclusion of a polyhedron inside a halfspace into the

satisfiability of a system of linear inequalities.

Remark 1. In the statement of Farkas’ Lemma above, if we strengthen a linear inequality 𝑎 𝑗1𝑥1 +
· · · + 𝑎 𝑗𝑛𝑥𝑛 + 𝑏 𝑗 ≥ 0 in 𝜑 to equality (i.e., 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 + 𝑏 𝑗 = 0), then the theorem holds with
the relaxation that we do not require 𝜆 𝑗 ≥ 0. This could be observed by first replacing the equality
equivalent with both 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≥ 0 and 𝑎 𝑗1𝑥1 + · · · + 𝑎 𝑗𝑛𝑥𝑛 +𝑏 𝑗 ≤ 0, and then applying
Farkas’ Lemma. By similar arguments, the theorem statement holds upon changing multiple linear
inequalities into equalities with the relaxation of non-negativity for their corresponding 𝜆 𝑗 ’s.
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The application of Farkas’ Lemma can be visualized in Figure 2c (taken from Colón et al. [18]),

where Z1, . . . ,Z𝑚∈ {=, ≥} and we multiply 𝜆0, 𝜆1, . . . , 𝜆𝑚 with their inequalities in 𝜑 and sum up

them together to get𝜓 . For 1 ≤ 𝑗 ≤ 𝑚, if Z𝑗 is ≥, we require 𝜆 𝑗 ≥ 0, otherwise (i.e., Z𝑗 is =) we do

not impose restriction on 𝜆 𝑗 .

Below we review the existing approaches [18, 57, 71] that apply Farkas’ Lemma to (conjunctive)

linear invariant generation. We first present a high-level description, and then the technical details.

All these existing approaches follow the template-based paradigm as follows:

• Establish a linear template with unknown coefficients over the input LinTS that represents

the inductive LAM to be solved.

• Apply the initiation and consecution conditions to the template to obtain the constraints for

an LAM.

• Use Farkas’ Lemma to simplify the constraints obtained in the previous step.

• Solve the simplified constraints from the previous step to obtain concrete solutions to the

unknown coefficients in the template. Each solution corresponds to one inductive LAM for

the input LinTS.

Below we present the technical details of the steps above as (Step A1 – Step A4) below. We fix

an input LinTS with variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛}.
Step A1. In the first step, all the existing approaches establish a template for an inductive LAM. A

template 𝜂 involves a linear inequality 𝜂 (ℓ) = 𝑐ℓ,1 · 𝑥1 + · · · + 𝑐ℓ,𝑛 · 𝑥𝑛 + 𝑑 ≥ 0 at each location ℓ of

the LinTS with the unknown coefficients 𝑐ℓ,1, . . . , 𝑐ℓ,𝑛, 𝑑 to be resolved. Note that, although there

is only one template at each location, the approaches can obtain a conjunctive linear invariants

where one solution of the unknown coefficients corresponds to one conjunctive linear inequality.

Step A2. In the second step, all the approaches establish constraints from the initialization and the

consecution conditions for an inductive invariant. Recall that the initialization condition specifies

that the linear inequality 𝜂 (ℓ∗) at the initial location ℓ∗ should be implied by the initial condition 𝜃 ,

i.e., 𝜃 |= 𝜂 (ℓ∗), and the consecution condition specifies that every transition preserves the linear

assertion map 𝜂, i.e., for every transition ⟨ℓ, ℓ ′, 𝜌⟩ we have that 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′)′.
Step A3. In the third step, all the approaches apply Farkas’ Lemma to the constraints collected

from the initialization condition 𝜃 |= 𝜂 (ℓ∗) and the consecution condition 𝜂 (ℓ) ∧ 𝜌 |= 𝜂 (ℓ ′)′ for
every transition ⟨ℓ, ℓ ′, 𝜌⟩. For initialization, we apply the tabular in Figure 2c to obtain Figure 3a

which results in a linear assertion over the unknown coefficients 𝑐ℓ∗,1, . . . , 𝑐ℓ∗,𝑛, 𝑑 and the fresh

variables 𝜆0, 𝜆1, . . . , 𝜆𝑚 . Similarly, the tabular applied to the consecution condition of a transition

⟨ℓ, ℓ ′, 𝜌⟩ gives Figure 3b where in addition to 𝜆 𝑗 , 𝑐ℓ, 𝑗 , 𝑑ℓ , 𝑐ℓ ′, 𝑗 , 𝑑ℓ ′ we have a fresh variable 𝜇 as the

non-negative multiplier for 𝜂 (ℓ). Note that for the consecution condition, the constraint obtained

is no longer linear since the fresh variable 𝜇 is multiplied to 𝜂 (ℓ) in the tabular.

Step A4. In the last step, the (non-linear) constraints from the previous step are solved to obtain

the concrete values for the unknown coefficients in 𝜂, so that a concrete inductive LAM would be

obtained. It is from this point on that the existing approaches become diverse:

• By Colón et al. [18], the non-linear constraints were solved through the complete but costly

method of quantifier elimination;

• By Sankaranarayanan et al. [71], the non-linear constraints were solved through (i) several

reasonable heuristics to guess possible values for the key parameter 𝜇 in Figure 3b so as to

remove the non-linearity and obtain a linear under-approximation of the original non-linear

constraints, and (ii) the generator computation over polyhedral cones to obtain the invariants.

A major heuristics there is to guess possible values for 𝜇 through some practical rules such
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𝜆0 1 ≥ 0

𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑏1Z1 0

...
...

...
...

𝜆𝑚 𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑏𝑚Z𝑚0
𝑐ℓ∗,1𝑥1+· · ·+𝑐ℓ∗,𝑛𝑥𝑛+𝑑ℓ∗ ≥ 0

−1 ≥ 0

 𝜃

←𝜂 (ℓ∗)
← false

(a) Initialization Tabular

𝜇 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ ≥ 0

𝜆0 1 ≥ 0

𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′
11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1 Z1 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆𝑚𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+𝑏𝑚Z𝑚0

𝑐ℓ ′,1𝑥
′
1
+· · ·+𝑐ℓ ′,𝑛𝑥 ′𝑛+𝑑ℓ ′ ≥ 0

−1 ≥ 0

← 𝜂 (ℓ)

 𝜌

←𝜂 (ℓ′)′
← false

(b) Consecution Tabular

Fig. 3. The Tabular Form for Initialization and Consecution [18, 71]

as factorization and setting 𝜇 manually to 0, 1 (where 0 means an invariant local to the guard

of the transition and 1 means one incremental to the previous execution).

• By Liu et al. [57], a substantial improvement on the scalability to the approach by Sankara-

narayanan et al. [71] is proposed by generating linear invariants one location at time. The

main advantage of this approach is that redundant invariants can be detected more efficiently

in the solving of the constraints.

Below we showcase the application of Farkas’ Lemma to linear invariant generation by an

example. We focus on the approaches by Liu et al. [57], Sankaranarayanan et al. [71] that have a

better scalability.

Example 2. Consider the LinTS in Figure 1b. The approach [71] first establishes a template at each
location by setting 𝜂 (ℓ𝑖 ) := 𝑐ℓ𝑖 ,1𝑥 + 𝑐ℓ𝑖 ,2𝑦 + 𝑑ℓ𝑖 ≥ 0 for 𝑖 ∈ {1, 2, 𝑒} (Step A1). Then, it generates the
constraints from the initialization and consecution conditions (Step A2) and simplifies the constraints
by the tabular in Figure 3 (Step A3). Note that, the fresh variables 𝜆 𝑗 ’s and 𝜇 in an instantiation of the
tabular are local and do not overlap with the fresh variables in other instantiations. For initialization,
the tabular in Figure 4a gives the simplified constraints [𝑐ℓ2,1 = 𝜆1, 𝑐ℓ2,2 = 𝜆2, 𝑑ℓ2 ≥ −50𝜆2] (recall
Remark 1, where 𝜆0 ≥ 0 but we do not impose restriction on 𝜆1, 𝜆2) and finally generates the constraints
[50𝑐ℓ2,2+𝑑ℓ2 ≥ 0] by projecting away the fresh variables 𝜆 𝑗 ’s. For consecution, we present the application
of the tabular to the transition 𝜏5 as in Figure 4b; after projecting away the fresh variables 𝜆 𝑗 ’s, the
approach further eliminates the fresh variable 𝜇 by heuristics that guess its value through either some
practical rules such as factorization or setting 𝜇 manually to 0, 1. Other transitions are treated in a
similar way.

𝜆0 1 ≥ 0

𝜆1 𝑥 = 0

𝜆2 𝑦 −50 = 0

𝑐ℓ2,1𝑥 + 𝑐ℓ2,2𝑦 + 𝑑ℓ2 ≥ 0

}
𝜃

← 𝜂 (ℓ2)

(a) Initialization Tabular in Example 2

𝜇 𝑐ℓ
2
,1𝑥 + 𝑐ℓ

2
,2𝑦 + 𝑑ℓ

2
≥ 0

𝜆0 1 ≥ 0
𝜆1 −𝑥 + 49 ≥ 0
𝜆2 𝑥 ′ − 50 ≥ 0
𝜆3 −𝑥 ′ + 99 ≥ 0
𝜆4 −𝑥 + 𝑥 ′ − 1 = 0

𝜆5 −𝑦 + 𝑦′ = 0

𝑐ℓ
1
,1𝑥
′ + 𝑐ℓ

1
,2𝑦
′ + 𝑑ℓ

1
≥ 0

−1 ≥ 0

← 𝜂 (ℓ2 )
𝜌5

←𝜂 (ℓ1 )′
← false

(b) Consecution Tabular in Example 2

Fig. 4. The Tabular Form of Initialization and Consecution in Example 2

The simplified constraints obtained from the previous step constitutes a PLP Φ in CNF where each
conjunctive clause is the constraint derived from either the initialization or the consecution of a
transition, and every disjunctive linear assertion in such a conjunctive clause results from a distinct
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guessed value for a non-linear 𝜇 parameter in the tabular for consecution. In the last step (Step A4),
the approach [71] expands the PLP Φ equivalently into a DNF PLP (where each disjunctive clause is
a linear assertion that defines a polyhedral cone) and obtains the linear invariants by the generator
computation of each polyhedral cone in the DNF PLP. For this example, one disjunctive clause (treated
as a polyhedral cone) from the DNF formula is shown in Figure 5a (where we abbreviate 𝑐ℓ𝑖 , 𝑗 , 𝑑ℓ𝑖
as 𝑐𝑖 𝑗 , 𝑑𝑖 ); further by computing the generators of the polyhedral cone in Figure 5a, we obtain the
corresponding generators and their invariants in Figure 5b, where in the left part each row specifies
a generator with a type (a point generator or a ray generator or a line generator) over the unknown
coefficients 𝑐𝑖 𝑗 ’s and 𝑑𝑖 ’s, and in the right part we instantiate the generator to the unknown coefficients
in the template 𝜂 to obtain the invariants at location ℓ1, ℓ2 and ℓ𝑒 .


𝑐12 − 𝑐𝑒2 = 0, 𝑐12 − 𝑐22 = 0,

𝑐21 ≥ 0, 𝑐11 + 𝑐12 ≥ 0,

50𝑐12 + 𝑑2 ≥ 0,

−99𝑐11 + 𝑐12 − 𝑑1 + 100𝑐𝑒1 + 𝑑𝑒 ≥ 0,

50𝑐11 + 𝑑1 − 49𝑐21 − 𝑑2 ≥ 0


(a) A disjunctive clause in the DNF

type 𝑐11 𝑐12 𝑑1 𝑐21 𝑐22 𝑑2 𝑐𝑒1 𝑐𝑒2 𝑑𝑒 𝜂 (ℓ1) 𝜂 (ℓ2) 𝜂 (ℓ𝑒 )
point 0 0 0 0 0 0 0 0 0 0 ≥ 0 0 ≥ 0 0 ≥ 0

line 1 −1 0 0 −1 50 0 −1 100 𝑥 − 𝑦 = 0 −𝑦 + 50 = 0 −𝑦 + 100 = 0

line 0 0 0 0 0 0 1 0 −100 0 = 0 0 = 0 𝑥 − 100 = 0

ray 0 0 49 1 0 0 0 0 49 49 ≥ 0 𝑥 ≥ 0 49 ≥ 0

ray 0 0 0 0 0 0 0 0 1 0 ≥ 0 0 ≥ 0 1 ≥ 0

ray 0 0 1 0 0 0 0 0 1 1 ≥ 0 0 ≥ 0 1 ≥ 0

ray 1 0 −50 0 0 0 0 0 49 𝑥 − 50 ≥ 0 0 ≥ 0 49 ≥ 0

ray 0 0 1 0 0 1 0 0 1 1 ≥ 0 1 ≥ 0 1 ≥ 0

(b) generators (left) and their invariants (right) for Figure 5a

Fig. 5. Example of a disjunctive clause and its generators and invariants

The linear invariants obtained from the generator computation can be further minimized by removing
trivial invariants such as 0 ≥ 0 and redundant inequalities. After processing all the disjunctive clauses of
the DNF and grouping all the generated invariants together, the final invariants generated are 𝜂 (ℓ1) =
[𝑥 = 𝑦, 50 ≤ 𝑥 ≤ 99], 𝜂 (ℓ2) = [𝑦 = 50, 0 ≤ 𝑥 ≤ 49] and 𝜂 (ℓ𝑒 ) = [𝑥 = 𝑦 = 100]. The approach [57]
further improves the scalability by the idea of generating the invariants one location at a time that
allows to detect redundant invariants more efficiently. □

3 DISJUNCTIVE LINEAR INVARIANT GENERATION FOR UNNESTED LOOPS
In this section, we present our approach for generating linear disjunctive loop invariants over

unnested affine while loops. Throughout the section, we fix the set of program variables as 𝑋 =

{𝑥1, . . . , 𝑥𝑛} and identify the set 𝑋 as the set of variables in the LinTS to be derived from the loop.

