
Static Analysis of Posterior Inference in Bayesian
Probabilistic Programming

Peixin Wang1, Hongfei Fu2, Tengshun Yang3,4, Guanyan Li1, and Luke Ong1,5

1 University of Oxford
2 Shanghai Jiao Tong University

3 SKLCS, Institute of Software, Chinese Academy of Sciences
4 University of Chinese Academy of Sciences

5 Nanyang Technological University

Abstract. In Bayesian probabilistic programming, a central problem is
to estimate the normalised posterior distribution (NPD) of a probabilis-
tic program with score statements. Prominent approximate approaches
to address this problem cannot generate guaranteed outcomes within a fi-
nite time limit, and previous formal approaches w.r.t. exact inference for
NPD are restricted to programs with bounded loops/recursion. A recent
work (Beutner et al., PLDI 2022) proposed an automated approach that
derives guaranteed bounds for NPD over programs with unbounded re-
cursion. However, as this approach requires recursion unrolling, it suffers
from the path explosion problem. Moreover, existing approaches do not
consider score-recursive probabilistic programs that allow score state-
ments inside loops, which is non-trivial and requires careful treatment to
ensure the integrability of the normalising constant.
In this work, we propose a novel automated approach to derive bounds for
NPD via polynomial templates, fixed-point theorems and Optional Stop-
ping Theorem (OST). Our approach can handle probabilistic programs
with unbounded while-loops and continuous distributions with infinite
supports. Our novelties are three-fold: First, the use of polynomial tem-
plates circumvents the path explosion problem from recursion unrolling;
Second, we derive a novel variant of OST that addresses the integrabil-
ity issues in score-recursive programs; Third, to increase the accuracy of
the derived bounds, our approach adopts a novel technique of truncation
onto a bounded range of program values. Experiments over a wide range
of benchmarks demonstrate that our approach is time-efficient and can
derive bounds on NPD that can be tighter than (or comparable with)
the recursion-unrolling approach (Beutner et al., PLDI 2022).

1 Introduction

Bayesian statistical probabilistic programming aims at first modelling probabilis-
tic models as probabilistic programs and then analyzing the models through their
probabilistic program representations. Compared with traditional approaches
[29,30,7,9] that specify an ad-hoc programming language, probabilistic program-
ming languages (PPLs) [31] provide a universal framework to perform Bayesian



2 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

inference. Unlike standard programming languages, PPLs have two specific con-
structs: sample and score [6].6 The former construct allows drawing samples
from a (prior) distribution, while the latter records the likelihood of observed
data in the form of “score(weight)”.7 Thanks to its universality, probabilistic
programming has nowadays become an active research subject in both machine
learning and programming language communities, and there have been an abun-
dance of PPLs, such as Pyro[4], WebPPL[20], Anglican[46], Church[19], etc.

In this work, we consider the central problem of analyzing normalised poste-
rior distributions (NPD) in Bayesian inference over probabilistic programs. The
general setting of this problem is that given a prior distribution p(z) over the
latent variables z ∈ Rn of interest and the distribution p(x, z) of the proba-
bilistic model represented by a probabilistic program, the task is to estimate
the NPD by observing the evidence x ∈ Rm with the likelihood p(x|z). Note
that the problem can be generally solved by the Bayes’ rule p(z|x) = p(x|z)p(z)

p(x) ,
but the main difficulty to apply Bayes’ rule is that the normalising constant
p(x) =

∫
p(x|z)p(z)dz is usually intractable to compute.

There are two existing classes of approaches to address the NPD problem.
The first is the approximate approaches that estimate the NPD by random
simulations, while the second is the formal approaches that aim at deriving
guaranteed upper and lower bounds for NPD. In approximate approaches, two
dominant methods are Markov chain Monte Carlo (MCMC) [16] and variational
inference (VI) [5]. Although such approaches can produce approximate results ef-
ficiently, they cannot provide formal guarantees within a finite time limit. In for-
mal approaches, there is a large amount of previous work such as (λ)PSI [17,18],
AQUA [23], Hakaru [32] and SPPL [40], aiming to make exact inference for NPD.
However, these methods are restricted to specific kinds of programs, e.g., pro-
grams with closed-form solutions to NPD or without continuous distributions,
and none of them can handle probabilistic programs with unbounded while-
loops/recursion. Recently, Beutner et al. [3] proposed an approach that infers
guaranteed upper and lower bounds for NPD and allows unbounded recursion.
The main techniques in this approach are (i) the unrolling of every recursion in a
probabilistic program to eliminate the appearance of recursion, (ii) the widening
operator of abstract interpretation to eliminate the non-termination case in the
unrolling and (iii) the interval semantics to handle continuous distributions.

Challenges and gaps. In this work, we focus on developing formal approaches
to derive upper and lower bounds on NPD over probabilistic programs. We al-
low programs to have unbounded while-loops and infinite-support distributions,
which makes it a challenging task. The most relevant work is Beutner et al. [3],
but it has the following drawbacks. The first is that this approach is based on
recursion unrolling, and hence may cause path explosion. The second is that
this approach cannot handle the situation where score statements with weight
greater than 1 appear inside a loop. In the sequel, we call such programs score-
recursive programs, and we show that score inside a loop may cause unbounded
weights and integrability issues and thus requires careful treatment. Staton et

6 Sometimes observe is used instead of score [21], which has the same implicit effect.
7 The argument “weight” corresponds to the likelihood each time the data is observed.



2. PRELIMINARIES 3

al. [44] also noted that for a non-recursive λ-calculus with score, unbounded
weights may introduce the possibility of “infinite model evidence errors”. To cir-
cumvent the second drawback, previous results (e.g., Borgström et al. [6]) allow
only 1-bounded weights, and no existing approaches can handle score-recursive
programs whose weights of score can be greater than 1.
Contributions. Our contributions are three-fold: First, to circumvent the path
explosion from loop unrolling (that corresponds to recursion unrolling in func-
tional programs), we propose a novel approach that adopts the template
paradigm [11,10,51], fixed-point theorems [45] and Optional Stopping Theorem
(OST) [52] to synthesize polynomial bounds for NPD. Second, to address the
integrability issue from score-recursive programs, we present a novel variant of
the classical OST to validate the finiteness of the normalising constant p(x) in
NPD (i.e., 0 < p(x) < ∞). Third, to increase the accuracy of the derived bounds,
we further propose a novel truncation operation that truncates the probabilistic
program of concern onto a bounded range of program values, which allows our
algorithm to explore high-degree polynomials to improve the accuracy. Experi-
mental results show that our approach can handle a wide range of benchmarks
including score-recursive examples from phylogenetics [37], and improve the run-
time of the previous approach [3] by up to 6 times while obtaining tighter or
comparable bounds.
Limitations. A limitation is that our approach has the combinatorial explosion
that when the degree of polynomial templates increases, the time complexity of
the template solving increases exponentially. However, from our experimental
results, a moderate choice of the degree (e.g., no more than 10) suffices. Another
limitation is that for sampling statements our approach currently can only han-
dle continuous distributions with polynomial density functions, but with proper
approximation via piecewise polynomials, our approach can directly handle any
continuous distributions with continuous density functions.

2 Preliminaries

We first review some basic concepts from probability theory (see standard text-
books such as [34,52] for a detailed treatment), and then present the Bayesian
probabilistic programming language and the normalised posterior distribution
(NPD) problem. We denote by N, Z and R the sets of all natural numbers (in-
cluding zero), integers, and real numbers, respectively.

2.1 Basics of Probability Theory

A measurable space is a pair (U,ΣU ), where U is a nonempty set and ΣU is a σ-
algebra on U , i.e., a family of subsets of U such that ΣU ⊆ P(U) contains ∅ and is
closed under complementation and countable union. Elements of ΣU are called
measurable sets. A function f from a measurable space (U1, ΣU1

) to another
measurable space (U2, ΣU2

) is measurable if f−1(A) ∈ ΣU1
for all A ∈ ΣU2

.
A measure µ on a measurable space (U,ΣU ) is a mapping from ΣU to [0,∞]

such that (i) µ(∅) = 0 and (ii) µ is countably additive: for every pairwise-disjoint
set sequence {An}n∈N in ΣU , it holds that µ(

⋃
n∈N An) =

∑
n∈N µ(An). We call



4 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

the triple (U,ΣU , µ) a measure space. If µ(U) = 1, we call µ a probability measure,
and (U,ΣU , µ) a probability space. The Lebesgue measure λ is the unique measure
on (R, ΣR) satisfying λ([a, b)) = b−a for all valid intervals [a, b) in ΣR. For each
n ∈ N, we have a measurable space (Rn, ΣRn) and a unique product measure λn

on Rn satisfying λn(
∏n

i=1 Ai) =
∏n

i=1 λ(Ai) for all Ai ∈ ΣR.
The Lebesgue integral operator

∫
is a partial operator that maps a mea-

sure µ on (U,ΣU ) and a real-valued function f on the same space (U,ΣU ) to
a real number or infinity, which is denoted by

∫
fdµ or

∫
f(x)µ(dx). The de-

tailed definition of Lebesgue integral is somewhat technical, see [36,39] for more
details. Given a measurable set A ∈ ΣU , the integral of f over A is defined by∫
A
f(x)µ(dx) :=

∫
f(x) · [x ∈ A]µ(dx) where [−] is the Iverson bracket such that

[ϕ] = 1 if ϕ is true, and 0 otherwise. If µ is a probability measure, then we call
the integral as the expectation of f , denoted by Ex∼µ;A [f ], or E[f ] when the
scope is clear from the context.