We consider the canonical form of an unnested affine while loop as in Figure 6a, where we have:

• The PLP 𝐺 is the loop condition (or loop guard) for the while loop.

• The vector x = (𝑥1, . . . , 𝑥𝑛)T represents the column vector of program variables, and each

F𝑖 (1 ≤ 𝑖 ≤ 𝑚) is an affine function, i.e., F𝑖 (x) = Ax + b where A (resp. b) is an 𝑛 × 𝑛 square

matrices (resp. 𝑛-dimensional column vector) that specifies the affine update under the linear

assertion 𝜙𝑖 (as a conditional branch). The assignment x := F𝑖 (x) is considered simultaneously

for the variables in x so that in one execution step, the current valuation 𝜎 is updated to

F𝑖 (𝜎).
• The switch keyword represents a special conditional branching (i.e., different from its original

meaning in e.g. C programming language) that if the current values of the program variables

satisfy the condition 𝜙𝑖 , then the assignment at the 𝑖th conditional branch (i.e., x := F𝑖 (x))
is executed. Note that the branch conditions 𝜙1, . . . , 𝜙𝑚 need not to be logically pairwise

disjoint (i.e., there can be some valuation 𝜎 that satisfies both 𝜙𝑖 , 𝜙 𝑗 (𝑖 ≠ 𝑗 ), so that our setting

covers nondeterminism in imperative programs.
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• The statements 𝛿1, . . . , 𝛿𝑚 specify whether the loop continues after the affine update of the

conditional branches 𝜙1, . . . , 𝜙𝑚 . Each statement 𝛿𝑖 is either the skip statement that does

nothing (which means that the loop continues after the affine update of F𝑖 ) or the break
statement (which means that the loop exits after the affine update).

while 𝐺 {

switch {

case 𝜙1 :

x := F1 (x) ; 𝛿1 ;
· · ·
case 𝜙𝑚 :

x := F𝑚 (x) ; 𝛿𝑚 ;

}

}

(a) Canonical form

switch {

case 𝜙𝑃,1 : x := 𝐹𝑃,1 (x) ; 𝛿𝑃,1 ;
· · ·
case 𝜙𝑃,𝑝 : x := 𝐹𝑃,𝑝 (x) ; 𝛿𝑃,𝑝 ;

}

(b) C𝑃

switch {

case 𝜙𝑄,1 : x := F𝑄,1 (x) ; 𝛿𝑄,1 ;

· · ·
case 𝜙𝑄,𝑞 : x := F𝑄,𝑞 (x) ; 𝛿𝑄,𝑞 ;

}

(c) C𝑄

switch {

· · ·
case 𝜙𝑃,𝑖 :

x := (F𝑃,𝑖 (x)) ;
𝑏𝑟𝑒𝑎𝑘 ; ( if 𝛿𝑃,𝑖 = break )

· · ·
case 𝜙𝑃,𝑖 ∧ 𝜙𝑄,𝑗 [F𝑃,𝑖 (x)/x] :

x := F𝑄,𝑗 (F𝑃,𝑖 (x)) ;
𝛿𝑄,𝑗 ; ( if 𝛿𝑄,𝑗 ≠ break )

· · ·
}

(d) The sequential case

switch {

· · ·
case 𝜙𝑃,𝑖 ∧ 𝑏 :

x := F𝑃,𝑖 (x) ; 𝛿𝑃,𝑖 ;
· · ·
case 𝜙𝑄,𝑗 ∧ ¬𝑏 :

x := F𝑄,𝑗 (x) ; 𝛿𝑄,𝑗 ;

· · ·
}

(e) The conditional case

Fig. 6. The canonical form of unnested loop and transformation (TF) for 𝑃 , 𝑄 with two recursive cases

The canonical form in Figure 6a coincides with the PDA pattern [83] in the sense that each

branch condition 𝜙𝑖 encodes the truth values of all the conditional branches in the original loop

body, so that each 𝜙𝑖 corresponds to an execution of the whole loop body. Note that we do not

consider the goto statement since they would otherwise lead to infinite executions within the loop

body, and thus breaking the loop structure.

Any unnested affine while loop with break statement can be transformed into the canonical

form in Figure 6a by recursively examining the substructures of the loop body of the loop, at the

cost of a possible exponential blow-up in the number of conditional branches in the loop body. A

recursive algorithm that transforms an affine program 𝑃 with break statement and without loops

into a program C𝑃 that fits the loop body of the canonical form in Figure 6a, could work as follows.

• For the base case where the program 𝑃 is either a single affine assignment x := F(x) or
resp. the break statement, the transformed program C𝑃 is simply switch {case true : x :=

F(x); skip; } or resp. switch {case true : x := x; break; }, respectively.
• For a sequential composition 𝑅 = 𝑃 ;𝑄 , the algorithm recursively computes C𝑃 and C𝑄 as in

Figure 6b and Figure 6c respectively, and then compute C𝑅 as in Figure 6d for which:

– For each 1 ≤ 𝑖 ≤ 𝑝 such that 𝛿𝑃,𝑖 = break, we have the branch x := F𝑃,𝑖 (x); break; (i.e.,
the branch breaks already in the execution of 𝑃 ).

– For each 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑞 such that 𝛿𝑃,𝑖 = skip, we have the branch x :=

F𝑄,𝑗 (F𝑃,𝑖 (x));𝛿𝑄,𝑗 under the branch condition 𝜙𝑃,𝑖 ∧ (𝜙𝑄,𝑗 [F𝑃,𝑖 (x)/x]) (i.e., the branch

continues to the execution of 𝑄).

• For a conditional branch 𝑅 = if 𝑏 then 𝑃 else 𝑄 , the algorithm recursively computes C𝑃 and

C𝑄 as in the previous case, and then compute C𝑅 as in Figure 6e for which:

– For each 1 ≤ 𝑖 ≤ 𝑝 , we have the branch x = F𝑃,𝑖 (x);𝛿𝑃,𝑖 ; with branch condition 𝜙𝑃,𝑖 ∧ 𝑏
(i.e., the branch conditions of 𝑃 is conjuncted with the extra condition 𝑏).

– For each 1 ≤ 𝑗 ≤ 𝑞, we have the branch x = F𝑄,𝑗 (x);𝛿𝑄,𝑗 ; with branch condition 𝜙𝑄,𝑗 ∧ ¬𝑏
(i.e., the branch conditions of 𝑄 is conjuncted with the extra condition ¬𝑏).

Note that although the transformation into our canonical form may cause exponential blow up

in the number of conditional branches in the loop body, in practice a loop typically has a small

number of conditional branches and further improvement can be carried out by removing invalid
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branches (i.e., those whose branch condition is unsatisfiable). Moreover, such a canonical form is

often necessary to derive precise disjunctive information for a while loop (see e.g. Xie et al. [83]).

Below we illustrate our algorithm to generate disjunctive linear invariants on unnested affine

while loops. Informally, our algorithm applies the PDA pattern from Xie et al. [83] and follows

Farkas’ Lemma for linear invariant generation as Colón et al. [18], Liu et al. [57], Sankaranarayanan

et al. [71], and further propose the improvement of invariant generation that is closely related to

the PDA pattern and has not been considered in the existing approaches [18, 57, 71]. We fix an

unnested affine while loop𝑊 . The workflow of our algorithm is demonstrated as follows (Step B1
– Step B3).
Step B1.We first transform the loop𝑊 into a canonical form C𝑊 w.r.t Figure 6a as stated previously.

Step B2. Then we apply the PDA pattern to transform the loopC𝑊 into a LinTS. The transformation

is in a straightforward fashion that every conditional branch (i.e., 𝜑𝑖 in Figure 6a) corresponds to a

stand-alone location, and the guard of a transition is determined by the loop condition (i.e.,𝐺) and

the branch conditions of the source and target locations of the transition. Formally, we have that

the LinTS Γ𝑊 derived from the loop𝑊 is given as follows:

• The set of locations is {ℓ1, . . . , ℓ𝑚, ℓ𝑒 } where each ℓ𝑖 (1 ≤ 𝑖 ≤ 𝑚) corresponds to the branch

with branch condition 𝜑𝑖 and ℓ𝑒 is the termination program counter of the loop.

• For each 1 ≤ 𝑖, 𝑗 ≤ 𝑚, we have the transition (where we denote x′ := (𝑥 ′
1
, . . . , 𝑥 ′𝑛)T)

𝜏𝑖 𝑗 = (ℓ𝑖 , ℓ𝑗 ,𝐺 ∧ 𝜑𝑖 ∧ 𝜑 𝑗 [x′/x] ∧ x′ = F𝑖 (x))
that specifies the one-step jump from the location ℓ𝑖 to the location ℓ𝑗 , for which the guard

condition is 𝐺 ∧ 𝜑𝑖 ∧ 𝜑 𝑗 [x′/x] ∧ x′ = F𝑖 (x) since the transition needs to pass the loop guard

𝐺 , satisfy the branch condition 𝜑𝑖 when staying in the location ℓ𝑖 , have the affine update

specified by F𝑖 and fulfill the branch condition 𝜑 𝑗 upon entering the location ℓ𝑗 .

• For each 1 ≤ 𝑖 ≤ 𝑚, we have the transition

𝜏 ′𝑖 = (ℓ𝑖 , ℓ𝑒 ,𝐺 ∧ 𝜑𝑖 ∧ (¬𝐺) [x′/x] ∧ x′ = F𝑖 (x))
that specifies the one-step jump from the location ℓ𝑖 to the termination location ℓ𝑒 for which

the guard condition is a conjunction of the loop guard𝐺 (for staying in the loop at the current

loop iteration), the branch condition 𝜑𝑖 (that the current execution of the loop body follows

the location ℓ𝑖 ), the equality x′ = F𝑖 (x) (for the affine update) and the negation of the loop

guard (for jumping out of the loop).

After the transformation, we remove transitions with unsatisfiable guard condition to reduce the

size of the derived LinTS. An example for the transformation has been given in Example 1.

Remark 2. It is possible to derive more precise linear transition systems for affine while loops by
considering modulus information of integer program values (such as the parity of program values).

Step B3. After the transformation into a LinTS, we follow existing approaches [18, 57, 71] that

generate linear invariants with Farkas’ Lemma. In particular, we apply the recent approach [57] that

has the most scalability. The major difference is that we consider an invariant propagation technique

that takes advantage of a common feature in the PDA pattern to further improve the time efficiency.

Besides, a slight difference is that we do not encode the constraints for the termination program

location ℓ𝑒 . This is because the invariant at ℓ𝑒 can be derived by the invariant propagation technique

that propagates the invariants from non-termination locations to the termination location.

In our invariant propagation, we explore a special structure in the derived LinTS that often arises

in the PDA pattern, and propose a technique that applies to the special structure and allows one

to generate invariants at only one location and obtain the invariants at other locations through a
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propagation process. To illustrate the invariant propagation, we first identify the special structure

of non-crossing linear transition systems.

Definition 2. A LinTS Γ is non-crossing if a depth-first search (DFS) tree of the directed graph
DG(Γ) (i.e., its underlying directed graph) rooted at the initial location does not have cross edges.
(Recall that a cross edge in a DFS tree is an edge whose destination location is a visited location in the
DFS but not an ancestor of the source location of the edge).

Non-crossing linear transition systems are common in the PDA pattern. For example, the case

of multiphase invariants [75] is a special case of non-crossing linear transition systems where a

location is never entered again once it is left. Moreover, the specific PDA patterns considered by Xie

et al. [83] require the strict alternation between locations (which is necessary for their approach to

obtain precise loop summaries), and hence is also a special case of non-crossing linear transition

systems. Furthermore, any linear transition system that has one outgoing-transition for every

location (which arises from deterministic mode change in while loops) is non-crossing.

Then we illustrate the main workflow of our invariant propagation technique. Consider a LinTS

Γ transformed from an unnested affine while loop. Given a DFS tree𝑇 of DG(Γ) rooted at the initial
location ℓ∗ that has the non-crossing property and a conjunctive linear invariant𝜂 (ℓ∗) at the location
ℓ∗ generated from the approach by Liu et al. [57], the invariant propagation works by repeatedly

propagating the invariant 𝜂 (ℓ∗) from the root to other locations in a breadth-first search (BFS) from

the root ℓ∗. In the BFS, a single step of propagation from a location ℓ in the current BFS front with the

invariant 𝜂 (ℓ) (as a DNF PLP) computed from the prior BFS process to a location ℓ ′ in the next front,

considers all transitions from ℓ to ℓ ′; for each such transition 𝜏 = (ℓ, ℓ ′, 𝜌), our approach computes

a DNF PLP as an invariant 𝐼 (𝜏, ℓ ′) for the LinTS Γ [ℓ ′, 𝐾𝜏 := {𝜎 ′ | ∃𝜎.(𝜎 |= 𝜂 (ℓ) ∧ 𝜎, 𝜎 ′ |= 𝜌)}] (see
Page 6 for the definition of Γ [−,−]) again via the approach by Liu et al. [57] and disjuncts all these

𝐼 (𝜏, ℓ ′)’s together to obtain 𝜂 (ℓ ′). The invariant at the termination location ℓ𝑒 is also obtained by

performing a single propagation step from the non-termination locations.