For a measure v on (U,ΣU ), a measurable function f : U → R≥0 is the density
of v with respect to µ if v(A) =

∫
f(x) · [x ∈ A]µ(dx) for all measurable A ∈ ΣU ,

and µ is called the reference measure (most often µ is the Lebesgue measure).
Common families of probability distributions on the reals, e.g., uniform, normal
distributions, are measures on (R, ΣR). Most often these are defined in terms
of probability density functions with respect to the Lebesgue measure. That is,
for each µD there is a measurable function pdfD : R → R≥0 that determines it:
µD(A) :=

∫
A

pdfD(dλ). As we will see, density functions such as pdfD play an
important role in Bayesian inference.

Given a probability space (Ω,F ,P), a random variable is an F-measurable
function X : Ω → R ∪ {+∞,−∞}. The expectation of a random variable X,
denoted by E(X), is the Lebesgue integral of X w.r.t. P, i.e.,

∫
X dP. A filtration

of (Ω,F ,P) is an infinite sequence {Fn}∞n=0 such that for every n ≥ 0, the triple
(Ω,Fn,P) is a probability space and Fn ⊆ Fn+1 ⊆ F . A stopping time w.r.t.
{Fn}∞n=0 is a random variable T : Ω → N ∪ {0,∞} such that for every n ≥ 0,
the event {T ≤ n} is in Fn.

A discrete-time stochastic process is a sequence Γ = {Xn}∞n=0 of random
variables in (Ω,F ,P). The process Γ is adapted to a filtration {Fn}∞n=0, if for
all n ≥ 0, Xn is a random variable in (Ω,Fn,P). A discrete-time stochas-
tic process Γ = {Xn}∞n=0 adapted to a filtration {Fn}∞n=0 is a martingale
(resp. supermartingale, submartingale) if for all n ≥ 0, E(|Xn|) < ∞ and it
holds almost surely (i.e., with probability 1) that E[Xn+1 | Fn] = Xn (resp.
E[Xn+1 | Fn] ≤ Xn, E[Xn+1 | Fn] ≥ Xn). See [52] for details. Applying mar-
tingales to qualitative and quantitative analysis of probabilistic programs is a
well-studied technique [7,9,13].

2.2 Bayesian Probabilistic Programming Language

The syntax of our probabilistic programming language (PPL) is given in Fig. 1,
where the metavariables S, B and E stand for statements, boolean expressions
and arithmetic expressions, respectively. Our PPL is imperative with the usual
conditional and loop structures (i.e., if and while), as well as the following
new structures: (a) sample constructs of the form “sample D” that sample
a value from a prescribed distribution D over R and then assign this value



2. PRELIMINARIES 5

to a sampling variable r; (b) score statements of the form “score(EW )” that
weight the current execution with a value expressed by EW (note that pdf(D,x)
means the value of a probability density function w.r.t. D at x); (c) probabilistic
branching statements of the form “if prob(p) . . . ” that lead to the then part
with probability p ∈ (0, 1] and to the else part with probability 1 − p. We
also have sequential compositions (i.e., ";") and support return statements (i.e.,
return) that returns the value of the program variable of interest. Note that
c, c1, c2 ∈ R are constants, and our language supports any distributions with
continuous density functions and infinite supports, including but not limited to
uniform and normal distributions.

S ::= skip | x := ES | score(EW ) | return x | S1;S2

| whileB doS od | if B thenS1 elseS2 fi | if prob(p) thenS1 elseS2 fi
B ::= true | false | ¬B | B1 andB2 | B1 orB2 | E1 ≤ E2 | E1 ≥ E2

E ::= x | c | E1 + E2 | E1 − E2 | E1 ∗ E2 ES ::= E | sample D

EW ::= E | pdf(D,x) D ::= normal(c1, c2) | uniform(c1, c2) | · · ·

Fig. 1. Syntax of Our Probabilistic Programming Language

Given a probabilistic program in our language, we distinguish two disjoint
sets of variables in the program: (i) the set Vp of program variables whose values
are determined by assignments in the program (i.e., the expressions at the LHS
of “:="); (ii) the set Vr of sampling variables whose values are independently
sampled from prescribed probability distributions each time they are accessed
(i.e., each “sample D" is associated with a sampling variable r). We relegate
detailed program examples to Section 3.

To relate variables with their values, we introduce the notion of valuations.
Let V be a finite set of variables with an implicit linear order over its elements. A
valuation on V is a function v : V → R that assigns a real value to each variable
in V . We denote the set of all valuations on V by ValV . For each 1 ≤ i ≤ |V |,
we denote the value of the i-th variable (in the implicit linear order) in v by
v[i], so that we can view each valuation as a real vector on V . A program (resp.
sampling) valuation is a valuation on Vp (resp. Vr), respectively. For the sake
of convenience, we fix the notations in the following way, i.e., we always use
v ∈ ValVp to denote a program valuation, and r ∈ ValVr to denote a sampling
valuation; we also write v[ret ] for the value of the return variable in v.

Below we present the semantics for our language. Existing semantics in the
literature are either measure-[44,27] or sampling-based [28,3]. To facilitate the
development of our algorithm, we migrate the transition-based semantics [8,11]
to our language and treat each probabilistic program as a weighted probabilistic
transition system (WPTS). A WPTS extends a PTS in [8,11] with weights
and an initial probability distribution. The transformation from a probabilistic
program into its WPTS can be done in a straightforward way (see e.g. [12,8]).

Definition 1 (WPTS). A weighted probabilistic transition system (WPTS)
is a tuple

Π = (Vp, Vr, L, ℓinit, ℓout, µinit,D,T) (†)



6 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

for which:

– Vp and Vr are finite disjoint sets of program and resp. sampling variables.
– L is a finite set of locations with special locations ℓinit, ℓout ∈ L. Informally,

ℓinit is the initial location and ℓout represents program termination.
– µinitis the initial probability distribution over RVp , while D is a function

that assigns a probability distribution D(r) to each r ∈ Vr. We call each
v ∈ supp (µinit) an initial program valuation, and abuse the notation so that
D also denotes the independent joint distribution of all D(r)’s (r ∈ Vr).

– T is a finite set of transitions where each transition τ ∈ T is a tuple
⟨ℓ, ϕ, F1, . . . , Fk⟩ such that (i) ℓ ∈ L is the source location of the transition,
(ii) ϕ is the guard condition which is a predicate over variables Vp, and (iii)
each Fj := ⟨ℓ′j , pj , updj ,wtj⟩ is called a weighted fork for which (a) ℓ′j ∈ L
is the destination location of the fork, (b) pj ∈ (0, 1] is the probability of this
fork, (c) updj : R|Vp| × R|Vr| → R|Vp| is an update function that takes as
inputs the current program and sampling valuations and returns an updated
program valuation in the next step, and (d) wtj : R|Vp| ×R|Vr| → [0,∞) is a
score function that gives the likelihood weight of this fork depending on the
current program and sampling valuations.

In a WPTS, we use update and score functions to model the update on the
program variables and the likelihood weight when running a basic block in a
program, respectively. If there is no score statement in the block, then the score
function is constantly 1. We always assume that a WPTS Π is deterministic
and total, i.e., (i) there is no program valuation that simultaneously satisfies the
guard conditions of two distinct transitions from the same source location, and
(ii) the disjunction of the guard conditions of all the transitions from any source
location is a tautology.

We say that a WPTS is non-score-recursive if for all transitions τ = ⟨ℓ, ϕ, F1,
F2, . . . , Fk⟩ in the WPTS with each fork Fj = ⟨ℓ′j , pj , updj ,wtj⟩ (1 ≤ j ≤ k),
we have that each score function wtj is constantly 1 (i.e., the multiplicative
weight does not change) if ℓ′j ̸= ℓout. Otherwise, the WPTS is score-recursive.
Informally, a non-score-recursive WPTS has non-trivial score functions only on
the transitions to the termination of a program, while a score-recursive WPTS
has score in the execution of the program (e.g., in a while loop).

Below we present the semantics of a WPTS. Fix a WPTS Π in the form of
(†). Given a program valuation v and a predicate ϕ over variables Vp, we say that
v satisfies ϕ (written as v |= ϕ) if ϕ holds when the variables in ϕ are substituted
by their values in v. Moreover, we have that a state is a pair Ξ = (ℓ,v) where
ℓ ∈ L (resp. v ∈ R|Vp|) represents the current location (resp. program valuation),
respectively, while a weighted state is a triple Θ = (ℓ,v, w) where (ℓ,v) is a state
and w ∈ [0,∞) represents the multiplicative likelihood weight so far. We denote
by Λ the set of all states, and by ∆ the set of all weighted states.

The semantics of the WPTS Π is formalized by the infinite sequence Γ =

{Θ̂n = (ℓ̂n, v̂n, ŵn)}n≥0 of random weighted states where each (ℓ̂n, v̂n, ŵn) is the
random weighted state at the nth execution step of the WPTS such that ℓ̂n (resp.
v̂n, ŵn) is the random variable for the location (resp. the random vector for the
program valuation, the random variable for the multiplicative likelihood weight)



2. PRELIMINARIES 7

at the nth step, respectively. The sequence Γ starts with the initial random
weighted state Θ̂0 = (ℓ̂0, v̂0, ŵ0) such that ℓ̂0 is constantly ℓinit, v̂0 ∈ supp (µinit)
is sampled from the initial distribution µinit and the initial weight ŵ0 is con-
stantly set to 18. Then, at each nth step, given the current random weighted state
Θ̂n = (ℓ̂n, v̂n, ŵn), the next random weighted state Θ̂n+1 = (ℓ̂n+1, v̂n+1, ŵn+1) is
determined by: (a) If ℓ̂n = ℓout, then (ℓ̂n+1, v̂n+1, ŵn+1) takes the same weighted
state as (ℓ̂n, v̂n, ŵn) (i.e., the next weighted state stays at the termination loca-
tion ℓout); (b) Otherwise, Θ̂n+1 is determined by the following procedure:

– First, since the WPTS Π is deterministic and total, we take the unique
transition τ = ⟨ℓ̂n, ϕ, F1, . . . , Fk⟩ such that v̂n |= ϕ.