The details of a single propagation in the BFS is as follows. Consider a location ℓ at the current

BFS front with the computed PLP invariant 𝜂 (ℓ) = ∨𝑑
𝑖=1 Φ𝑖 where each Φ𝑖 is a linear assertion.

Then for each transition 𝜏 = (ℓ, ℓ ′, 𝜌), we have that 𝐼 (𝜏, ℓ ′) = ∨𝑑
𝑖=1 𝐼 (𝜏, ℓ ′, 𝑖) where each 𝐼 (𝜏, ℓ ′, 𝑖)

is a conjunctive linear invariant of the LinTS Γ [ℓ ′, 𝐾𝜏,𝑖 := {𝜎 ′ | ∃𝜎.(𝜎 |= Φ𝑖 ∧ 𝜎, 𝜎 ′ |= 𝜌)}].
Hence, our approach calculates 𝐼 (𝜏, ℓ ′) by computing for each 1 ≤ 𝑖 ≤ 𝑑 the conjunctive linear

invariant 𝐼 (𝜏, ℓ ′, 𝑖) (over Γ [ℓ ′, 𝐾𝜏,𝑖 ]) by the approaches [57, 71]. To apply these approaches, we need

to encode the set 𝐾𝜏,𝑖 as a linear assertion Φ′𝜏,𝑖 without quantifiers that defines the set, and this

can be accomplished by the projection of the polyhedron {(𝜎, 𝜎 ′) | 𝜎 |= Φ𝑖 ∧ 𝜎, 𝜎 ′ |= 𝜌} onto the
dimensions of 𝜎 ′. However, polyhedron projection is an operation with relatively high computation

cost. Below we show that these Φ′𝜏,𝑖 ’s can be computed more efficiently by the resorting to the

affine updates between x and x′ from the original while loop.

Consider the task to project the polyhedron 𝐻 = {(𝜎, 𝜎 ′) | 𝜎 |= Φ ∧ 𝜎, 𝜎 ′ |= 𝜌} in the treatment

of a transition 𝜏 = (ℓ, ℓ ′, 𝜌) stated above, where Φ is a linear assertion. Recall that the transition is

derived in the way that the relationship between the variables from 𝑋 and 𝑋 ′ is given by some

affine assignment x := Ax + b (i.e., x′ = Ax + b) under some conditional branch in the canonical

form of Figure 6a. We consider two cases below.

• The first case is that the matrix A is invertible. In this case, we have that x = A−1x′ − A−1b,
and we obtain a linear assertion Φ′ over 𝑋 ′ that defines the projected polyhedron directly as

(Φ ∧ 𝜌) [(A−1x′ − A−1b)/x]. In this case, no polyhedron projection is needed.

• The second case is that the matrix 𝐴 is not invertible. Then we solve the system of linear

equations Ax = x′ − b by the standard method of Gaussian Elimination in elementary linear

algebra and obtains that x = u(x′) +∑𝑘
𝑖=1 𝑎𝑘 · v𝑖 (𝑎1, . . . , 𝑎𝑘 ∈ R) where (i) the vector u(x′)
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is a solution to the non-homogenous equation Ax = x′ − b and can be expressed as an

affine combination of the entries in x′ (i.e., u(x′) = Cx′ + d for some matrix C and vector

d) and (ii) v1, . . . , v𝑘 are the basic solution of the homogeneous equation Ax = 0 and are

constant vectors not relying on x′. The fresh variables 𝑎1, . . . , 𝑎𝑘 are the coefficients of the

basic solution and can take any real value. As a consequence, the projection of the linear

assertion 𝜎 |= Φ ∧ 𝜎, 𝜎 ′ |= 𝜌 (that defines the polyhedron 𝐻 ) onto the variables x′ can be

obtained as the projection of the linear assertion (Φ ∧ 𝜌) [(u(x′) +∑𝑘
𝑖=1 𝑎𝑘 · v𝑖 )/x] onto the

variables x′ (i.e., projecting away the dimensions of 𝑎1, . . . , 𝑎𝑘 ). Note that the number of the

basic solution 𝑎1, . . . , 𝑎𝑘 is equal to 𝑛 − rank(𝐴) where rank(𝐴) is the rank of the matrix 𝐴.

This means that the number of variables to be projected away is smaller than 𝑛. It follows

that in this case, it is possible to project away much less variables compared with the original

projection method (that needs to project away all the 𝑛 variables 𝑥1, . . . , 𝑥𝑛 in x), and thus

can further improve the time efficiency.

The advantage of incorporating invariant propagation lies at the observation that to generate the

invariants at all the locations, previous approaches consider to solve them either as a whole [71]

or separately [57] via the generator computation of polyhedral cones. Thus, all these approaches

require to solve the invariants at all the locations with generator computation, an operation with

relative high cost and possible exponential blow-up. Invariant propagation improves the time

efficiency in that when the underlying LinTS has a non-crossing DFS tree, then it suffices to

perform generator computation only in the computation of the invariants at the initial location

and in the treatment of self-loops at other locations.

Note that non-crossing linear transition systems do not cover all cases of directed acyclic graphs,

but this can be remedied by first computing the strongly-connected components (SCCs) of the

underlying LinTS and then considering each SCC separately.

In summary, the workflow of our algorithm for generating linear invariants over an unnested

affine while loop is as follows.

• First, our algorithm transforms an unnested affine while loop into the canonical form in

Figure 6a and further transforms it into a linear transition system from the PDA pattern [83].

• Second, our algorithm applies the approach by Liu et al. [57] and our invariant propagation

technique (if possible) to obtain linear invariants at the locations of the linear transition

system. In the case that the linear transition system is non-crossing w.r.t the initial location,

our algorithm applies the approach by Liu et al. [57] to obtain the linear invariant at the

initial location and afterwards obtain the invariants at other locations through invariant

propagation. Otherwise (i.e., the linear transition system is not non-crossing), our algorithm

fully follows the original approach by Liu et al. [57] to generate the invariants at all the

locations.

By an induction on the depth of the DFS tree, we can prove that the logical assertions generated

from our invariant propagation are indeed invariants and are at least as tight as the invariants

generated by the previous approaches [57, 71]. Due to space limitation, we relegate the detailed

proofs to Appendix C.

4 DISJUNCTIVE LINEAR INVARIANT GENERATION FOR NESTED LOOPS
Recall that in the previous section, we proposed a novel approach for generating disjunctive

linear invariants over unnested while loops via Farkas’ Lemma, the PDA pattern and an invariant

propagation technique. In this section, we extend this approach to nested affine while loops.

The main idea is as follows. Given a nested affine while loop𝑊 , our approach works by first

recursively computing the loop summary 𝑆𝑊 ′ for each outermost nesting while loop𝑊 ′ in𝑊 (that
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is a while loop which is in the loop body of𝑊 and does not lie in other nesting loops), and then

apply the PDA pattern with the integration of these loop summaries 𝑆𝑊 ′ . Below we fix a nested

affine while loop𝑊 with variable set 𝑋 = {𝑥1, . . . , 𝑥𝑛} and present the technical details.

The most involved part in our approach is the transformation of the loop𝑊 into its corresponding

LinTS by the PDA pattern. Unlike the situation of unnested while loops, a direct recursive algorithm

that transforms the loop𝑊 into a canonical form in Figure 6a as in the unnested case is not possible,

since one needs to tackle the loop summaries from the outermost nesting while loops in𝑊 .

To address the problem above, our algorithm works with the control flow graph (CFG) 𝐻 of the

loop body of the loop𝑊 and considers the execution paths in this CFG. The CFG𝐻 is a directed graph

whose vertices are the program counters of the loop body and whose edges describe the one-step

jumps between these program counters. Except for the standard semantics for the jumps emitting

from assignment statements and conditional branches, for a program counter that represents the

entry point of an outermost nesting while loop, we have the special treatment that the jump at the

program counter is directed to the termination program counter of the nesting while loop in the

loop body of𝑊 (i.e., skipping the execution of the nesting while loop). An execution path in the CFG

𝐻 is a directed path (of program locations) that ends in (i) either the termination program counter

of the loop body of𝑊 without visiting a program counter that represents the break statement or

(ii) a first break statement without visiting prior break statements. An example is as follows.

Example 3. Consider the CFG of a specific example with two loop𝑊 and𝑊 ′ from janne_complex [9]
in Figure 7. The execution path starts at the Initial Condition [𝑥,𝑦], jumps to the next vertices along
the edge whose condition is satisfied (e.g., True is tautology, 𝑥 < 30 is satisfied when variable 𝑥 value is
less than 30, etc.), and terminates in the Exit statement. One possible execution path for the outermost
loop𝑊 is 𝐸𝑂𝑢𝑡𝑒𝑟 → 𝐴𝐼𝑆 → 𝐴1 → 𝐸𝑂𝑢𝑡𝑒𝑟 . The 𝐸𝑂𝑢𝑡𝑒𝑟 means the outermost loop entry of𝑊 and
𝐸𝐼𝑛𝑛𝑒𝑟 means the outermost-nesting-loop entry of𝑊 ′ in𝑊 . The 𝐴1, 𝐴2, 𝐴3 represents the assignment
statements in program and 𝐴𝐼𝑆 is a special assignment statement for the outermost-nesting-loop𝑊 ′

which could be obtained by computing loop summary for𝑊 ′. □

Fig. 7. The CFG of janne_complex [9]

Based on the CFG 𝐻 and the execution paths, our approach constructs the LinTS for the whole

loop𝑊 as follows. Since the output of an outermost nesting while loop𝑊 ′ in𝑊 cannot be exactly

determined from the input to the loop𝑊 ′, we first have fresh variables 𝑥𝑊 ′,1, . . . , 𝑥𝑊 ′,𝑛′ to represent

the output values of the variables 𝑥𝑊 ′,1, . . . , 𝑥𝑊 ′,𝑛 after the execution of the loop𝑊 ′. With these

fresh variables, we can then symbolically compute the values of the program variables at each

program counter in an execution path. In detail, given an execution path𝜔 = 𝜄1, . . . , 𝜄𝑘 where each 𝜄𝑖
is a program counter of the loop body of the loop𝑊 , our approach computes the affine expressions

𝛼𝑥,𝑖 and PLPs 𝛽𝑖 (for 𝑥 ∈ 𝑋 and 1 ≤ 𝑖 ≤ 𝑘) over the program variables 𝑋 (that represents their
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initial values at the start of the loop body of𝑊 here) and the fresh variables (for the output of the

outermost nesting loops). The intuition is that (i) each affine expression 𝛼𝑥,𝑖 represents the value of

the variable 𝑥 at the program counter 𝜄𝑖 along the execution path 𝜔 and (ii) each PLP 𝛽𝑖 specifies

the condition that the program counter 𝜄𝑖 is reached along the execution path 𝜔 . The computation

is recursive on 𝑖 as follows.

Denote the vectors 𝛼𝑖 := (𝛼𝑥1,𝑖 , . . . , 𝛼𝑥𝑛,𝑖 ) and 𝑥𝑊 ′ = (𝑥𝑊 ′,1, . . . , 𝑥𝑊 ′,𝑛). For the base case when
𝑖 = 1, we have 𝛼1 = (𝑥1, . . . , 𝑥𝑛) and 𝛽1 = true that specifies the initial setting at the start program

counter 𝜄1 of the loop body of the original loop𝑊 . For the recursive case, suppose that our approach

has computed the affine expressions in 𝛼𝑖 and the PLP 𝛽𝑖 . We classify four cases below:

• Case 1: The program counter 𝜄𝑖 is an affine assignment statement x := F(x). Then we have

that 𝛼𝑖+1 = 𝛼𝑖 [F(x)/x] and 𝛽𝑖+1 := 𝛽𝑖 .
• Case 2: The program counter 𝜄𝑖 is a conditional branch with branch condition 𝑏 and the next

program counter 𝜄𝑖+1 follows its then-branch. Then the vector 𝛼𝑖+1 is the same as 𝛼𝑖 , and the

PLP 𝛽𝑖+1 is obtained as 𝛽𝑖+1 = 𝛽𝑖 ∧ 𝑏.
• Case 3: The program counter 𝜄𝑖 is a conditional branch with branch condition 𝑏 and the next

program counter 𝜄𝑖+1 follows its else-branch. The only difference between this case and the

previous case is that 𝛽𝑖+1 is obtained as 𝛽𝑖+1 := 𝛽𝑖 ∧ ¬𝑏.
• Case 4: The program counter 𝜄𝑖 is the entry point of an outermost nesting while loop𝑊 ′ of𝑊
and 𝜄𝑖+1 is the successor program counter outside𝑊 ′ in the loop body of𝑊 . Then 𝛼𝑖+1 := 𝑥𝑊 ′

and 𝛽𝑖+1 := 𝑆𝑊 ′ (𝛼𝑖 , 𝑥𝑊 ′ ). Note that in this case the loop summary 𝑆𝑊 ′ (see Page 6 for the

definition of 𝑆) is recursively computed.

Example 4. Continue with the execution path in Example 3. We show the evolution of 𝛼𝑖,𝑊 and 𝛽𝑖,𝑊
with the initial setting 𝛼1,𝑊 = [𝑥,𝑦], 𝛽1,𝑊 = true in Figure 8 where𝑊 denotes the current loop. □

𝛼1,𝑊 = [𝑥, 𝑦 ], 𝛽1,𝑊 = true 𝑥 < 30−−−−→ 𝛼2,𝑊 = [𝑥, 𝑦 ], 𝛽2,𝑊 = 𝛽1,𝑊 ∧ 𝑥 < 30 𝐴𝐼𝑆−−→
𝛼3,𝑊 = [𝑥𝑊 ′ , 𝑦𝑊 ′ ], 𝛽3,𝑊 = 𝛽2,𝑊 ∧ 𝑆𝑊 ′ (𝛼2,𝑊 , 𝛼3,𝑊 ) 𝐴1−→

𝛼4,𝑊 = [𝑥𝑊 ′ + 2, 𝑦𝑊 ′ − 10], 𝛽4,𝑊 = 𝛽3,𝑊

Fig. 8. The evolution of 𝛼𝑖,𝑊 and 𝛽𝑖,𝑊 for the execution path of𝑊 in Figure 7

After the 𝛼𝑖 , 𝛽𝑖 ’s are obtained for an execution path𝜔 = 𝜄1, . . . , 𝜄𝑘 from the recursive computation

above, we let the PLP Ψ𝜔 :=
∧

𝑖∈𝐼 𝛽𝑖 where the index set 𝐼 is the set of all 1 ≤ 𝑖 ≤ 𝑘 such

that the program counter 𝜄𝑖 corresponds to either a conditional branch or the entry point of an

outermost nesting while loop, and the vector of affine expression 𝛼𝜔 := 𝛼𝑘+1. Note that the PLP Ψ𝜔

is the condition that the execution of the loop body follows the execution path 𝜔 , and the affine

expressions in the vector 𝛼𝜔 represents the values of the program variables after the execution of

the loop body of𝑊 in terms of the initial values of the program variables and the fresh variables

for the output of the outermost nesting while loops in𝑊 .

Our approach then constructs the LinTS for the original while loop𝑊 as follows:

• First, for each execution path 𝜔 of the loop body of𝑊 , we have a location ℓ𝜔 that represents

this execution path.

• Second, for all locations ℓ𝜔 , ℓ𝜔 ′ (that represent the execution paths 𝜔,𝜔 ′), we have the tran-
sition 𝜏𝜔,𝜔 ′ := (ℓ𝜔 , ℓ𝜔 ′ ,Ψ𝜔 ∧ Ψ′

𝜔 ′ ∧ x′ = 𝛼𝜔 ) which means that if the execution path in the

current iteration of the loop𝑊 is 𝜔 , then in the next iteration the execution path can be 𝜔 ′

with the guard condition Ψ𝜔 ∧ Ψ′𝜔 ′ ∧ x′ = 𝛼𝜔 that comprises the conditions for the execution

paths 𝜔,𝜔 ′ and the condition x′ = 𝛼𝜔 for the next values of the program variables.
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• Third, the initial condition 𝜃 in DNF is the disjunction of ¬𝐺 and 𝐺 ∧ Ψ𝜔 , for all execution

path 𝜔 . And we follow the standard technique (see e.g. Boutonnet and Halbwachs [9]) to

include the input variables 𝑋in and conjunct the linear assertion

∧
𝑥∈𝑋 𝑥 = 𝑥in into each

disjunctive clause of the initial condition 𝜃 of the while loop𝑊 . Manually assumed initial

conditions can also be conjuncted into each disjunctive clause of 𝜃 .

Again, we can remove invalid transitions by checking whether their guard condition is satisfiable

or not.

Finally, we apply the approach [57] and our invariant propagation to the LinTS constructed

above to obtain the loop summary as the invariant (over the variables in 𝑋in ∪ 𝑋 ) generated at the

termination location ℓ𝑒 , and rename each variable 𝑥 ∈ 𝑋 to its output counterpart 𝑥out. Recall that

in the case of a non-crossing LinTS, our algorithm first applies the approach by Liu et al. [57] to

obtain the invariants at the initial location, and then propagate the invariants to other locations;

otherwise, our algorithm directly applies the approach [57].

5 IMPLEMENTATION AND EVALUATION
We implement our approach as a prototype tool that handles the linear disjunctive invariant

generation over while loops in C programming language. The implementation includes a front-

end that transforms C programs into the input form of our invariant generation solver (i.e., our

back-end). The front-end, which is written in OCaml as well as C++ and based on Frama-C [33]

program analysis platform, first transforms affine while loops in C into the canonical form as

Figure 6a and then converts the canonical form into a linear transition system. The back-end is

an extension of StInG [80] written in C++ and uses PPL 1.2 [8] for polyhedra manipulation (e.g.,

projection, generation computation, etc.). The back-end generates invariants at initial location

by applying invariant-generation with Farkas’ Lemma and uses invariant propagation method to

generate invariants at other locations whenever applicable.

Notably, our back-end includes two additional features. The first one is the functionality to

remove invalid transitions with unsatisfiable guard condition 𝜌 . The second one is the treatment of

the situation of the unsatisfiability in the application of Farkas’ Lemma (see −1 ≥ 0 at the bottom of

Figure 3a and Figure 3b), which is however missing in the original tool StInG [80]. The former can

simplify the LinTS to improve time efficiency and the later can increase accuracy. A key difficulty in

the second one is that we obtain polyhedra rather than polyhedral cones, and thus cannot directly

apply the generator computation. To address this difficulty, we show that it suffices to consider

𝜇 = 1 in Figure 3b and include the generators of both the polytope and the polyhedral cone of the

Minkowski decomposition of the polyhedron. As its correctness proof is somewhat technical, we

relegate them to Appendix A and Appendix B.

Below we present the experimental evaluation. All the experimental results are obtained from a

Linux (Ubuntu 20.04 LTS) with an 11th Intel Core i7 (3.20 GHz) CPU, 32 GB of memory.

We choose representative benchmarks related to disjunctive invariants and loop summary in

the literature [5, 9, 43, 66, 75, 83] for evaluation. Our experimental results over these benchmarks

are summarized in Table 1 – Table 3. In all the tables, "Our approach" means the experimental

results by our approach, "Type" means what type of results we obtained, "Time" means the runtime

measured in seconds, "v.s." means the accuracy of results compared against the original results in

the literature. For the type of results, we have "Dis" means the result is an invariant (holding at the

loop header) obtained by disjuncting all invariants at each location except ℓ𝑒 , "Smry" means the

result is a loop summary where the input variables carry the subscript 0 (e.g., 𝑥0) and the output

variables do not carry subscript (e.g., 𝑥 ), and "LR" means the result is an invariant at the termination

location ℓ𝑒 with a fixed input. "Detailed Results" means the detailed invariants or summaries for
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Table 1. Experiment on Representative Benchmarks

Benchmark Our Approach

Name Type Time v.s. Detailed Result

Riley and Fedyukovich [66] fig2 ★
Dis 0.02s >

(z=0 ∧ 0 ≤ x ≤ 1000y-1 ∧ 1 ≤ y) ∨
(x-1000y=z ∧ x-999 ≤ 1000y ≤ x ∧ 1 ≤ 1000y) ∨

(z=1000 ∧ 1 ≤ y ∧ 1000y ≤ x-1000)

Smry 0.03s +
(x0 ≤ x ∧ y=y0 ∧ z=z0) ∨

(x-1000y=z-z0 ∧ y=y0 ∧ x0+1 ≤ 1000y ∧ 1000y ≤ x ≤ 1000y+999) ∨
(z=z0+1000 ∧ y=y0 ∧ x0 ≤ 1000y-1 ∧ 1000y ≤ x-1000)

Ancourt et al. [5]

Gopan07 ★
Dis <0.01s + (x=y ∧ 0 ≤ x ≤ 50) ∨ (x+y=102 ∧ 51 ≤ x ≤ 102)

LR <0.01s > x=102 ∧ y=-1

Gulwani07 ★
Dis 0.01s + (y=50 ∧ 1 ≤ x ≤ 49) ∨ (x=y ∧ 50 ≤ x ≤ 99)

LR 0.01s > x=y=100

Halbwachs ★
Dis 0.01s + 0 ≤ y ≤ x ≤ 100

LR 0.01s > (101 ≤ x ≤ 102 ∧ 0 ≤ y ∧ y+2 ≤ x) ∨ (x=101 ∧ 1 ≤ y ≤ 101)

Sharma et al. [75]

POPL07 ★
Dis <0.01s > (y=50 ∧ 0 ≤ x ≤ 49) ∨ (x=y ∧ 50 ≤ x ≤ 99)

LR <0.01s > x=y=100

CAV06 ★
Dis 0.01s + (f=0 ∧ x=y ∧ 0 ≤ x ≤ 50) ∨ (f=0 ∧ x+y=102 ∧ 51 ≤ x ≤ 101) ∨ (f=0 ∧ y=0 ∧ x=102)

LR 0.01s + f=1 ∧ x=102 ∧ y=-1

ex1 ★
Dis 0.02s + (f=0 ∧ x=y ∧ 0 ≤ x ≤ 48) ∨ (f=0 ∧ x+y=98 ∧ 49 ≤ x ≤ 98) ∨ (f=0 ∧ y=-1 ∧ x=99)

LR 0.02s + f=1 ∧ x=99 ∧ y=-2

ex2 ★
Dis 0.02s + (0 ≤ x ≤ 24 ∧ x=y=z) ∨ (25 ≤ x ≤ 50 ∧ x=y ∧ 5x-100=z) ∨ (51 ≤ x ≤ 99 ∧ x+y=102 ∧ 5x-100=z)

LR 0.02s + x=100 ∧ y=2 ∧ z=400

Xie et al. [83]

fig1a ‡★ Dis 0.01s + (n=100 ∧ 0 ≤ x ≤ 99 ∧ x=z-1) ∨ (n=100 ∧ 1 ≤ x ≤ 99 ∧ x=z)

Smry 0.01s >

(x=z=n=n0 ∧ x0 ≤ z0-1 ∧ z0 ≤ n-1) ∨
(x0+1 ≤ x=n=n0 ≤ z0=z) ∨
(x=z=n=n0 ∧ z0 ≤ x0 ≤ n-1)

fig6a ★
Dis 0.02s + (n-1 ≥ m ∧ j ≥ 0 ∧ i ≥ 0 ∧ n-i ≥ 1 ∧ m-j ≥ 1) ∨ (m=j ∧ n ≥ i+1 ∧ i ≥ 0 ∧ n-1 ≥ m ∧ m ≥ 1)

Smry 0.02s = i0=j0=0 ∧ m=m0 ∧ i=n=n0 ∧ j=0 ∧ 1 ≤ m ≤ n-1

fig1c ★
Dis <0.01s + 1 ≤ j ≤ m-1 ∧ 0 ≤ k ∧ i ≤ m-1

Smry <0.01s > 1 ≤ j ≤ m-1 ∧ m ≤ i ≤ 2m-2 ∧ 1 ≤ k ≤ m-i0

fig1f ★
Dis 0.01s + (s=1 ∧ x1 = x2 ∧ 0 ≤ x1) ∨ (s=2 ∧ x1 = x2 + 1 ∧ 1 ≤ x1) ∨

(s=3 ∧ x1 = x2 ∧ 1 ≤ x1) ∨ (s=4 ∧ x1 = x2 ∧ 1 ≤ x1)

Smry 0.02s >
(s=1 ∧ x1-x2 = x10-x20 ∧ x10 ≤ x1) ∨ (s=2 ∧ x1-x2-1 = x10-x20 ∧ 1 ≤ x1-x10) ∨
(s=3 ∧ x1-x2 = x10-x20 ∧ 1 ≤ x1-x10) ∨ (s=4 ∧ x1-x2 = x10-x20 ∧ 1 ≤ x1-x10)

Boutonnet and Halbwachs [9]

eudiv ‡★ Dis 0.01s + r ≥ b ≥ 1 ∧ a ≥ q+r ∧ q ≥ 0

Smry 0.01s > a=a0 ∧ b=b0 ∧ r ≥ 0 ∧ b ≥ r+1 ∧ a+1 ≥ b+q+r ∧ q ≥ 1

correct1 ‡★ Dis <0.01s + s ≥ 0 ∧ t ≥ 0 ∧ x=o+e

Smry <0.01s > x-x0=e-e0 ∧ x0=o+e0 ∧ t ≥ 0 ∧ x-x0-t+s+e0 ≥ 1 ∧ x0 ≥ x+s ∧ x0+t ≥ e0+x

janne_complex ⊛
Dis 20.86s +

(55x+11y ≤ 1686 ∧ x ≤ y ∧ 481x ≥ 241y) ∨
(y ≤ 5 ∧ 2x-y ≥ 14 ∧ x-y ≤ 12) ∨

(y ≤ 5 ∧ x-y ≤ 12 ∧ 65x-29y ≥ 420) ∨
(55x+11y-1686 ≤ 0 ∧ 1 ≤ x-y ≤ 12 ∧ y ≥ 6 ∧ 481x+4y ≥ 4842 ∧ 3x-y ≥ 22)

Smry 34.34s +

(x0 ≤ 29 ∧ y0 ≤ 5 ∧ y0 ≤ x0 - 1 ∧ x ≤ y + 12 ∧ -36x-12x0+y-18y0 ≥ -1811 ∧ -36x-61x0+y-18y0 ≥ -3036 ∧
-107x-52x0-12y-78y0+6639 ≥ 0 ∧ 3x-y ≥ 22 ∧ x ≥ 30 ∧ 2x-2x0+y0 ≥ 12 ∧ x-x0 ≥ 4) ∨