– Second, we choose a fork Fj = ⟨ℓj , pj , updj ,wtj⟩ with probability pj .
– Third, we obtain a sampling valuation r ∈ supp (D) by sampling each r ∈ Vr

independently w.r.t D(r).

– Finally, the value of the next random weighted state (ℓ̂n+1, v̂n+1, ŵn+1) is
determined as that of (ℓ′j ,updj(v̂n, r), ŵn · wtj(v̂n, r)).

Given the semantics, a program run of the WPTS Π is a concrete instance
of Γ , i.e., an infinite sequence ω = {Θn}n≥0 of weighted states where each
Θn = (ℓn,vn, wn) is the concrete weighted state at the nth step in this program
run with location ℓn, program valuation vn and multiplicative likelihood weight
wn. A state (ℓ,v) is called reachable if there exists a program run ω = {Θn}n≥0

such that Θn = (ℓ,v, wn) for some n.
We introduce more technical concepts. The termination time random variable

T of a WPTS Π is given by T (ω) := min{n ∈ N | ℓn = ℓout} for every program
run ω = {(ℓn,vn, wn)}n≥0 where min ∅ := ∞. That is, T (ω) is the number of
steps a program run ω takes to reach the termination location ℓout. A WPTS
Π is almost-surely terminating (AST) if P(T < ∞) = 1. A return function of
a WPTS Π is the function ret : supp (µinit) → ΣR|Vp| such that for any initial
program valuation v, we have retΠ(v) is the set of all program valuations v̂T (ω)
such that ω is a program run whose initial program valuation equals v.

Below we define the normalised posterior distribution (NPD) problem.

Definition 2 (Normalised Posterior Distribution). Given a WPTS Π in
the form of (†), a designated initial program valuation vinit and a measurable
subset U ∈ ΣR|Vp| , the expected weight JΠKU (vinit) is defined as JΠKU (vinit) :=
Evinit

[[v̂T ∈ U ] · ŵT ]. (Recall that v̂T , ŵT are the random (vector) variables of the
program valuation and the likelihood weight at termination, respectively. Thus,
JΠKU (vinit) is the expectation of ŵT over all runs that start from (ℓinit,vinit)
and end with v̂T ∈ U . We write JΠK(vinit) iff U = R|Vp|.) Then the normalised
posterior distribution (NPD) posteriorΠ of Π is defined by:

posteriorΠU (V) := JΠKU (V)/ZΠ for all measurable subsets U ,V ∈ ΣR|Vp|

where JΠKU (V) :=
∫
VJΠKU (v) · µinit(dv), and ZΠ := JΠK(R|Vp|) is the normal-

ising constant. The WPTS Π is called integrable if we have 0 < ZΠ < ∞.
8 This follows the traditional setting in e.g. [3].



8 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

We consider to address the automated bound analysis for the NPD of a
WPTS. To be more precise, we consider interval bound analysis that aims at
deriving an interval [l, u] ⊆ [0,∞] for an integrable WPTS Π and measurable
sets U ,V ∈ ΣR|Vp| as tight as possible such that l ≤ JΠKU (V) ≤ u.

3 Motivating Examples

In this section, we have an overview of our novelties via two motivating examples.

Example 1 (Pedestrian Random Walk). Consider the pedestrian random walk
example [28] written in our language in Fig. 2. In this example, a pedestrian is
lost on a road, and she only knows that she is away from her house at most 3 km.
Thus, she starts to repeatedly walk a uniformly random distance of at most 1 km
in either direction, until reaching her house. Upon she arrives, an odometer tells
that she has walked 1.1 km totally. However, this odometer was once broken
and the measured distance is normally distributed around the true distance
with standard deviation 0.1 km. In the program, the variable pos represents the
current position of the pedestrian, the variable step holds the distance she walks
in the next step, and the probabilistic branch in the loop body specifies that
the pedestrian walks either forward or backward, both with probability 0.5. The
variable dis records the total distance the pedestrian travelled so far.

This example is a non-score-recursive program and was previously handled
in [3] by exhaustive recursion unrolling that has the path-explosion problem.
In this work, we propose a novel fixed-point and template-based approach that
synthesizes polynomial bounds for the NPD via a novel fixed-point theorem, a
truncation operation that allows the polynomial synthesis to be over a bounded
range. Our approach can obtain comparable bounds to [3] while our runtime is
two-thirds of the time of [3] (see Section 6). ⊓⊔

Example 2 (Phylogenetic Birth Model). Consider a simplified version of the phy-
logenetic birth model [37]. A species arises with a birth-rate lambda, and it prop-
agates with a constant likelihood of 1.1 at some time interval.9 This example is
modelled as a probabilistic program in Fig. 3. Assume that lambda is associated
with a prior distribution, we want to infer its posterior distribution given the
species evolvement described by the while loop. This example cannot be handled
by previous approaches (such as [3,18]) since it is a score-recursive program with
an unbounded while-loop and its scoring weight is greater than 1.

To see why such a score-recursive program is nontrivial to tackle, consider
a simple loop example where in each loop iteration, the loop terminates with
probability 1

2 , and continues to the next loop iteration with the same probability.
At the end of each loop iteration, a score command “score(3)” is executed. Then
the normalising constant is equal to

∑∞
n=1 P(T = n) · 3n =

∑∞
n=1(

3
2 )

n = ∞, so
that the infinity makes the posterior distribution invalid. One can observe that
in this example the main problem lies at the fact that the scaling speed of the
likelihood weight (i.e., 3) is higher than that for program termination (i.e., 1

2 ).

9 For simplicity, we assume constant weights that can be viewed as over-approximation
for a continuous density function.



4. THEORETICAL APPROACHES 9

To address the phylogenetic birth model, our approach synthesizes polyno-
mial bounds via a novel variant of Optional Stopping Theorem (OST) and again
the truncation operation. Our experimental result shows that the derived bounds
match the simulation result with 106 samples (see Section 6). ⊓⊔

start := sample uniform(0, 3) ;
pos := start ; dist := 0 ;
while pos ≥ 0 do

step := sample uniform(0, 1) ;
i f prob (0.5) then

pos := pos − step
else

pos := pos + step
f i ;
dist := dist + step

od ;
score (normal(1.1 ,0.1 ) ,dist ) ;
return start

Fig. 2. A Pedestrian Random Walk

lambda := sample uniform(0, 2) ;
time := 10 ; amount := 0 ;
while time ≥ 0 do

wait := sample uniform(0, 0.5) ;
time := time − wait ;
i f prob (0.5 · lambda) then

birth := sample uniform (0, 0.01 ) ;
amount := amount + birth ;
score (1.1)

f i ;
od ;
return lambda

Fig. 3. A Phylogenetic Birth Model

4 Theoretical Approaches

In this section, we present our theoretical approaches, namely the fixed-point
approach, the OST approach and the truncation operation.

4.1 The Fixed-Point Approach

We assume familiarity with basic concepts in fixed-point theory (refer to Ap-
pendix B.1 for details of these concepts). In this work, we apply the following
well-known fixed-point theorem.

Theorem 1 (Tarski [45]). Let (K,⊑) be a complete lattice and f : K → K
a monotone function. Then, both lfp f and gfp f exist. Moreover, we have

lfp f =
d
{x | f(x) ⊑ x} and gfp f =

⊔
{x | x ⊑ f(x)} .

Based on Theorem 1, we then present our fixed-point approach. Our fixed-
point approach works for non-score-recursive WPTS’s. Below we fix a non-score-
recursive WPTS Π in the form of (†). Given a maximum finite value M ∈ [0,∞),
we say that a state function is a measurable function h : Λ → [−M,M ] such
that for all v ∈ R|Vp|, we have that h(ℓout,v) ∈ [0,M ]. We denote the set of all
state functions with maximum value M by KM . We use the usual partial order
≤ on KM defined in the pointwise fashion, i.e., for any h1, h2 ∈ KM , h1 ≤ h2

iff h1(Ξ) ≤ h2(Ξ) for all Ξ ∈ Λ. Since (i) measurable functions are closed
under both supremum and infimum and (ii) the top element ⊤ (resp. the bottom



10 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

element ⊥) in the set KM is the constant function that maps every state Ξ to M
(resp. −M), one can straightforwardly verify that (KM ,≤) is a complete lattice.
To connect state functions with expected weights (Definition 2), we define the
expected-weight function ewΠ by ewΠ(ℓinit,v) := JΠK(v), and omit the subscript
Π if it is clear from the context. In this work, we concern the following monotone
function over the complete lattice (KM ,≤).

Definition 3 (Expected-Weight Transformers). Given a maximum finite
value M ∈ [0,∞), the expected-weight transformer ewtΠ : KM → KM is the
higher-order function such that for each state function h ∈ KM and state (ℓ,v),
if τ = ⟨ℓ, ϕ, F1, . . . , Fk⟩ is the unique transition that satisfies v |= ϕ and Fj =
⟨ℓ′j , pj , updj ,wtj⟩ for each 1 ≤ j ≤ k, then we have that

ewtΠ(h)(ℓ,v) =

{∑k
j=1 pj · Er

[
wtj(v, r) · h(ℓ′j , updj(v, r))

]
if ℓ ̸= ℓout

1 otherwise
.

(1)
Here the expectation Er [−] is taken over a sampling valuation r that observes
the joint probability distributions of all the sampling variables r ∈ Vr.