(x0 ≤ 29 ∧ y0 ≥ x0 ∧ 30 ≤ x ≤ 31 ∧ x ≤ y+12 ∧ 5x-5x0+y-y0 ≥ 0 ∧ 13x-13x0-3y+3y0 ≥ 0 ∧
127x-155x0-25y+25y0+308 ≥ 0 ∧ 297x-297x0-47y+47y0-1064 ≥ 0)

cnt_minver ⊛ ‡★ Dis <0.01s + j ≤ 3i ≤ 2j ∧ j ≤ 3

Smry 0.01s + (i0 ≤ 2 ∧ j0 ≤ 2 ∧ i=j=3) ∨ (i0 ≤ 2 ∧ j0 ≥ 3 ∧ i=3 ∧ j=j0)

cnt_fft1 ⊛★
Dis 0.10s + (n=8 ∧ m=15 ∧ k+2 ≤ j ∧ k ≤ 8 ∧ 9 ≤ j ≤ 2k ∧ 1 ≤ i ≤ 15) ∨

(n=8 ∧ m=15 ∧ 2 ≤ j ≤ 8 ∧ 2 ≤ i ≤ 15 ∧ j ≤ 2k ∧ k ≤ 8)

Smry 0.10s +
(n=n0 ∧ m=m0 ∧ i0+1 ≤ i=m+1 ∧ j0 ≥ n+1 ∧ k+1 ≤ j ≤ 2k ∧ 3k+1 ≤ j+n) ∨
(n=n0 ∧ m=m0 ∧ i=m+1 ≥ i0+2 ∧ 2k ≥ j ≥ k+1 ∧ 3k+1 ≤ j+n ∧ j0 ≤ n) ∨

(k=n=n0 ∧ m=m0 ∧ i=m+1 ≥ i0+1 ∧ 2k ≥ j ∧ k ≥ j0 ∧ k ≥ j)

Henry et al. [43] fig1 ★ Dis <0.01s + (2x=t ∧ p=0 ∧ 2x ≤ 99 ∧ 0 ≤ x) ∨ (2x=t+3 ∧ p=1 ∧ 2 ≤ x ≤ 51)

"Dis" or "Smry" or "LR" generated from our approach. For the accuracy comparison in the column

"v.s.", we have "=" means that our result is equal to the original result, ">" means that our result is

strictly stronger, and "+" means that no existing result is available. For the symbol in the column

"Name", we have "⊛" means the affine nested loop, "‡" means that our result is strengthened by

incremental method [10], "★" means that our result is obtained by invariant propagation.

First, Table 1 presents the experimental results for our approach with invariant propagation.

Note that the runtime for all benchmarks is too less to be trivial and thus we only consider the

comparison in accuracy. In Table 1, one can observe that our approach mostly generate invariants

with better accuracy. In some multi-phase benchmarks, our approach could derive significantly

tighter disjunctive invariants and summaries such as in Boutonnet and Halbwachs [9], Riley and

Fedyukovich [66], Sharma et al. [75], Xie et al. [83], and generate precise LR results of program

in disjunctive form such as in Ancourt et al. [5], Sharma et al. [75]. On benchmarks that require

incremental invariant (or summary) generation [10], we run our approach twice for which the

second run generates more invariants (or summaries) based on those obtained in the first run and

obtain tighter invariants (or summaries) for benchmarks such as fig1a in Xie et al. [83] and eudiv,
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correct1, cnt_minver in Boutonnet and Halbwachs [9]. Finally, our approach could also resolve

nested loops with complex control flow such as janne_complex, cnt_minver, cnt_fft1 in Boutonnet

and Halbwachs [9].

Remark 3. We are unable to have direct comparison with the very related work Boutonnet and
Halbwachs [9], Henry et al. [43], Lin et al. [56], Riley and Fedyukovich [66], Xie et al. [83] due to the
following reasons. First, the works Boutonnet and Halbwachs [9], Lin et al. [56], Xie et al. [83] neither
publicize their implementation nor report the detailed invariants in some key benchmarks such as
janne_complex, cnt_minver, cnt_fft1. Second, although the tool PAGAI [43] claims the functionality
of disjunctive invariant generation, we find that this functionality could not work in the disjunctive-
invariant-generation mode. Third, the tool by Riley and Fedyukovich [66] follows the smtlib format of
the CHC solver, whereas the transformation of a program into the smtlib format is sophisticated and
there is no existing tool that converts between the two complete different formats. In addition, their
benchmarks are in smtlib format, so that we can not recover the loop information. We also note that a
recent tool [69, 86] based on machine learning could only generate conjunctive invariants, and thus is
orthogonal to our approach.

Second, Table 2 presents the experimental comparison with the state-of-the-art software veri-

fication tool SeaHorn [73]. Since SeaHorn requires the user to provide a goal property, we feed

SeaHorn non-trivial goal properties arising from the disjunctive feature of the benchmarks. In

the table, the column "SeaHorn" means the results generated by SeaHorn, and the "Proof" column

specifies whether the tool could verify the given assertion for which the symbol "F" (resp. "T")

means the obtained results are unable (resp. able) to prove the goal property respectively. One can

observe that SeaHorn fail on most of the benchmarks in disjunctive invariant generation even if

these benchmarks are at a small scale. We find that the reasons include failure to handle break-
statement such as Gopan07, incapability to handle non-initialized variables such as fig1a, fig6a,
fig1c, eudiv, correct1, janne_complex, cnt_minver, cnt_fft1 and incompetence to handle disjunction

such as Halbwachs, etc. Unrolling of loops does not help as Seahorn fails on benchmarks that can

be completely unrolled into finite iterations such as fig2, CAV06, ex1.

Table 2. Experiment for SeaHorn

Benchmark SeaHorn Our Approach

Name Proof Proof

Riley and Fedyukovich [66] fig2★ F T

Ancourt et al. [5]

Gopan07★, Halbwachs★ F T

Gulwani07★ T T

Sharma et al. [75]

CAV06★, ex1★ F T

POPL07★, ex2★ T T

Xie et al. [83]

fig1a‡★, fig1c★, fig6a★ F T

fig1f★ T T

Boutonnet and Halbwachs [9]

eudiv‡★, correct1‡★,
janne_complex⊛,

cnt_minver⊛ ‡★, cnt_fft1⊛★
F T

Henry et al. [43] fig1★ T T

Table 3. Experiment for Invariant Propagation

Benchmark

Our Approach

No PPG PPG

Name Loc Dim Time (s) Time (s) Speedup

POPL07★ [75]

3p 3 9 <0.01 <0.01 1.00X

4p 4 16 0.05 0.04 1.25X

5p 5 25 0.33 0.05 6.60X

6p 6 36 3.32 0.09 36.89X

7p 7 49 35.40 0.21 168.57X

8p 8 64 359.21 0.40 898.03X

9p 9 81 2900.43 0.84 3452.89X

Finally, Table 3 demonstrates the improvement of speedup by our invariant propagation technique

over a large benchmark. In Table 3, "𝑟 -p" means that 𝑟 is a benchmark-inside number to show how

many locations are there in the LinTS, "Loc" means the number of locations under LinTS, "Dim"

means the number of unknown coefficients at all locations, "No PPG" means using our disjunctive

linear invariant generation over each location under LinTS without invariant propagation (i.e.,

following the original approach in Liu et al. [57]), "PPG" means using our invariant propagation,

"Time(s)" means the runtime measured in seconds, and "Speedup" means the ratio of time consumed

by "No PPG" against "PPG". The experimental results in Table 3 show that our invariant propagation

could substantially improve the time efficiency over a large non-crossing LinTS.

Proc. ACM Program. Lang., Vol. 0, No. PLDI, Article 1. Publication date: 2022.



Linear Disjunctive Invariant Generation with Farkas’ Lemma 1:19

6 RELATEDWORKS
Below we compare our approach with the most related existing approaches in the literature. We first

have the comparison with the previous constraint-solving approaches for invariant generation. Note

that our approach generates linear invariants via Farkas’ Lemma, and hence is a constraint-solving

approach for numerical invariant generation. The detailed comparison is as follows.

• On linear invariant generation, our approach follows the framework to apply Farkas’ Lemma

as proposed by Colón et al. [18], Liu et al. [57], Sankaranarayanan et al. [71], and extend the

framework to disjunctive linear invariants and loop summary. Besides, we further propose

techniques such as the invariant propagation and the integration of loop summary into

nested loops so as to improve the time efficiency and the accuracy of the generated invariants.

The recent result [47] also considers Farkas’ Lemma, but focuses on conjunctive linear

invariants over unnested affine while loops through the use of eigenvalues and roots of

polynomial equations, and hence is orthogonal to our approach. Besides, other approaches

on linear invariant generation include de Oliveira et al. [29], Gulwani et al. [39], Gupta and

Rybalchenko [41]. The approach [39] solves the quadratic constraints from Farkas’ Lemma

by SAT solvers based on bit-vector modeling. The approach [29] uses eigenvectors to handle

several restricted classes of conjunctive linear invariants. The tool InvGEN [41] generates

conjunctive linear invariants by an integrated use of abstract interpretation and Farkas’

Lemma. All these approaches proposes completely different approaches, and thus they are

orthogonal to our approach.

• Since our approach targets linear invariant generation, it is incomparable with previous

results on polynomial invariant generation [1, 15, 16, 20, 28, 44, 45, 49, 55, 68, 70, 85]. Note that,

although linear functions are a special case of polynomials with degree 1, these approaches

focus on how to handle general polynomials (i.e., the general case that the degree can be

greater than 1) (through e.g. the Gröbner base) and hence are orthogonal to our approach.

Moreover, most of these approaches consider only conjunctive polynomial invariants, and

hence cannot handle disjunctive invariants.

It is also worth noting that the previous work [75] proposes a general framework for detecting

multiphase disjunctive invariants that can be instantiated with constraint solving. Multiphase

disjunctive invariants are a subclass of the PDA pattern in the sense that the multiphase feature is

a special PDA in which a location cannot go back to itself once the location is left. Therefore, we

consider a wider class of disjunctive invariants as compared with Sharma et al. [75].

Second, we compare our approach with previous approaches in abstract interpretation. Compared

with the approaches that generate conjunctive linear invariants via polyhedral abstract domain [7,

24, 77], our approach targets the more general case of disjunctive linear invariants. There are

also a bunch of abstract-interpretation approaches in disjunctive linear invariant generation, such

as the work [38] that performs disjunctive partitioning by representing the contribution of each

iteration with a separate abstract-domain element, the recent work [9] that distinguishes different

disjunctive cases by different entries into the conditional branches w.r.t the input values, and the

state-of-the-art tool PAGAI [43] that may infer disjunctive invariants as disjunctions of elements

of the abstract domain via specific iteration algorithm. These approaches are based on abstract

interpretation and heuristics different from the PDA pattern and Farkas’ Lemma we follow, and

hence are orthogonal to our approach.

Third, we compare our approach with existing approaches that follow other methodologies such

as machine learning, logical inference and data-driven approaches. We first have a methodological

comparison as follows. Unlike the method of constraint solving that can have an accuracy guarantee
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for the generated invariants based on the established constraints, other methods such as machine-

learning, logical-inference and data-driven approaches cannot give any accuracy guarantee on the

generated numerical invariants, since they cannot guarantee the accuracy of the coefficients in

numerical invariants. Moreover, machine learning and data-driven approaches themselves cannot

guarantee that the generated logical assertions are indeed invariants, while logical inference

approaches often require a goal property and manual efforts. Then, a key merit is that our approach

can generate invariants without a given goal property to be proved, while several approaches (such

as IC3 [78], CLN2INV [69], Riley and Fedyukovich [66]) and state-of-the-art program analysis

platforms (such as CPAchecker [25], SeaHorn [73] and Ultimate Automizer [81]) requires a goal

property and are only capable of generating invariants relevant to prove the property. Note that

the invariant generation without a given goal property is a classical setting (see e.g. Colón et al.

[18], Cousot and Halbwachs [24]), and has found applications in probabilistic program verification

(see e.g. Chakarov and Sankaranarayanan [13], Wang et al. [82]) recently. Finally, it is worth noting

that a heuristic approach also based on the PDA pattern is proposed in Lin et al. [56] recently,

but this approach relies heavily on the heuristics of inductive variables (i.e., assignments must

be in the form 𝑥 := 𝑥 + 𝑐 or 𝑥 := 𝑐 ∗ 𝑥) together with the guessing of invariants, does not focus

on nested loops, and requires a given goal property; in contrast, our approach can handle any

affine assignment and the general PDA patterns with nested loops by Farkas’ Lemma, and does not

require a goal property.

Fourth, we compare our approach with the related approaches in loop summary. Compared with

the approaches [22, 23] that are based on convex polyhedra abstract domain and can only generate

conjunctive linear loop summaries, our approach is able to generate disjunctive loop summaries.

Compared with the approach by Kranz and Simon [52] that applies Heyting completion [37] (to

make an existing domain meet-distributive) on-demand and computes a summary of the function

for each on-demand created predicate (represented via Herbrand terms), our approach is capable

of generating linear inequality invariants with arbitrary coefficients, while their approach mainly

uses an equality domain (as well as a pointer domain) to track equality relations of limited form

between variables. Compared with the approach by Boutonnet and Halbwachs [9] that enhances

abstract interpretation with disjunction from distinct entries into the conditional branches in the

program by different initial inputs, our approach is orthogonal in the sense that we apply Farkas’

Lemma and the PDA pattern by Xie et al. [83], which are completely different. Compared with

(i) the PIPS tool [5, 46, 62] that employs heuristics to generate conjunctive linear loop summaries

and (ii) the approach by Ancourt et al. [5] that generates conjunctive linear invariants by a simple

heuristics that examines the stepwise incremental update of affine assignments, our approach

follows a completely different methodology (Farkas’ Lemma and the PDA pattern) and generates

disjunctive linear loop summary. Compared with the approaches by Popeea and Chin [64, 65]

that maintain a set of limited pre-fixed number of polyhedra for abstracting program states at

each program point (to derive a disjunctive polyhedral analysis) under the framework of abstract

interpretation, our approach is orthogonal to them and does not require the user to manually

provide assertions. Compared with the approach [83] that proposes the PDA pattern, our approach

solves the PDA pattern by Farkas’ Lemma and invariant propagation so that both arbitrary affine

assignments, general PDA patterns with nested loops and nondeterminism can be handled, while

their approach relies on heuristics such as inductive variables (𝑥 := 𝑥 + 𝑐 or 𝑥 := 𝑐 ∗ 𝑥) and strict

alternation between PDA states so that their approach can only handle affine assignments and

PDA patterns in restricted forms and cannot handle nondeterminism and nested loops. Finally, our

approach focuses on loop summary, and it would be an interesting future direction to investigate

how our approach could be used for procedure summary [4, 40, 87].
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7 CONCLUSION AND FUTUREWORK
In this work, we proposed a novel approach to generate linear disjunctive invariants and loop

summaries via Farkas’ Lemma, the disjunctive pattern of path dependency automata [83] and a

novel invariant propagation technique. We implemented our approach as a prototype tool on the

Frama-C platform. Experimental results show that our approach is capable of deriving substantially

more accurate linear disjunctive invariants and summaries compared with existing approaches.

There can be several future directions for this work. One further direction would be to derive more

accurate linear transition systems by considering modulus information. Another future direction is

to extend our approach to procedure summary. Finally, a more complete tool implementation is

also an important future direction.

Proc. ACM Program. Lang., Vol. 0, No. PLDI, Article 1. Publication date: 2022.



1:22 Hongming Liu, Jingyu Ke, Hongfei Fu, and Liqian Chen

REFERENCES
[1] Assalé Adjé, Pierre-Loïc Garoche, and Victor Magron. 2015. Property-based Polynomial Invariant Generation Using

Sums-of-Squares Optimization. In SAS (LNCS, Vol. 9291). Springer, 235–251.
[2] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. 2012. Ufo: A Framework for Abstraction- and

Interpolation-Based Software Verification. In CAV (LNCS, Vol. 7358). Springer, 672–678. https://doi.org/10.1007/978-3-

642-31424-7_48

[3] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-dimensional Rankings, Program

Termination, and Complexity Bounds of Flowchart Programs. In SAS (LNCS, Vol. 6337). Springer, 117–133. https:

//doi.org/10.1007/978-3-642-15769-1_8

[4] Frances E. Allen. 1974. Interprocedural Data Flow Analysis. In Information Processing, Proceedings of the 6th IFIP
Congress 1974, Stockholm, Sweden, August 5-10, 1974, Jack L. Rosenfeld (Ed.). North-Holland, 398–402.

[5] Corinne Ancourt, Fabien Coelho, and François Irigoin. 2010. A Modular Static Analysis Approach to Affine Loop

Invariants Detection. Electron. Notes Theor. Comput. Sci. 267, 1 (2010), 3–16. https://doi.org/10.1016/j.entcs.2010.09.002

[6] Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Mohammad Mahdavi. 2021. Polynomial

reachability witnesses via Stellensätze. In PLDI. ACM, 772–787. https://doi.org/10.1145/3453483.3454076

[7] Roberto Bagnara, Patricia M. Hill, Elisa Ricci, and Enea Zaffanella. 2003. Precise Widening Operators for Convex

Polyhedra. In Static Analysis, 10th International Symposium, SAS 2003, San Diego, CA, USA, June 11-13, 2003, Proceedings
(Lecture Notes in Computer Science, Vol. 2694), Radhia Cousot (Ed.). Springer, 337–354. https://doi.org/10.1007/3-540-

44898-5_19

[8] Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patricia M. Hill. 2002. Possibly Not Closed Convex Polyhedra

and the Parma Polyhedra Library. In SAS (Lecture Notes in Computer Science, Vol. 2477). Springer, 213–229. https:

//doi.org/10.1007/3-540-45789-5_17

[9] Rémy Boutonnet and Nicolas Halbwachs. 2019. Disjunctive Relational Abstract Interpretation for Interprocedural

Program Analysis. In Verification, Model Checking, and Abstract Interpretation - 20th International Conference, VMCAI
2019, Cascais, Portugal, January 13-15, 2019, Proceedings (LNCS, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.).

Springer, 136–159. https://doi.org/10.1007/978-3-030-11245-5_7

[10] Aaron R. Bradley. 2012. Understanding IC3. In Theory and Applications of Satisfiability Testing - SAT 2012 - 15th
International Conference, Trento, Italy, June 17-20, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7317),
Alessandro Cimatti and Roberto Sebastiani (Eds.). Springer, 1–14. https://doi.org/10.1007/978-3-642-31612-8_1

[11] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear Ranking with Reachability. In CAV (LNCS, Vol. 3576).
Springer, 491–504. https://doi.org/10.1007/11513988_48

[12] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional Shape Analysis by

Means of Bi-Abduction. J. ACM 58, 6 (2011), 26:1–26:66. https://doi.org/10.1145/2049697.2049700

[13] Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In CAV
(LNCS, Vol. 8044). Springer, 511–526. https://doi.org/10.1007/978-3-642-39799-8_34

[14] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2019. Non-polynomial Worst-Case Analysis of

Recursive Programs. ACM Trans. Program. Lang. Syst. 41, 4 (2019), 20:1–20:52. https://doi.org/10.1145/3339984

[15] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kafshdar Goharshady. 2020. Polynomial

invariant generation for non-deterministic recursive programs. In PLDI. ACM, 672–687. https://doi.org/10.1145/

3385412.3385969

[16] Yu-Fang Chen, Chih-Duo Hong, Bow-Yaw Wang, and Lijun Zhang. 2015. Counterexample-Guided Polynomial Loop

Invariant Generation by Lagrange Interpolation. In CAV (LNCS, Vol. 9206). Springer, 658–674. https://doi.org/10.1007/

978-3-319-21690-4_44

[17] Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, and Chaochen Zhou. 2007. Discovering Non-linear Ranking Functions

by Solving Semi-algebraic Systems. In ICTAC (LNCS, Vol. 4711). Springer, 34–49. https://doi.org/10.1007/978-3-540-

75292-9_3

[18] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. 2003. Linear Invariant Generation Using Non-linear

Constraint Solving. In CAV (LNCS, Vol. 2725). Springer, 420–432. https://doi.org/10.1007/978-3-540-45069-6_39

[19] Michael Colón and Henny Sipma. 2001. Synthesis of Linear Ranking Functions. In TACAS (LNCS, Vol. 2031). Springer,
67–81. https://doi.org/10.1007/3-540-45319-9_6

[20] Patrick Cousot. 2005. Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation

and Semidefinite Programming. In VMCAI (LNCS, Vol. 3385). Springer, 1–24. https://doi.org/10.1007/978-3-540-30579-

8_1

[21] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: AUnified LatticeModel for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In POPL. ACM, 238–252. https://doi.org/10.1145/512950.512973

[22] Patrick Cousot and Radhia Cousot. 2001. Compositional Separate Modular Static Analysis of Programs by Abstract

Interpretation. In SSGRR. 6–10.

Proc. ACM Program. Lang., Vol. 0, No. PLDI, Article 1. Publication date: 2022.

https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.1016/j.entcs.2010.09.002
https://doi.org/10.1145/3453483.3454076
https://doi.org/10.1007/3-540-44898-5_19
https://doi.org/10.1007/3-540-44898-5_19
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/3-540-45789-5_17
https://doi.org/10.1007/978-3-030-11245-5_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/11513988_48
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1145/3339984
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-319-21690-4_44
https://doi.org/10.1007/978-3-540-75292-9_3
https://doi.org/10.1007/978-3-540-75292-9_3
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/3-540-45319-9_6
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1007/978-3-540-30579-8_1
https://doi.org/10.1145/512950.512973


Linear Disjunctive Invariant Generation with Farkas’ Lemma 1:23

[23] Patrick Cousot and Radhia Cousot. 2002. Modular Static Program Analysis. In Compiler Construction, 11th International
Conference, CC 2002, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2002,
Grenoble, France, April 8-12, 2002, Proceedings (LNCS, Vol. 2304), R. Nigel Horspool (Ed.). Springer, 159–178. https:

//doi.org/10.1007/3-540-45937-5_13

[24] Patrick Cousot and Nicolas Halbwachs. 1978. Automatic Discovery of Linear Restraints Among Variables of a Program.

In POPL. ACM Press, 84–96. https://doi.org/10.1145/512760.512770

[25] CPAchecker 2022. CPAchecker: The Configurable Software-Verification Platform. https://cpachecker.sosy-lab.org.

[26] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. 2008. DySy: dynamic symbolic execution for invariant

inference. In ICSE. ACM, 281–290. https://doi.org/10.1145/1368088.1368127

[27] Cristina David, Pascal Kesseli, Daniel Kroening, and Matt Lewis. 2016. Danger Invariants. In FM (LNCS, Vol. 9995).
182–198. https://doi.org/10.1007/978-3-319-48989-6_12

[28] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial Invariants by Linear Algebra. In ATVA
(LNCS, Vol. 9938). 479–494. https://doi.org/10.1007/978-3-319-46520-3_30

[29] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2017. Synthesizing Invariants by Solving Solvable Loops.

In ATVA (LNCS, Vol. 10482). Springer, 327–343. https://doi.org/10.1007/978-3-319-68167-2_22

[30] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. 2013. Inductive invariant generation via abductive

inference. In OOPSLA. ACM, 443–456. https://doi.org/10.1145/2509136.2509511

[31] J. Farkas. 1894. A Fourier-féle mechanikai elv alkalmazásai (Hungarian). Mathematikaiés Természettudományi Értesitö
12 (1894), 457–472.

[32] Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In FMCAD. IEEE, 57–64.
[33] Frama-C 2022. Frama-C Software Analyzers. https://frama-c.com/

[34] Ting Gan, Bican Xia, Bai Xue, Naijun Zhan, and Liyun Dai. 2020. Nonlinear Craig Interpolant Generation. In CAV
(LNCS, Vol. 12224). Springer, 415–438. https://doi.org/10.1007/978-3-030-53288-8_20

[35] Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning

Invariants. In CAV (LNCS, Vol. 8559). Springer, 69–87. https://doi.org/10.1007/978-3-319-08867-9_5

[36] Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning invariants using decision trees and

implication counterexamples. In POPL. ACM, 499–512. https://doi.org/10.1145/2837614.2837664

[37] Roberto Giacobazzi and Francesca Scozzari. 1998. A Logical Model for Relational Abstract Domains. ACM Trans.
Program. Lang. Syst. 20, 5 (1998), 1067–1109. https://doi.org/10.1145/293677.293680

[38] Denis Gopan and Thomas W. Reps. 2007. Guided Static Analysis. In Static Analysis, 14th International Symposium, SAS
2007, Kongens Lyngby, Denmark, August 22-24, 2007, Proceedings (LNCS, Vol. 4634), Hanne Riis Nielson and Gilberto Filé

(Eds.). Springer, 349–365. https://doi.org/10.1007/978-3-540-74061-2_22

[39] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan. 2008. Program analysis as constraint solving. In

PLDI. ACM, 281–292. https://doi.org/10.1145/1375581.1375616

[40] Sumit Gulwani and Ashish Tiwari. 2007. Computing Procedure Summaries for Interprocedural Analysis. In Program-
ming Languages and Systems, 16th European Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 - April 1, 2007, Proceedings
(Lecture Notes in Computer Science, Vol. 4421), Rocco De Nicola (Ed.). Springer, 253–267. https://doi.org/10.1007/978-3-

540-71316-6_18

[41] Ashutosh Gupta and Andrey Rybalchenko. 2009. InvGen: An Efficient Invariant Generator. In CAV (LNCS, Vol. 5643).
Springer, 634–640. https://doi.org/10.1007/978-3-642-02658-4_48

[42] Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2020. Learning fast and precise numerical

analysis. In PLDI. ACM, 1112–1127. https://doi.org/10.1145/3385412.3386016

[43] Julien Henry, David Monniaux, and Matthieu Moy. 2012. PAGAI: A Path Sensitive Static Analyser. Electron. Notes
Theor. Comput. Sci. 289 (2012), 15–25. https://doi.org/10.1016/j.entcs.2012.11.003

[44] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2018. Polynomial Invariants for Affine Programs.