We omit the subscript Π in ewtΠ if it is clear from the context. Informally,
given a state function h, the expected-weight transformer ewt computes the
expected weight ewt(h) after one step of the WPTS execution. From the mono-
tonicity of the Lebesgue integral, we have that ewt is monotone. Moreover, since
for a non-score-recursive WPTS wtj(v, r) is constantly 1 when ℓdj ̸= ℓout, we
have that ewt : KM → KM is monotone when M ≥ 1. The following theorem
lays the backbone of our fixed-point approach.

Theorem 2. Let Π be a non-score-recursive WPTS whose weights are bounded
in [−M,M ] for a finite M ≥ 1. Then the expected-weight function ew is the
least fixed point of the expected-weight transformer ewt in the complete lattice
(KM ,≤). Furthermore, if the WPTS Π is AST, then the function ew is the
unique fixed point of the higher-order function ewt in (KM ,≤) when M ≥ 1.

By combining Theorem 2 and Theorem 1, it suffices to derive a prefixed
point of ewt to obtain an upper bound for ew, and a postfixed point to obtain
a lower bound in the case of almost-sure termination. For the space limitation,
we relegate the detailed proof for Theorem 2 to Appendix B.2.

4.2 The OST Approach

For a score-recursive WPTS, the expected-weight transformer ewt may no longer
be a function for the complete lattice (KM ,≤). Hence, the fixed-point approach
is not suitable for score-recursive WPTS’s. To address this point, we propose a
novel approach via a novel variant of OST. We first present the OST variant.

Theorem 3 (OST Variant). Let {Xn}∞n=0 be a martingale (resp. super-
martingale) adapted to a filtration {Fn}∞n=0, and κ be a stopping time w.r.t.
{Fn}∞n=0. Then the following condition is sufficient to ensure that E (|Xκ|) < ∞
and E (Xκ) = E(X0) (resp. E (Xκ) ≤ E(X0)):



4. THEORETICAL APPROACHES 11

(0) There exist integers b1, b2 > 0 and real numbers c1 > 0, c2 > c3 > 0 such
that (i) P(κ > n) ≤ c1 · e−c2·n for sufficiently large n ∈ N, and (ii) for all
n ∈ N, |Xn+1 −Xn| ≤ b1 · nb2 · ec3·n almost surely.

Our OST variant extends the classical OST with the relaxation that we allow
the magnitude of the next random variable Xn+1 to be bounded by that of Xn

by a multiplicative factor ec3 . To cancel the effect of the multiplicative factor,
we require in extra the exponential decrease in P(κ > n) ≤ c1 · e−c2·n. The proof
resembles that of [51, Theorem 5.2] and is relegated to Appendix B.3.

Below we show how one applies our OST variant to score-recursive WPTS’s.
We fix a WPTS Π in the form of (†). The key concepts in the application of the
OST variant are potential weight functions over the WPTS Π as follows. In the
following definition, we use the expected-weight transformer ewt in the context
of a score-recursive WPTS (i.e., wtj may not be 1).

Definition 4 (Potential Weight Functions). A potential upper weight
function (PUWF) is a function h : L×ValVp → R that has the properties below:

(C1) for all reachable states (ℓ,v) with ℓ ̸= ℓout, we have ewt(h)(ℓ,v) ≤ h(ℓ,v);
(C2) for all states (ℓ,v) such that ℓ = ℓout, we have h(ℓ,v) = 1.

Analogously, a potential lower weight function (PLWF) is a function h : L ×
ValVp

→ R that satisfies the conditions (C1’) and (C2), for which the condition
(C1’) is almost the same as (C1) except for that “ewt(h)(ℓ,v) ≤ h(ℓ,v)” is
replaced with “ewt(h)(ℓ,v) ≥ h(ℓ,v)”.

Informally, a PUWF is a state function that satisfies the prefixed point con-
dition of ewt at non-terminating locations, and equals one at the termination
location. A PLWF is defined similarly, with the difference that we use the post-
fixed point condition instead.

A WPTS Π has the bounded update property over its program variables, if
there exists a constant κ > 0 such that for every reachable state (ℓ,v) and its
unique transition τ = ⟨ℓ, ϕ, F1, . . . , Fk⟩ with each fork Fj = ⟨ℓ′j , pj , updj ,wtj⟩,
we have ∀r ∈ supp (D) ∀x ∈ Vp, |updj(v, r)(x)− v(x)| ≤ κ .

By applying our OST variant (Theorem 3) in a way similar to [51, Theorem
6.10, Theorem 6.12], we obtain the main theorem for our OST approach. The
proof is relegated to Appendix B.4.

Theorem 4. Let Π be a score-recursive WPTS with bounded update. Suppose
that there exist real numbers c1 > 0 and c2 > c3 > 0 such that (i) P(T > n) ≤
c1 · e−c2·n for sufficiently large n ∈ N and (ii) for each score function wt in Π
we have |wt| ≤ ec3 . Then for any PUWF (resp. PLWF) h over Π, we have that
JΠK(vinit) ≤ h(ℓinit,vinit) (resp. JΠK(vinit) ≥ h(ℓinit,vinit)) for any initial state
(ℓinit,vinit).

4.3 Truncation over WPTS’s

Informally, the truncation of a WPTS restricts the value of every program
variable in the WPTS to a prescribed bounded range [−R,R] (R > 0) (or



12 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

[0, R], [−R, 0] if the value of a program variable is always non-negative or resp.
non-positive). Note that every program variable can have its own bounded range.

Below we formally present the truncation over a WPTS. We say that a trun-
cating function B is a function that maps every program variable x ∈ Vp to a
bounded interval B(x) in R that specifies the bounded range of the variable x.
We denote by ΦB the formula

∧
x∈Vp

x ∈ B(x). We also consider a non-negative
bound function M : R|Vp| → (0,∞) that acts as an upper/lower bound for the
expected weight JΠK(v) when v ̸|= ΦB.

Definition 5 (Truncation over WPTS’s). Let Π be a WPTS in the
form of (†). Given a truncating function B and a bound function M > 0,
the truncated WPTS w.r.t. B and M is defined as ΠB,M := (Vp, Vr, L ∪
{#}, ℓinit, ℓout, µinit,D,TB,M) where # is a fresh deadlock location and the tran-
sition relation TB,M is given by

TB,M := {⟨ℓ, ϕ ∧ ΦB, F1, . . . , Fk⟩ | ⟨ℓ, ϕ, F1, . . . , Fk⟩ ∈ T and ℓ ̸= ℓout}

∪ {⟨ℓ, ϕ ∧ (¬ΦB), F
M,♯
1 , . . . , FM,♯

k ⟩ | ⟨ℓ, ϕ, F1, . . . , Fk⟩ ∈ T and ℓ ̸= ℓout} (‡)
∪ {⟨ℓout, true, Fℓout

⟩, ⟨♯, true, F♯⟩}

for which Fℓ := ⟨ℓ, 1, id, 1⟩ for ℓ ∈ {ℓout, ♯} with id the identity function and 1 the
constant function that always takes the value 1, and for a fork F = ⟨ℓ′, p,upd,wt⟩
we have FM,♯ := F if ℓ′ = ℓout and FM,♯ := ⟨♯, p,upd,M⟩ otherwise.

Thus, the truncated WPTS is obtained from the original one by first re-
straining each transition to the bounded range ΦB and then redirecting to the
deadlock location ♯ all the situations jumping out of the bounded range and not
going to the termination location. To make the truncated WPTS deterministic
and total, we add in extra the self-loop ⟨♯, true, F♯⟩. Our main theorem below
shows that by choosing an appropriate bound function M in the truncation, one
can obtain upper/lower approximation of the original WPTS (proof through
Kleene iteration in Appendix C). Below we fix a WPTS Π and its truncated
WPTS ΠB,M with a truncating function B and a bound function M.

Theorem 5. Suppose that (∗) for each truncation fork FM,♯ = ⟨♯, p,upd,M⟩
derived from some F = ⟨ℓ′, p,upd,wt⟩ with its source location ℓ (see (‡)), we
have JΠK(v) ≤ M(v) for all v such that the state (ℓ,v) is reachable. Then
JΠK(vinit) ≤ JΠB,MK(vinit) for all initial program valuation vinit. Analogously,
if it holds the condition (⋆) which is almost the same as (∗) except for that
“JΠK(v) ≤ M(v)” is replaced with “JΠK(v) ≥ M(v)”, then we have JΠK(vinit) ≥
JΠB,MK(vinit) for all initial program valuation vinit.

5 An Algorithmic Approach

In the following, we present an algorithmic implementation for our theoreti-
cal approaches to address the NPD problem. We assume polynomial density
functions in every sampling statements. As the NPD is defined through ex-
pected weights (Definition 2), our algorithm first derives polynomial bounds for



5. AN ALGORITHMIC APPROACH 13

expected weights, and then obtains bounds of the NPD. Moreover, our algo-
rithm is template-based and has the following paradigm: (a) First obtain an
upper bound function Mup and a lower bound function Mlow on the expected
weight outside the bounded range and truncate the input WPTS into a bounded
range with bounds Mup and Mlow, whose correctness follows from Theorem 5;
(b) Then synthesize polynomial bounds on the truncated WPTS via either our
fixed-point approach (for a non-score-recursive WPTS) or OST approach (for a
score-recursive WPTS), whose correctness follows from Theorem 2 or Theorem 4.

In our algorithm, we use the classical notion of invariants (see e.g. [7,43]) to
over-approximate reachable states. We follow [14,43] to consider affine invari-
ants. An affine invariant for a WPTS is a map I that assigns to each location ℓ
a system I(ℓ) of affine inequalities such that for all reachable states (ℓ,v), the
affine inequalities I(ℓ) holds under the values for program variables given in v.