In LICS. ACM, 530–539. https://doi.org/10.1145/3209108.3209142

[45] Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács. 2017. Automated Generation of Non-Linear Loop

Invariants Utilizing Hypergeometric Sequences. In ISSAC. ACM, 221–228. https://doi.org/10.1145/3087604.3087623

[46] François Irigoin, Pierre Jouvelot, and Rémi Triolet. 1991. Semantical interprocedural parallelization: an overview of

the PIPS project. In Proceedings of the 5th international conference on Supercomputing, ICS 1991, Cologne, Germany, June
17-21, 1991, Edward S. Davidson and Friedel Hossfeld (Eds.). ACM, 244–251. https://doi.org/10.1145/109025.109086

[47] Yucheng Ji, Hongfei Fu, Bin Fang, and Haibo Chen. 2022. Affine Loop Invariant Generation via Matrix Algebra. In

Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings,
Part I (Lecture Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 257–281.

https://doi.org/10.1007/978-3-031-13185-1_13

Proc. ACM Program. Lang., Vol. 0, No. PLDI, Article 1. Publication date: 2022.

https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1007/3-540-45937-5_13
https://doi.org/10.1145/512760.512770
https://cpachecker.sosy-lab.org
https://doi.org/10.1145/1368088.1368127
https://doi.org/10.1007/978-3-319-48989-6_12
https://doi.org/10.1007/978-3-319-46520-3_30
https://doi.org/10.1007/978-3-319-68167-2_22
https://doi.org/10.1145/2509136.2509511
https://frama-c.com/
https://doi.org/10.1007/978-3-030-53288-8_20
https://doi.org/10.1007/978-3-319-08867-9_5
https://doi.org/10.1145/2837614.2837664
https://doi.org/10.1145/293677.293680
https://doi.org/10.1007/978-3-540-74061-2_22
https://doi.org/10.1145/1375581.1375616
https://doi.org/10.1007/978-3-540-71316-6_18
https://doi.org/10.1007/978-3-540-71316-6_18
https://doi.org/10.1007/978-3-642-02658-4_48
https://doi.org/10.1145/3385412.3386016
https://doi.org/10.1016/j.entcs.2012.11.003
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3087604.3087623
https://doi.org/10.1145/109025.109086
https://doi.org/10.1007/978-3-031-13185-1_13


1:24 Hongming Liu, Jingyu Ke, Hongfei Fu, and Liqian Chen

[48] Hari Govind V. K., Sharon Shoham, and Arie Gurfinkel. 2022. Solving constrained Horn clauses modulo algebraic data

types and recursive functions. Proc. ACM Program. Lang. 6, POPL (2022), 1–29. https://doi.org/10.1145/3498722

[49] Deepak Kapur. 2005. Automatically Generating Loop Invariants Using Quantifier Elimination. In Deduction and
Applications (Dagstuhl Seminar Proceedings, Vol. 05431). Internationales Begegnungs- und Forschungszentrum für

Informatik (IBFI), Schloss Dagstuhl, Germany. http://drops.dagstuhl.de/opus/volltexte/2006/511

[50] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas W. Reps. 2017. Compositional recurrence

analysis revisited. In PLDI. ACM, 248–262. https://doi.org/10.1145/3062341.3062373

[51] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps. 2018. Non-linear reasoning for invariant synthesis.

Proc. ACM Program. Lang. 2, POPL (2018), 54:1–54:33. https://doi.org/10.1145/3158142

[52] Julian Kranz and Axel Simon. 2018. Modular Analysis of Executables Using On-Demand Heyting Completion. In

Verification, Model Checking, and Abstract Interpretation - 19th International Conference, VMCAI 2018, Los Angeles, CA,
USA, January 7-9, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10747), Isil Dillig and Jens Palsberg (Eds.).

Springer, 291–312. https://doi.org/10.1007/978-3-319-73721-8_14

[53] Daniel Larraz, Enric Rodríguez-Carbonell, and Albert Rubio. 2013. SMT-Based Array Invariant Generation. In

Verification, Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI 2013, Rome, Italy,
January 20-22, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7737), Roberto Giacobazzi, Josh Berdine, and

Isabella Mastroeni (Eds.). Springer, 169–188. https://doi.org/10.1007/978-3-642-35873-9_12

[54] Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: using dynamic analysis to infer program

invariants in separation logic. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.).

ACM, 788–801. https://doi.org/10.1145/3314221.3314634

[55] Wang Lin, MinWu, Zhengfeng Yang, and Zhenbing Zeng. 2014. Proving total correctness and generating preconditions

for loop programs via symbolic-numeric computation methods. Frontiers Comput. Sci. 8, 2 (2014), 192–202.
[56] Yingwen Lin, Yao Zhang, Sen Chen, Fu Song, Xiaofei Xie, Xiaohong Li, and Lintan Sun. 2021. Inferring Loop Invariants

for Multi-Path Loops. In International Symposium on Theoretical Aspects of Software Engineering, TASE 2021, Shanghai,
China, August 25-27, 2021. IEEE, 63–70. https://doi.org/10.1109/TASE52547.2021.00030

[57] Hongming Liu, Hongfei Fu, Zhiyong Yu, Jiaxin Song, and Guoqiang Li. 2022. Scalable Linear Invariant Generation with

Farkas’ Lemma. Proc. ACM Program. Lang. 6, OOPSLA2, Article 132 (oct 2022), 29 pages. https://doi.org/10.1145/3563295
[58] Zohar Manna and Amir Pnueli. 1995. Temporal verification of reactive systems - safety. Springer.
[59] Kenneth L. McMillan. 2008. Quantified Invariant Generation Using an Interpolating Saturation Prover. In TACAS (LNCS,

Vol. 4963), C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer, 413–427. https://doi.org/10.1007/978-3-540-78800-3_31

[60] ThanhVu Nguyen, Deepak Kapur, Westley Weimer, and Stephanie Forrest. 2012. Using dynamic analysis to discover

polynomial and array invariants. In ICSE. IEEE Computer Society, 683–693. https://doi.org/10.1109/ICSE.2012.6227149

[61] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In PLDI. ACM, 614–630. https://doi.org/10.1145/2908080.2908118

[62] PIPS 2022. PIPS. https://pips4u.org

[63] Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking Functions.

In VMCAI (LNCS, Vol. 2937). Springer, 239–251. https://doi.org/10.1007/978-3-540-24622-0_20

[64] Corneliu Popeea and Wei-Ngan Chin. 2006. Inferring Disjunctive Postconditions. In Advances in Computer Science
- ASIAN 2006. Secure Software and Related Issues, 11th Asian Computing Science Conference, Tokyo, Japan, December
6-8, 2006, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 4435), Mitsu Okada and Ichiro Satoh (Eds.).

Springer, 331–345. https://doi.org/10.1007/978-3-540-77505-8_26

[65] Corneliu Popeea and Wei-Ngan Chin. 2013. Dual analysis for proving safety and finding bugs. Sci. Comput. Program.
78, 4 (2013), 390–411. https://doi.org/10.1016/j.scico.2012.07.004

[66] Daniel Riley and Grigory Fedyukovich. 2022. Multi-Phase Invariant Synthesis. In ESEC/FSE 2022. To appear.

[67] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. An Abstract Interpretation Approach for Automatic Generation

of Polynomial Invariants. In SAS (LNCS, Vol. 3148). Springer, 280–295. https://doi.org/10.1007/978-3-540-27864-1_21

[68] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. Automatic Generation of Polynomial Loop Invariants: Algebraic

Foundations. In ISSAC. ACM, 266–273. https://doi.org/10.1145/1005285.1005324

[69] Gabriel Ryan, Justin Wong, Jianan Yao, Ronghui Gu, and Suman Jana. 2020. CLN2INV: Learning Loop Invariants

with Continuous Logic Networks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net. https://openreview.net/forum?id=HJlfuTEtvB

[70] Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. 2004. Non-linear loop invariant generation using Gröbner

bases. In POPL. ACM, 318–329. https://doi.org/10.1145/964001.964028

[71] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. 2004. Constraint-Based Linear-Relations Analysis. In

SAS (LNCS, Vol. 3148). Springer, 53–68. https://doi.org/10.1007/978-3-540-27864-1_7

[72] Alexander Schrijver. 1999. Theory of linear and integer programming. Wiley.

Proc. ACM Program. Lang., Vol. 0, No. PLDI, Article 1. Publication date: 2022.

https://doi.org/10.1145/3498722
http://drops.dagstuhl.de/opus/volltexte/2006/511
https://doi.org/10.1145/3062341.3062373
https://doi.org/10.1145/3158142
https://doi.org/10.1007/978-3-319-73721-8_14
https://doi.org/10.1007/978-3-642-35873-9_12
https://doi.org/10.1145/3314221.3314634
https://doi.org/10.1109/TASE52547.2021.00030
https://doi.org/10.1145/3563295
https://doi.org/10.1007/978-3-540-78800-3_31
https://doi.org/10.1109/ICSE.2012.6227149
https://doi.org/10.1145/2908080.2908118
https://pips4u.org
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-77505-8_26
https://doi.org/10.1016/j.scico.2012.07.004
https://doi.org/10.1007/978-3-540-27864-1_21
https://doi.org/10.1145/1005285.1005324
https://openreview.net/forum?id=HJlfuTEtvB
https://doi.org/10.1145/964001.964028
https://doi.org/10.1007/978-3-540-27864-1_7


Linear Disjunctive Invariant Generation with Farkas’ Lemma 1:25

[73] SeaHorn 2015. SeaHorn: A fully automated analysis framework for LLVM-based languages. http://seahorn.github.io.

[74] Rahul Sharma and Alex Aiken. 2016. From invariant checking to invariant inference using randomized search. Formal
Methods Syst. Des. 48, 3 (2016), 235–256. https://doi.org/10.1007/s10703-016-0248-5

[75] Rahul Sharma, Isil Dillig, Thomas Dillig, and Alex Aiken. 2011. Simplifying Loop Invariant Generation Using Splitter

Predicates. In Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings (Lecture Notes in Computer Science, Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer,

703–719. https://doi.org/10.1007/978-3-642-22110-1_57

[76] Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013. A Data Driven

Approach for Algebraic Loop Invariants. In ESOP (LNCS, Vol. 7792). Springer, 574–592. https://doi.org/10.1007/978-3-

642-37036-6_31

[77] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017,
Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 46–59.

[78] Fabio Somenzi and Aaron R. Bradley. 2011. IC3: where monolithic and incremental meet. In International Conference
on Formal Methods in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02, 2011, Per Bjesse
and Anna Slobodová (Eds.). FMCAD Inc., 3–8. http://dl.acm.org/citation.cfm?id=2157657

[79] Saurabh Srivastava and Sumit Gulwani. 2009. Program verification using templates over predicate abstraction. In

Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009,
Dublin, Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 223–234. https://doi.org/10.1145/1542476.

1542501

[80] StInG 2006. StInG: Stanford Invariant Generator. http://theory.stanford.edu/~srirams/Software/sting.html.

[81] UltimateAutomizer 2021. UltimateAutomizer: A Software Model Checker. https://monteverdi.informatik.uni-freiburg.

de/tomcat/Website/?ui=tool&tool=automizer.

[82] Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. 2021. Quantitative analysis

of assertion violations in probabilistic programs. In PLDI. ACM, 1171–1186. https://doi.org/10.1145/3453483.3454102

[83] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong Li. 2016. Proteus: computing disjunctive loop summary

via path dependency analysis. In Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, Thomas Zimmermann, Jane Cleland-Huang,

and Zhendong Su (Eds.). ACM, 61–72. https://doi.org/10.1145/2950290.2950340

[84] Rongchen Xu, Fei He, and Bow-Yaw Wang. 2020. Interval counterexamples for loop invariant learning. In ESEC/FSE.
ACM, 111–122. https://doi.org/10.1145/3368089.3409752

[85] Lu Yang, Chaochen Zhou, Naijun Zhan, and Bican Xia. 2010. Recent advances in program verification through computer

algebra. Frontiers Comput. Sci. China 4, 1 (2010), 1–16. https://doi.org/10.1007/s11704-009-0074-7

[86] Jianan Yao, Gabriel Ryan, Justin Wong, Suman Jana, and Ronghui Gu. 2020. Learning nonlinear loop invariants with

gated continuous logic networks. In PLDI. ACM, 106–120. https://doi.org/10.1145/3385412.3385986

[87] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. Hybrid top-down and bottom-up interprocedural

analysis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 249–258. https://doi.org/10.

1145/2594291.2594328

Proc. ACM Program. Lang., Vol. 0, No. PLDI, Article 1. Publication date: 2022.

http://seahorn.github.io
https://doi.org/10.1007/s10703-016-0248-5
https://doi.org/10.1007/978-3-642-22110-1_57
https://doi.org/10.1007/978-3-642-37036-6_31
https://doi.org/10.1007/978-3-642-37036-6_31
http://dl.acm.org/citation.cfm?id=2157657
https://doi.org/10.1145/1542476.1542501
https://doi.org/10.1145/1542476.1542501
http://theory.stanford.edu/~srirams/Software/sting.html
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
https://monteverdi.informatik.uni-freiburg.de/tomcat/Website/?ui=tool&tool=automizer
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/2950290.2950340
https://doi.org/10.1145/3368089.3409752
https://doi.org/10.1007/s11704-009-0074-7
https://doi.org/10.1145/3385412.3385986
https://doi.org/10.1145/2594291.2594328
https://doi.org/10.1145/2594291.2594328


1:26 Hongming Liu, Jingyu Ke, Hongfei Fu, and Liqian Chen

A PROOF OF NO ACCURACY LOSS FOR 𝜇=1
To prove that there is no accuracy loss while setting 𝜇 manually to 1, for convenience, we denote

the consecution tabular with −1 ≥ 0 as constraint consecution tabular and the consecution tabular

without −1 ≥ 0 as transition consecution tabular. Then we prove that constraint consecution

tabular is equivalent whether 𝜇 = 1 or 𝜇 = 𝑘,∀𝑘 > 0.

𝑘 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ≥0
𝜆0 1≥0
𝜆1 𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′

11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1≥0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆𝑚𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+𝑏𝑚≥0
−1≥0

(a) 𝜇 = 𝑘,∀𝑘 > 0

Fig. 9. Constraint consecution tabular

We scale the leftmost coefficient column 𝑘, 𝜆𝑖 ’s to be 1, 𝜆′𝑖 ’s by multiplying
1

𝑘
, where 𝜆′𝑖 =

𝜆𝑖
𝑘
. The

coefficient of invariants after transformation is the same as the previous tabular.

1 𝑐ℓ,1𝑥1+· · ·+ 𝑐ℓ,𝑛𝑥𝑛 + 𝑑ℓ≥0
𝜆′
0

1≥0
𝜆′
1
𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′

11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1≥0
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.

𝜆′𝑚𝑎𝑚1𝑥1+· · ·+𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+𝑏𝑚≥0
− 1

𝑘
≥0

Fig. 10. Transformed constraint consecution tabular

Consider all the constraint consecution tabular and choose the maximum 𝑘𝑚𝑎𝑥 of their 𝑘’s. Then,

we scale 𝜆𝑖 ’s, 𝑐𝑙,𝑖 ’s and 𝑑ℓ by 𝑘𝑚𝑎𝑥 and modify 𝜆′
0
to be 𝜆′′

0
= 𝜆′

0
+ 𝑘𝑚𝑎𝑥

𝑘
− 1. Note that it’s necessary

to select the fixed 𝑘𝑚𝑎𝑥 to scale 𝑐𝑙,𝑖 ’s, so that we avoid affecting the solution in the transition

consecution tabular as transition consecution tabular is always satisfied if we multiply 𝑐 with fixed

constant 𝑘𝑚𝑎𝑥 .

1 𝑘𝑚𝑎𝑥 · 𝑐ℓ,1𝑥1+· · ·+𝑘𝑚𝑎𝑥 · 𝑐ℓ,𝑛𝑥𝑛 +𝑘𝑚𝑎𝑥 · 𝑑ℓ≥0
𝜆′′
0

1≥0
𝜆′
1

𝑎11𝑥1+· · ·+ 𝑎1𝑛𝑥𝑛+ 𝑎′
11
𝑥 ′
1
+· · ·+ 𝑎′

1𝑛
𝑥 ′𝑛+ 𝑏1≥0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

𝜆′𝑚 𝑎𝑚1𝑥1+· · ·+ 𝑎𝑚𝑛𝑥𝑛+𝑎′𝑚1
𝑥 ′
1
+· · ·+𝑎′𝑚𝑛𝑥

′
𝑛+ 𝑏𝑚≥0

−1≥0

Fig. 11. Equivalent constraint transformation tabular

Thus we prove there is no accuracy loss as we set 𝜇 = 1 by means of coefficient scaling.
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B PROOF OF CORRECTNESS OF SOLUTIONS TO INVARIANT SETS IN THE
IMPLEMENTATION PART

In the implementation, we utilize decomposition theorem of polyhedra and decompose the solution

set of invariant when 𝜇 = 1 to be a polytope 𝑃 and a polyhedral cone 𝐶 . Similarly, we denote 𝐹

as the solution set of invariants, which contains the coefficient of invariants at any locations and

𝐹 ′ as the solution set of invariants when 𝜇 = 1 in all the consecution tabular. Then the union of

the polytope and polyhedral cone is chosen as our solution set of invariants 𝐹 ∗ = 𝑃 ∪𝐶 , where
𝐹 ′ = 𝑃 +𝐶 .

Lemma 1. Decomposition theorem of polyhedra. A set 𝑃 of vectors in Euclidean space is a
polyhedron if and only if 𝑃 = 𝑄 +𝐶 for some polytope 𝑄 and some polyhedral cone 𝐶 .

Now, we are going to prove the correctness of 𝐹 ∗. I.e., the vectors in polytope and polyhedral

cone are both the coefficient of invariants in different locations.

Consider the relation between 𝐹 and 𝐹 ′, we define that 𝐹 ′′ = {𝑘 · 𝒄 | 𝒄 ∈ 𝐹 ′, 𝑘 > 0}.

Proposition 1. 𝐹 = 𝐹 ′′

Proof. We first consider 𝐹 ⊆ 𝐹 ′′, which equivalent to prove ∀𝒄 ∈ 𝐹, ∃𝒄0 ∈ 𝐹 ′, 𝑘 ∈ 𝑅 such that

𝑘 · 𝒄0 = 𝒄 . We consider the transition consecution tabular. Note that, the consecution tabular is

always satisfied if we scale the invariant 𝜂 (ℓ) and 𝜂 (ℓ ′) simultaneously.

Then consider the constraint consecution tabular. We have proved if we multiply 𝒄0 ∈ 𝐹 ′ with
𝑘𝑚𝑎𝑥 , we can find corresponding 𝒄 = 𝑘𝑚𝑎𝑥 ∗ 𝒄0 is the solution to constraint consecution tabular

with 𝜇 = 𝑘,∀𝑘 > 0. (the definition of 𝑘𝑚𝑎𝑥 and proof is given in Appendix A)

Thus, we prove that ∀𝒄 ∈ 𝐹 , there exists 𝒄0 ∈ 𝐹 ′ and 𝑘𝑚𝑎𝑥 ∈ 𝑅 such that 𝑘𝑚𝑎𝑥 ∗ 𝒄0 = 𝒄 and have

𝐹 ⊆ 𝐹 ′′.
Secondly, we prove 𝐹 ′′ ⊆ 𝐹 . From the definition of 𝐹 ′′, if 𝒄 ∈ 𝐹 ′, we multiply

1

𝑘
to 𝜇 = 1 in

the constraint consecution tabular, and 𝑘 · 𝒄 satisfy the transformed tabulars and other transition

consecution tabulars. So 𝑘 · 𝒄 ∈ 𝐹 , and we have 𝐹 ′′ ⊆ 𝐹 .
So 𝐹 = 𝐹 ′′. □

We utilize the decomposition theorem in 𝐹 ′ and have 𝐹 ′ = 𝑃 +𝐶 , where 𝑃 is a polytope and 𝐶 is

a polyhedral cone. From the properties of polytope and polyhedral cone, a polytope is a convex

hull of finitely many vectors and a polyhedral cone is finitely generated by some vectors.

𝑃 = {𝒑1,𝒑2, . . . ,𝒑𝒏} (1)

𝐶 = {𝒈1,𝒈2, . . . ,𝒈𝒎} (2)

Note that the addition in the theorem means Minkowski sum, Thus,

𝐹 ′ = 𝑃 +𝐶 = {𝒑1,𝒑2, . . . ,𝒑𝒏;𝒈1,𝒈2, . . . ,𝒈𝒎} (3)

Where 𝒑 𝒊’s represents the vectors finitely generate the polytope 𝑃 and 𝑔𝑖 ’s represents the vectors

finitely generate the polyhedral cone𝐶 . That means that ∀𝑣 ∈ 𝐹 ′, 𝑣 = 𝑎1𝒑1+ · · ·+𝑎𝑛𝒑𝒏 +𝑏1𝒈1+ · · ·+
𝑏𝑚𝒈𝒎 ,where

∑
𝑖 𝑎𝑖 = 1 (from the definition of convex hull) and 𝑎𝑖 , 𝑏𝑖 ≥ 0,∀𝑖 . Consider 𝐹 = 𝐹 ′′ =

{𝑘 ·𝒄 | ∃𝑘 > 0, 𝑘 ·𝒄 ∈ 𝐹, 𝒄 ∈ 𝐹 ′}, it’s concluded that∀𝒗 ∈ 𝐹, 𝒗 = 𝑎′
1
𝒑1+· · ·+𝑎′𝑛𝒑𝒏+𝑏′1+𝒈1+· · ·+𝑏′𝑚𝒈𝒎 ,

where 𝑎′𝑖 = 𝑘𝑎𝑖 , 𝑘 > 0 and 𝑏′𝑖 = 𝑘𝑏𝑖 , 𝑘 > 0.

Thus, it’s obvious that ∀𝒑 ∈ 𝑃 , we have 𝒑 ∈ 𝐹 as we can set 𝒈 𝒊 = 0,∀𝑖 . However, we can not use

the similar method to prove ∀𝒄 ∈ 𝐶, 𝒄 ∈ 𝐹 , as the∑𝑖 𝑎𝑖 equal to a non-zero number and 𝑎𝑖 ≥ 0,∀𝑖 . So
to prove the 𝑃 ∪𝐶 is also the solution set of invariants, we should consider the practical implications

of invariant.
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Wehave known that 𝐹 = {𝒗 | 𝒗 = 𝑎′
1
𝒑1+· · ·+𝑎′𝑛𝒑𝒏+𝑏′1+1+ · · ·+𝑏′𝑚𝒈𝒎, 𝑎

′
𝑖 ≥ 0,𝒈 𝒊 ≥ 0∀𝑖,∑𝑖 𝑎

′
𝑖 > 0}

corresponding to the solution of 𝒗𝑇𝑥 <= 𝑑ℓ .

Destruct 𝐹 to be

𝐹 = {𝑝 + 𝑐 | 𝑝 = 𝑎′
1
𝒑1 + · · · + 𝑎′𝑛𝒑𝒏, 𝑐 = 𝒈1 + · · · + 𝑏′𝑚𝒈𝒎, 𝑎

′
𝑖 ≥ 0,𝒈 𝒊 ≥ 0∀𝑖,

∑︁
𝑖

𝑎′𝑖 > 0} (4)

From the above conclusion, 𝑃 ⊆ 𝐹 , which means ∀𝒑 ∈ 𝑃 , 𝒑𝑇𝒙 <= 𝑑ℓ is satisfied. Also, ∀𝒗 ∈
𝐹, 𝒗 = 𝒑 + 𝒄,𝒑 ∈ 𝑃, 𝒄 ∈ 𝐶 , and (𝒑 + 𝒄)𝑇𝒙 <= 𝑑ℓ .

Consider ∀𝜀 > 0, we have (𝜀𝒑 + 𝒄)𝑇𝒙 <= 𝑑ℓ . Thus, we finally conclude that lim𝜀→0 (𝜀𝒑 + 𝒄)𝑇𝒙 =

𝒄𝑇𝒙 <= 𝑑ℓ , which means for all 𝒄 ∈ 𝐶 , 𝒄 is also a solution to invariants. Thus we prove 𝐶 ∈ 𝐹 , and
𝑃 ∪𝐶 ∈ 𝐹 .
So it’s correct to directly use the union of the polytope and the polyhedral cone to represents

the solution set of invariants.

C PROOF FOR CORRECTNESS AND ACCURACY FOR OUR INVARIANT
PROPAGATION

Below we prove the theoretical properties that the linear assertions generated from our invariant

propagation are indeed invariants, and are at least as tight as the invariants generated from the

previous approaches [57, 71].

Proposition 2. The linear assertions generated by the invariant propagation are invariants.

Proof. Let Γ be a LinTS whose directed graph DG(Γ) has a non-crossing DFS tree 𝑇 . The proof

is by induction on the BFS level of the tree 𝑇 . The base step is that the linear assertion at the root

(i.e., the initial location) is correct since it is generated by the approach [57]. The inductive step is

to show that if the linear assertions generated at the nodes of the current level are invariants, then

so are the linear assertions at the next level. The proof for the inductive step follows from the fact

that any path of the LinTS Γ that visits a location ℓ ′ in the next BFS level should first visit some

location ℓ (with the valuation 𝜎 guaranteed to satisfy the invariant 𝜂 (ℓ)) in the current BFS level,

and then possibly repeatedly stays at the location ℓ ′. (Note that here we use the fact that there is
no crossing edge in the DFS tree𝑇 . This fact is captured by the initial condition 𝐾𝜏,𝑖 for a transition

(ℓ, ℓ ′, 𝜌) (that is obtained from the 𝑖th disjunctive clause Φ𝑖 of the invariant 𝜂 (ℓ)) and the invariant

𝐼 (𝜏, ℓ ′, 𝑖) for the self-loop LinTS Γ [ℓ ′, 𝐾𝜏,𝑖 ] in a single propagation step. □

Proposition 3. The invariant propagation generates invariants at least as tight as the previous
approaches [57, 71].

Proof. The proof proceeds via an induction on the BFS level of the invariant propagation. For

the base step, we have that the linear invariant generated at the root is generated directly from

the previous approach [57]. Then the base step follows from the fact that the approach [57] has

the same precision as the original approach [71]. For the inductive step, suppose the induction

hypothesis that the invariant of every node at the current BFS level in the DFS tree implies the

counterpart generated by the approach [71]. We prove that the implication holds for the next

BFS level. The proof can be obtained by observing that each individual linear inequality (as a

conjunctive inequality in a linear assertion) in the invariants generated by the approach [71] on a

location ℓ ′ at the next BFS level satisfies the consecution condition derived from any transition

𝜏 = (ℓ, ℓ ′, 𝜌) to the location ℓ ′, so that each such inequality is implied by the initial condition 𝐾𝜏,𝑖
and satisfies the possible consecution condition from the self-loop in Γ [ℓ ′, 𝐾𝜏,𝑖 ]. Since we apply
the same approach [71] (i.e., solving the same constraints for the unknown coefficients from the

consecution condition of the self-loop), the invariant 𝜂 (ℓ ′) generated by our invariant propagation

implies any individual linear inequality generated by the approach [71]. □
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