Below we fix an input WPTS Π in the form of (†) with an affine invariant I.
In the case that Π is non-score-recursive, we define its exit range exit(Π) as the
set of all program valuations v such that the state (ℓout,v) is reachable. Besides
the input Π, our algorithm requires the following extra inputs:

– a truncating function B and two bound functions Mup and Mlow such that
they fulfill the conditions (∗) and (⋆) in the statement of Theorem 5;

– a positive integer d for the degree of the polynomial templates;
– in the case that Π is non-score-recursive, an error bound ϵ′ > 0 and a

polynomial approximation g′ for each non-polynomial score function g such
that |g(v)−g′(v)| ≤ ϵ′ for all program valuations v ∈ exit(Π) (see Theorem 8
in Appendix C);

– in the case that Π is score-recursive, positive integers and real numbers bi, cj
(i ∈ {1, 2}, 1 ≤ j ≤ 3) such that (0) in Theorem 3 holds.

We empirically specify a large enough bounded range of B over program vari-
ables that captures the major behaviour of the program. The bound func-
tions Mup,Mlow could be either obtained by heuristics from the properties
of the score functions in non-score-recursive programs, or derived using our
OST variant (Theorem 4) by directly migrating existing template-based ap-
proaches [8,51,12,9] to our case. Polynomial approximations for continuous func-
tions can be obtained by Matlab, while concentration bounds can be derived by
the automated approaches in [12,48].

The first part of our algorithm synthesizes polynomial bounds for expected
weights JΠK(vinit) when the initial probability distribution is Dirac at an initial
program valuation vinit (i.e., the initial program valuation is fixed to be vinit).
Its algorithmic procedure (Step A1 – A5) is as follows.
Step A1. The algorithm performs the truncation over the WPTS Π with
the truncating function B and bound functions Mup and Mlow to obtain
the truncated WPTS’s ΠB,Mup

and ΠB,Mlow
. We denote B := {v | v(x) ∈

B(x) for all x ∈ Vp}.
Step A2. From the bounded range B, the algorithm computes an extended
bounded range B′ such that any program valuation from a one-step execution of
the WPTS from some program valuation in B falls in B′. Formally, the extended
bounded range B′ should satisfy that for every location ℓ, program valuation



14 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

v ∈ B, transition τ = ⟨ℓ, ϕ, F1, F2, . . . , Fk⟩, fork Fj = ⟨ℓ′j , pj ,updj ,wtj⟩ in τ and
sampling valuation r ∈ supp (D), we have that updj(v, r) ∈ B′. Our algorithm
determines the extended bounded range B′ by considering all possible executions
of Π starting from the bounded range B [25,42]. The purpose to have a superset
B′ is to reduce the runtime in the solving of the template, see Step A4 below.
Step A3. The algorithm sets up for each location ℓ ̸∈ {ℓout, ♯} a d-degree poly-
nomial template hℓ over the program variables Vp with unknown coefficients as
parameters to be resolved. For ℓ ∈ {ℓout, ♯}, our algorithms assumes hℓ ≡ 1.
Each template hℓ represents the desired bound function and is the summation
of all monomials over Vp of degree no more than d for which each monomial has
a standalone unknown coefficient. The unknown coefficients in different hℓ’s are
disjoint and all these unknown coefficients are to be resolved to obtain concrete
bound functions.
Step A4. The algorithm establishes constraints for the templates hℓ’s from (C1),
(C1’) and (C2) in Definition 4. Since both the fixed-point approach and the OST
approach has the same constraints from the prefixed point and the postfixed
point conditions, we consider unified constraints for the two approaches. For
upper bounds on expected weights, the algorithm has the following constraints
to synthesize a PUWF over ΠB,Mup :

(D1) For every location ℓ ∈ L \ {ℓout, ♯} and program valuation v ∈ I(ℓ) ∩ B, we
have that ewt(h)(ℓ,v) ≤ h(ℓ,v).

(D2) For every location ℓ ∈ L\{ℓout, ♯} and program valuation v ∈ I(ℓ)∩(B′ \B),
we have that Mup(ℓ,v) ≤ h(ℓ,v).

For lower bounds, the algorithm has (D1’) and resp. (D2’) which are ob-
tained from (D1) and resp. (D2) by replacing “ewt(h)(ℓ,v) ≤ h(ℓ,v)” with
“ewt(h)(ℓ,v) ≥ h(ℓ,v)” in (D1) and resp. “Mup(ℓ,v) ≤ h(ℓ,v)” with
“Mlow(ℓ,v) ≥ h(ℓ,v)” in (D2), respectively. Note that (D1) and (D2) ensure
(C1) and (C2) since Mup ≤ h(ℓ,v) implies that ewt(h)(ℓ,v) ≤ h(ℓ,v) for every
location ℓ ∈ L \ {ℓout, ♯} and program valuation v ∈ I(ℓ) ∩ B. The same holds
for (D1’) and (D2’). Note that in (D1), the calculation of the value ewt(h)(ℓ,v)
has the piecewise nature that different sampling r may cause the next program
valuation to be within or outside the bounded range, and to satisfy or violate
the guards in the WPTS. In our algorithm, we have a refined treatment that
enumerates all possible valid situations w.r.t different guards of the WPTS in
the calculation of ewt(h)(ℓ,v) for a sampling valuation r, and use (D2) to over-
approximate the situations of whether the next program valuation lies in the
bounded range or not in order to circumvent the piecewise difficulty.
Step A5. Our algorithm solves the unknown coefficients in the templates hℓ

(ℓ ∈ L \ {ℓout, ♯} via the well-established methods of Putina[35] and Handel-
man’s Positivstellensatz [22]. To be more detailed, the objective of this step is to
solve the constraints from the previous step which is a conjunction of formulas
of the form ∀v ∈ P.(g(v) ≥ 0) where P is a polyhedron and g is a polyno-
mial over Vp whose coefficients are affine expressions in the program variables,
and such formulas can be guaranteed by the sound forms of Putinar’s and Han-
delman’s Positivstellensatz. The application of Putinar’s Positivstellensatz re-
sults in semidefinite constraints and can be solved by semidefinite programming



6. EXPERIMENTAL RESULTS 15

(SDP), while the application of Handelman’s theorem leads to linear constraints
and can be solved by linear programming (LP). We refer to Appendix D for the
details on the application of Putinar’s and Handelman’s theorem.

Given a measurable set U ∈ ΣR|Vp| , the expected weight JΠKU (vinit) can be
derived in the same manner above as one can always find an equivalent WPTS
ΠU such that JΠUK(vinit) = JΠKU (vinit) for any initial program valuation vinit.10
The second part of our algorithm calls the first part of the algorithm to compute
the bounds for the NPD. For the sake of simplicity, we only present the one-
dimensional case, i.e., the WPTS has only one return variable x ∈ Vp of interest
and vinit[x] ∼ µinit, the other elements in vinit are fixed and constant. It can be
straightforwardly extended to general cases.
Step B1. Given an input WPTS Π with vinit[x] ∼ µinit and a measurable set
V = supp(µinit) ∈ ΣR, our algorithm splits V uniformly into n intervals I1 =
[a1, b1], . . . , In = [an, bn] and generates n different initial program valuations
vi
init, . . . ,v

n
init such that each vj

init[x] :=
aj+bj

2 (j ∈ [1, n], n > 0 is an integer).
Step B2. Our algorithm calls the first part of the algorithm, and outputs
a set Upper = {Up1, . . . , Upn} (resp. Lower = {Lw1, . . . , Lwn}) of con-
crete polynomial upper bound functions (resp. lower bound functions) for
expected weights {JΠK(v1

init), . . . , JΠK(vn
init)}. Then our algorithm integrates

each bound function over its corresponding interval and summate the re-
sults to obtain the interval bound of the normalising constant JΠK(V), i.e.,
JΠK(V) ∈ [l, u] where u :=

∑n
j=1

∫
Ij
Upj(ℓinit,v

j
init)µinit(dv

j
init[x]) and l :=∑n

j=1

∫
Ij
Lwj(ℓinit,v

j
init)µinit(dv

j
init[x]).

Address the NPD problem. Given a measurable set U ∈ ΣR, the interval bound
of JΠKU (V) can be obtained similarly as one can always find an equivalent ΠU
such that JΠUK(V) = JΠKU (V). Then assume the interval bound of JΠKU (V) is
[lU , uU ], its NPD posteriorΠU (V) is bounded by [ lUu , uU

l ] with 0 < l ≤ u.

6 Experimental Results

In this section, we present the experimental results of our approach over a variety
of programs. First, we show that our approach can handle novel examples that
cannot be addressed by other existing tools w.r.t. NPD. Then we compare our
approach with the state-of-the-art tool GuBPI [3] w.r.t. NPD. Finally, even
though the problem of path probability estimations is not the focus of our work,
we demonstrate that our approach can work well for this problem, and we also
compare the performance of our approach with GuBPI.

We implemented a parser from probabilistic programs to WPTS’s in F#, our
algorithms in Matlab, and used Mosek [1] for solving semidefinite programming.
All results were obtained on an Intel Core i7-10875H (2.3 GHz) machine with
16 GB of memory, running MS Windows 10. Polynomial approximations for
continuous functions were obtained by Matlab, while concentration bounds were
derived by the automated approaches in [12,48].

10 For instance, construct a ΠU by adding a conditional branch of the form “if vT ∈ U
then score(0) fi” immediately before the termination of Π



16 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

6.1 NPD - Novel Examples. We consider 10 novel examples adapted from
the literature, where all 7 examples with prefix “Pd” or “RdWalk” are from
[3], the two “RACE” examples are from [48], and the last example is from sta-
tistical phylogenetics [37] (see also Section 3). Concretely, the “RACE(V2)” and
“BIRTH” examples are both score-recursive probabilistic programs with weights
greater than 1, and thus their integrability condition should be verified by the
existence of suitable concentration bounds (see Theorem 3); other examples are
non-score-recursive probabilistic while loops with unsupported types of scoring
by previous tools (e.g., polynomial scoring). Therefore, no existing static-analysis
tools w.r.t. NPD can tackle these novel examples. The results are reported in
Table 1, where the first column is the name of each example, the second column
contains the parameter of each example used in our approach (i.e., the degree of
the polynomial template and the bounded range of program variables), the third
column is the used solver, and the fourth and fifth columns correspond to the
runtime of upper and lower bounds computed by our approach, respectively. Our
runtime is reasonable, that is, most examples can obtain tight bounds within 100
seconds, and the simulation results by Pyro [4] (106 samples per case) match our
derived bounds. Due to the page limit, below we display part of the comparison
in Fig. 4, see Appendix E for other figures.

Table 1. Results for Novel Examples

Benchmark Parameters Solver Upper Lower
Time (s) Time (s)

Pd(v1) d = 6, pos, dis ∈ [0, 5] SDP 54.65 52.39
Race(v1) d = 6, h, t ∈ [0, 5] LP 87.43 86.27

Race(v2)* d = 6, h, t ∈ [0, 5] LP 81.19 81.18
RdWalk(v1) d = 6, x, y ∈ [0, 5] LP 46.65 47.72
RdWalk(v2) d = 6, x, y ∈ [0, 5] LP 97.45 103.65
RdWalk(v3) d = 6, x, y ∈ [0, 5] LP 250.70 252.49
RdWalk(v4) d = 6, x, y ∈ [0, 5] LP 98.75 98.21
PdMB(v3) d = 4, pos, dis ∈ [0, 5] LP 15.26 14.57
PdMB(v4) d = 4, pos, dis ∈ [0, 5] LP 16.07 16.12

Birth* d = 6, lambda ∈ [0, 3], time ∈ [0, 10] LP 14.72 611.66
* It is a score-recursive probabilistic program with weights greater than 1.

6.2 NPD - Comparision with GuBPI [3]. We consider the Pedestrian example
“Pd” from [3] (see also Section 3), and its variants. More concretely, we enlarged
the standard deviation of the observed normal distribution to be 5 for all other
6 examples whose prefix name are “Pd”; for the four “PdBeta” examples, we
also add different beta distributions in the loop bodies. The last example is
from [17]. We report the results in Table 2 whose layout is similar to Table 1
except that the column “#” displays whether or not the bounds are trivial, i.e.,
[0,∞]. We also compare our results with GuBPI’s and simulation results (106
samples per case), and show part of the comparison in Fig. 5, see Appendix E
for other figures. Our runtime is up to 6 times faster than GuBPI while we can
still obtain tighter or comparable bounds for all examples. Specifically, for the
first example “Pd”, our upper bounds are a bit higher than GuBPI’s when the
value of start falls into [0, 0.7] (which is not suprising as the deviation of the



6. EXPERIMENTAL RESULTS 17

0 0.5 1 1.5 2 2.5 3
start

0

0.1

0.2

0.3

0.4

0.5

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(a) Pd(v1)

0 0.5 1 1.5 2
tortoise

0.045

0.05

0.055

0.06

0.065

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(b) Race(v2)

0 1 2 3
x

0

0.02

0.04

0.06

0.08

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(c) RdWalk(v1)

0 0.5 1 1.5 2 2.5 3
start

0

0.02

0.04

0.06

0.08

0.1

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(d) PdMB(v3)

Fig. 4. NPD Bounds of Novel Examples

0 0.5 1 1.5 2 2.5 3
start

0

0.05

0.1

0.15

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(a) Pd

0 0.5 1 1.5 2 2.5 3
start

0

0.05

0.1

0.15

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(b) PdLD

0 0.5 1 1.5 2 2.5 3
start

-0.1

-0.05

0

0.05

0.1

0.15

0.2

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(c) PdBeta(v1)

0 0.5 1 1.5 2 2.5 3
start

-0.1

-0.05

0

0.05

0.1

0.15

0.2

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
IS Simulation results

(d) PdBeta(v2)

Fig. 5. NPD Bounds of Comparison
The red lines and the blue lines mark the upper and lower bounds of our results;
the black bold stars mark the simulation results; the brown dotted lines and the
green dotted lines mark the upper and lower bounds by GuBPI (we denote by
−0.1 the infinite bounds).

normal distribution in this example is quite small, i.e., 0.1, and our approach
constructs over-approximation constraints while GuPBI uses recursion unrolling
to search for the feasible space exhaustively), but our lower bounds are greater
than GuBPI’s, and our NPD bounds are tighter in the following.11 For all 6
variants of “Pd” where the deviation of the normal distrbution is enlarged, our
NPD bounds are tighter than GuBPI’s, in particular, our upper bounds are
much lower than GuBPI’s. For the four “PdBeta” examples, we also found that
GuBPI produced zero-valued unnormalized lower bounds, thus its results w.r.t.
NPD are trivial, i.e., [0,∞]. However, we can still produce non-trivial results and
our runtime is at least 2 times faster than GuBPI.

6.3 Path Probability Estimation. We consider five recursive examples in [3],
which were also cited from the PSI repository [17]. Since all five examples are
non-paramteric and with unbounded numbers of loop iterations, PSI cannot
handle them correctly as mentioned in [3]. We estimated the path probability
of certain events, i.e., queries over program variables, and report the results in
Table 3. For the first three examples, we obtained tighter lower bounds than
GuBPI and same upper bounds, while our runtime is at least 2 times faster than
GuBPI. Moreover, we found a potential error of GuBPI. That is, the fourth
example “cav-ex-5" in Table 3 is an AST program with no scores, which means
its normalizing constant should be exactly one. However, the upper bound of
the normailising constant obtained by GuBPI is smaller than 1 (i.e., 0.6981). A
stochastic simulation using 106 samples yielded the results that fall within our
bounds but violate those computed by GuBPI. Thus, GuBPI possibly omitted
11 When the value of start approaches 3, our NPD bounds is close to zero, but the

upper bounds may be lower than zero, which is caused by numerical issues of semi-
definite programming. The problem of numerical issues is orthogonal to our work
and remains to be addressed in both academic and industrial fields.



18 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong
Table 2. Comparison with GuBPI

Benchmark Our Tool GuBPI
Parameters Solver Time (s) # Time (s) #

Pd d = 10, pos, dis ∈ [0, 5] SDP 3176.685 • 5266.063 •
PdLD d = 6, pos, dis ∈ [0, 5] LP 41.99 • 648.151 •

PdBeta(v1) d = 6, pos, dis ∈ [0, 5] LP 99.86 • 645.055 ◦
PdBeta(v2) d = 6, pos, dis ∈ [0, 5] LP 228.43 • 653.237 ◦
PdBeta(v3) d = 6, pos, dis ∈ [0, 5] LP 101.36 • 657.645 ◦
PdBeta(v4) d = 6, pos, dis ∈ [0, 5] LP 208.86 • 686.207 ◦
PdMB(v5) d = 6, pos, dis ∈ [0, 5] LP 88.41 • 391.772 •
Para-recur d = 8, p ∈ [0, 1] LP 36.61 • 253.728 •

* ◦ marks the trivial bound [0,∞], while • marks the non-trivial ones.

some valid program runs of this example and produces wrong results. All our
results match the simulation results (106 samples per case).

Table 3. Results for Path Probability Estimation

Benchmark Query Our Tool GuBPI SimulParameters Time (s) Bounds Time (s) Bounds

cav-ex-7 Q1 6, [0, 30], [0, 4] 15.062 [0.9698, 1.0000] 38.834 [0.7381, 1.0000] 0.9938
Q2 6, [0, 40], [0, 4] 16.321 [0.9985, 1.0000] 37.651 [0.7381, 1.0000] 0.9993

AddUni(L) Q1 6, [0, 10], [0, 1] 8.85 [0.9940, 1.0000] 21.064 [0.9375, 1.0000] 0.9991
Q2 6, [0, 15], [0, 1] 8.80 [0.9995, 1.0000] 14.941 [0.9375, 1.0000] 0.9999

RdBox Q1 4, [−0.8, 0.8], [0, 10] 25.87 [0.9801, 1.0000] 173.535 [0.9462, 1.0000] 0.9999

cav-ex-5 * Q1 6, [20,∞], [0, 10] 33.17 [0.8123, 0.9707] 229.623 [0.5768, 0.6374] 0.9098
Q2 6, [20,∞], [0, 20] 54.373 [0.8970, 1.0000] 224.504 [0.5768, 0.6375] 0.9645

GWalk ** Q1 8, [1,∞], [0, 0.1] 7.255 [0.0023, 0.0023] 33.246 [0.0023, 0.0024] 0.0023
Q2 8, [1,∞], [0, 0.2] 8.197 [0.0025, 0.0025] 31.728 [0.0025, 0.0025] 0.0025

* GuBPI’s result contradicts ours, and we found GuBPI produces wrong results for this example.
** As we care about path probabilities, we compared bounds of unnormalized distributions for this

example (the NPD can be derived in the same manner above).

7 Related Works

Below we compare our results with the most related work in the literature.
Static analysis in Bayesian probabilistic programming. There are a lot of works on
NPD inference for probabilistic programs, such as (λ)PSI [17,18], AQUA [23],
Hakaru [32] and SPPL [40]. However, these methods are restricted to specific
kinds of programs, e.g., programs with closed-form solutions to NPD or without
continuous distributions, and none of them can handle probabilistic programs
with unbounded while-loops/recursion. As far as we know, the most revelant
work on static analysis of posterior distribution over unbounded loops/recursion
is the approach [3] that infers the bounds for posterior distributions by recursion
unrolling and bounding the non-termination case via the widening operator of
abstract interpretation. By unrolling recursion to arbitrary depth, this approach
can achieve high precision on the derive bounds. However, a major drawback
of this approach is that the recursion unrolling may cause path explosion. Our
approach circumvents the path explosion problem by constraint solving. Another



7. RELATED WORKS 19

major drawback is that this approach cannot handle score-recursive programs
as simply applying the approach to score-recursive programs leads to the trivial
bound [0,∞], and we address this issue by a novel OST variant.
MCMC and variational inference. As mentioned previously, statistical ap-
proaches such as MCMC [38,16] and variational inference [5] cannot provide
formal guarantee on the bounds for posterior distributions in a finite time limit.
In contrast, our approach has formal guarantee on the derived bounds.
Static analysis of probabilistic programs. In recent years, there have been an
abundance of works on static analysis of probabilistic programs. Most of them
address fundamental aspects such as termination [8,11,15], sensitivity [2,50], ex-
pectation [33,51], tail bounds [26,47,49], assertion probability [42,48], etc. Com-
pared with these results, we have:

– Our work focuses on normalized posterior distribution in Bayesian proba-
bilistic programming, and hence is an orthogonal objective.

– Our algorithm follows the previous works on the synthesis of polynomial
templates [8,51,12,9], but we have a truncation operation to increase the
accuracy which to our best knowledge is novel.

– Our approach extends the classical OST as the previous works [51,47] do,
but we consider a multiplicative variant, while the work [51] considers only
an additive variant, and the work [47] considers a general extension through
the uniform integrability condition and an implementation via polynomial
functions, but does not have a detailed treatment for a multiplicative variant.



20 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

References

1. ApS, M.: The MOSEK optimization toolbox for MATLAB manual. Version 10.0.
(2022), http://docs.mosek.com/10.0/toolbox/index.html

2. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.: Proving expected sensi-
tivity of probabilistic programs. Proc. ACM Program. Lang. 2(POPL), 57:1–57:29
(2018). https://doi.org/10.1145/3158145

3. Beutner, R., Ong, C.L., Zaiser, F.: Guaranteed bounds for posterior inference in
universal probabilistic programming. In: Jhala, R., Dillig, I. (eds.) PLDI ’22: 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 13 - 17, 2022. pp. 536–551. ACM
(2022). https://doi.org/10.1145/3519939.3523721

4. Bingham, E., Chen, J.P., Jankowiak, M., Obermeyer, F., Pradhan, N., Karaletsos,
T., Singh, R., Szerlip, P.A., Horsfall, P., Goodman, N.D.: Pyro: Deep universal
probabilistic programming. J. Mach. Learn. Res. 20, 28:1–28:6 (2019), http://
jmlr.org/papers/v20/18-403.html

5. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: A review for
statisticians. Journal of the American statistical Association 112(518), 859–877
(2017)

6. Borgström, J., Lago, U.D., Gordon, A.D., Szymczak, M.: A lambda-calculus foun-
dation for universal probabilistic programming. In: Garrigue, J., Keller, G., Sumii,
E. (eds.) Proceedings of the 21st ACM SIGPLAN International Conference on
Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. pp.
33–46. ACM (2016). https://doi.org/10.1145/2951913.2951942

7. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: CAV 2013. pp. 511–526 (2013)

8. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with mar-
tingales. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 8044, pp. 511–526. Springer
(2013). https://doi.org/10.1007/978-3-642-39799-8_34

9. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic
programs through positivstellensatz’s. In: CAV 2016. pp. 3–22 (2016)

10. Chatterjee, K., Fu, H., Goharshady, A.K., Goharshady, E.K.: Polynomial invariant
generation for non-deterministic recursive programs. In: Donaldson, A.F., Torlak,
E. (eds.) Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020. pp. 672–687. ACM (2020). https://doi.org/10.1145/3385412.
3385969

11. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis
of qualitative and quantitative termination problems for affine probabilistic pro-
grams. In: Bodík, R., Majumdar, R. (eds.) Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016. pp. 327–342. ACM (2016).
https://doi.org/10.1145/2837614.2837639

12. Chatterjee, K., Fu, H., Novotný, P., Hasheminezhad, R.: Algorithmic analysis of
qualitative and quantitative termination problems for affine probabilistic programs.
ACM Trans. Program. Lang. Syst. 40(2), 7:1–7:45 (2018). https://doi.org/10.
1145/3174800

13. Chatterjee, K., Novotný, P., Žikelić, Ð.: Stochastic invariants for probabilistic ter-
mination. In: POPL 2017. pp. 145–160 (2017)

http://docs.mosek.com/10.0/toolbox/index.html
https://doi.org/10.1145/3158145
https://doi.org/10.1145/3158145
https://doi.org/10.1145/3519939.3523721
https://doi.org/10.1145/3519939.3523721
http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1145/2951913.2951942
https://doi.org/10.1007/978-3-642-39799-8\_34
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/3385412.3385969
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/2837614.2837639
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3174800
https://doi.org/10.1145/3174800


7. RELATED WORKS 21

14. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using
non-linear constraint solving. In: Jr., W.A.H., Somenzi, F. (eds.) Computer Aided
Verification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-
12, 2003, Proceedings. Lecture Notes in Computer Science, vol. 2725, pp. 420–432.
Springer (2003). https://doi.org/10.1007/978-3-540-45069-6_39

15. Fu, H., Chatterjee, K.: Termination of nondeterministic probabilistic programs. In:
Enea, C., Piskac, R. (eds.) Verification, Model Checking, and Abstract Interpre-
tation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January
13-15, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11388, pp. 468–
490. Springer (2019). https://doi.org/10.1007/978-3-030-11245-5_22

16. Gamerman, D., Lopes, H.F.: Markov chain Monte Carlo: stochastic simulation for
Bayesian inference. CRC press (2006)

17. Gehr, T., Misailovic, S., Vechev, M.T.: PSI: exact symbolic inference for proba-
bilistic programs. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verifica-
tion - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part I. Lecture Notes in Computer Science, vol. 9779, pp. 62–83.
Springer (2016). https://doi.org/10.1007/978-3-319-41528-4_4

18. Gehr, T., Steffen, S., Vechev, M.T.: λpsi: exact inference for higher-order proba-
bilistic programs. In: Donaldson, A.F., Torlak, E. (eds.) Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020. pp. 883–897. ACM
(2020). https://doi.org/10.1145/3385412.3386006

19. Goodman, N.D., Mansinghka, V.K., Roy, D.M., Bonawitz, K.A., Tenenbaum, J.B.:
Church: a language for generative models. In: McAllester, D.A., Myllymäki, P.
(eds.) UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial
Intelligence, Helsinki, Finland, July 9-12, 2008. pp. 220–229. AUAI Press (2008)

20. Goodman, N.D., Stuhlmüller, A.: The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org (2014)

21. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering Proceedings, pp. 167–181 (2014)

22. Handelman, D.: Representing polynomials by positive linear functions on compact
convex polyhedra. Pacific Journal of Mathematics 132(1), 35–62 (1988)

23. Huang, Z., Dutta, S., Misailovic, S.: AQUA: automated quantized inference for
probabilistic programs. In: Hou, Z., Ganesh, V. (eds.) Automated Technology
for Verification and Analysis - 19th International Symposium, ATVA 2021, Gold
Coast, QLD, Australia, October 18-22, 2021, Proceedings. Lecture Notes in Com-
puter Science, vol. 12971, pp. 229–246. Springer (2021). https://doi.org/10.
1007/978-3-030-88885-5_16

24. Jeffreys, H.: "weierstrass’s theorem on approximation by polynomials" and "ex-
tension of weierstrass’s approximation theory". Methods of Mathematical Physics
pp. 446–448 (1988)

25. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

26. Kura, S., Urabe, N., Hasuo, I.: Tail probabilities for randomized program runtimes
via martingales for higher moments. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 135–153. Springer
(2019)

27. Lee, W., Yu, H., Rival, X., Yang, H.: Towards verified stochastic variational infer-
ence for probabilistic programs. Proc. ACM Program. Lang. 4(POPL), 16:1–16:33
(2020). https://doi.org/10.1145/3371084

28. Mak, C., Ong, C.L., Paquet, H., Wagner, D.: Densities of almost surely terminating
probabilistic programs are differentiable almost everywhere. In: Yoshida, N. (ed.)

https://doi.org/10.1007/978-3-540-45069-6\_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-030-11245-5\_22
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1007/978-3-319-41528-4\_4
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/3385412.3386006
https://doi.org/10.1145/3385412.3386006
http://dippl.org
https://doi.org/10.1007/978-3-030-88885-5\_16
https://doi.org/10.1007/978-3-030-88885-5_16
https://doi.org/10.1007/978-3-030-88885-5\_16
https://doi.org/10.1007/978-3-030-88885-5_16
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3371084
https://doi.org/10.1145/3371084


22 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

Programming Languages and Systems - 30th European Symposium on Program-
ming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12648, pp.
432–461. Springer (2021). https://doi.org/10.1007/978-3-030-72019-3_16

29. McIver, A., Morgan, C.: Developing and reasoning about probabilistic programs
in pGCL. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.) Refinement Tech-
niques in Software Engineering, First Pernambuco Summer School on Software
Engineering, PSSE 2004, Recife, Brazil, November 23-December 5, 2004, Revised
Lectures. Lecture Notes in Computer Science, vol. 3167, pp. 123–155. Springer
(2004). https://doi.org/10.1007/11889229_4

30. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005). https://doi.org/10.
1007/b138392

31. van de Meent, J., Paige, B., Yang, H., Wood, F.: An introduction to probabilistic
programming. CoRR abs/1809.10756 (2018)

32. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic
inference by program transformation in hakaru (system description). In: Kise-
lyov, O., King, A. (eds.) Functional and Logic Programming - 13th Interna-
tional Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings.
Lecture Notes in Computer Science, vol. 9613, pp. 62–79. Springer (2016). https:
//doi.org/10.1007/978-3-319-29604-3_5

33. Ngo, V.C., Carbonneaux, Q., Hoffmann, J.: Bounded expectations: resource analy-
sis for probabilistic programs. In: Foster, J.S., Grossman, D. (eds.) Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 496–512.
ACM (2018). https://doi.org/10.1145/3192366.3192394

34. Pollard, D.: A user’s guide to measure theoretic probability. No. 8, Cambridge
University Press (2002)

35. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univer-
sity Mathematics Journal 42(3), 969–984 (1993), http://www.jstor.org/stable/
24897130

36. Rankin, R.: Real and complex analysis. by w. rudin. pp. 412. 84s. 1966.(mcgraw-
hill, new york.). The Mathematical Gazette 52(382), 412–412 (1968)

37. Ronquist, F., Kudlicka, J., Senderov, V., Borgström, J., Lartillot, N., Lundén, D.,
Murray, L., Schön, T.B., Broman, D.: Universal probabilistic programming offers a
powerful approach to statistical phylogenetics. Communications biology 4(1), 1–10
(2021)

38. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo method, vol. 10.
John Wiley & Sons (2016)

39. Rudin, W., et al.: Principles of mathematical analysis, vol. 3. McGraw-hill New
York (1976)

40. Saad, F.A., Rinard, M.C., Mansinghka, V.K.: SPPL: probabilistic programming
with fast exact symbolic inference. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Language Design
and Implementation, Virtual Event, Canada, June 20-25, 2021. pp. 804–819. ACM
(2021). https://doi.org/10.1145/3453483.3454078

41. Sangiorgi, D.: Introduction to bisimulation and coinduction. Cambridge University
Press (2011)

42. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilistic
programs: inferring whole program properties from finitely many paths. In: Boehm,
H., Flanagan, C. (eds.) ACM SIGPLAN Conference on Programming Language

https://doi.org/10.1007/978-3-030-72019-3\_16
https://doi.org/10.1007/978-3-030-72019-3_16
https://doi.org/10.1007/11889229\_4
https://doi.org/10.1007/11889229_4
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-319-29604-3\_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3\_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1145/3192366.3192394
https://doi.org/10.1145/3192366.3192394
http://www.jstor.org/stable/24897130
http://www.jstor.org/stable/24897130
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1145/3453483.3454078


7. RELATED WORKS 23

Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013. pp.
447–458. ACM (2013). https://doi.org/10.1145/2491956.2462179

43. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations
analysis. In: Giacobazzi, R. (ed.) Static Analysis, 11th International Symposium,
SAS 2004, Verona, Italy, August 26-28, 2004, Proceedings. Lecture Notes in Com-
puter Science, vol. 3148, pp. 53–68. Springer (2004). https://doi.org/10.1007/
978-3-540-27864-1_7

44. Staton, S., Yang, H., Wood, F.D., Heunen, C., Kammar, O.: Semantics for prob-
abilistic programming: higher-order functions, continuous distributions, and soft
constraints. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16,
New York, NY, USA, July 5-8, 2016. pp. 525–534. ACM (2016). https://doi.
org/10.1145/2933575.2935313

45. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific jour-
nal of Mathematics 5(2), 285–309 (1955)

46. Tolpin, D., van de Meent, J., Wood, F.D.: Probabilistic programming in anglican.
In: Bifet, A., May, M., Zadrozny, B., Gavaldà, R., Pedreschi, D., Bonchi, F., Car-
doso, J.S., Spiliopoulou, M. (eds.) Machine Learning and Knowledge Discovery in
Databases - European Conference, ECML PKDD 2015, Porto, Portugal, September
7-11, 2015, Proceedings, Part III. Lecture Notes in Computer Science, vol. 9286,
pp. 308–311. Springer (2015). https://doi.org/10.1007/978-3-319-23461-8_36

47. Wang, D., Hoffmann, J., Reps, T.W.: Central moment analysis for cost accumula-
tors in probabilistic programs. In: Freund, S.N., Yahav, E. (eds.) PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021. pp. 559–573. ACM
(2021). https://doi.org/10.1145/3453483.3454062

48. Wang, J., Sun, Y., Fu, H., Chatterjee, K., Goharshady, A.K.: Quantitative anal-
ysis of assertion violations in probabilistic programs. In: Freund, S.N., Yahav, E.
(eds.) PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021.
pp. 1171–1186. ACM (2021). https://doi.org/10.1145/3453483.3454102

49. Wang, P.: Tail-bound cost analysis over nondeterministic probabilistic programs.
Journal of Shanghai Jiaotong University (Science) pp. 1–11 (2022)

50. Wang, P., Fu, H., Chatterjee, K., Deng, Y., Xu, M.: Proving expected sensitivity
of probabilistic programs with randomized variable-dependent termination time.
Proc. ACM Program. Lang. 4(POPL), 25:1–25:30 (2020). https://doi.org/10.
1145/3371093

51. Wang, P., Fu, H., Goharshady, A.K., Chatterjee, K., Qin, X., Shi, W.: Cost anal-
ysis of nondeterministic probabilistic programs. In: Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation. p.
204–220. PLDI 2019, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3314221.3314581

52. Williams, D.: Probability with martingales. Cambridge university press (1991)

https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1007/978-3-540-27864-1\_7
https://doi.org/10.1007/978-3-540-27864-1_7
https://doi.org/10.1007/978-3-540-27864-1\_7
https://doi.org/10.1007/978-3-540-27864-1_7
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1007/978-3-319-23461-8\_36
https://doi.org/10.1007/978-3-319-23461-8_36
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3453483.3454062
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3453483.3454102
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3371093
https://doi.org/10.1145/3314221.3314581
https://doi.org/10.1145/3314221.3314581


24 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

A Supplementary Material for Section 2

A.1 Basics of Probability Theory

A measurable space is a pair (U,ΣU ), where U is a nonempty set and ΣU is a σ-
algebra on U , i.e., a family of subsets of U such that ΣU ⊆ P(U) contains ∅ and is
closed under complementation and countable union. Elements of ΣU are called
measurable sets. A function f from a measurable space (U1, ΣU1) to another
measurable space (U2, ΣU2) is measurable if f−1(A) ∈ ΣU1 for all A ∈ ΣU2 .

A measure µ on a measurable space (U,ΣU ) is a mapping from ΣU to [0,∞]
such that (i) µ(∅) = 0 and (ii) µ is countably additive: for every pairwise-disjoint
set sequence {An}n∈N in ΣU , it holds that µ(

⋃
n∈N An) =

∑
n∈N µ(An). We call

the triple (U,ΣU , µ) a measure space. If µ(U) = 1, we call µ a probability measure,
and (U,ΣU , µ) a probability space. The Lebesgue measure λ is the unique measure
on (R, ΣR) satisfying λ([a, b)) = b−a for all valid intervals [a, b) in ΣR. For each
n ∈ N, we have a measurable space (Rn, ΣRn) and a unique product measure λn

on Rn satisfying λn(
∏n

i=1 Ai) =
∏n

i=1 λ(Ai) for all Ai ∈ ΣR.
The Lebesgue integral operator

∫
is a partial operator that maps a mea-

sure µ on (U,ΣU ) and a real-valued function f on the same space (U,ΣU ) to
a real number or infinity, which is denoted by

∫
fdµ or

∫
f(x)µ(dx). The de-

tailed definition of Lebesgue integral is somewhat technical, see [36,39] for more
details. Given a measurable set A ∈ ΣU , the integral of f over A is defined by∫
A
f(x)µ(dx) :=

∫
f(x) · [x ∈ A]µ(dx) where [−] is the Iverson bracket such that

[ϕ] = 1 if ϕ is true, and 0 otherwise. If µ is a probability measure, then we call
the integral as the expectation of f , denoted by Ex∼µ;A [f ], or E[f ] when the
scope is clear from the context.

For a measure v on (U,ΣU ), a measurable function f : U → R≥0 is the density
of v with respect to µ if v(A) =

∫
f(x) · [x ∈ A]µ(dx) for all measurable A ∈ ΣU ,

and µ is called the reference measure (most often µ is the Lebesgue measure).
Common families of probability distributions on the reals, e.g., uniform, normal
distributions, are measures on (R, ΣR). Most often these are defined in terms
of probability density functions with respect to the Lebesgue measure. That is,
for each µD there is a measurable function pdfD : R → R≥0 that determines it:
µD(A) :=

∫
A

pdfD(dλ). As we will see, density functions such as pdfD play an
important role in Bayesian inference.

Given a probability space (Ω,F ,P), a random variable is an F-measurable
function X : Ω → R ∪ {+∞,−∞}. The expectation of a random variable X,
denoted by E(X), is the Lebesgue integral of X w.r.t. P, i.e.,

∫
X dP. A filtration

of (Ω,F ,P) is an infinite sequence {Fn}∞n=0 such that for every n ≥ 0, the triple
(Ω,Fn,P) is a probability space and Fn ⊆ Fn+1 ⊆ F . A stopping time w.r.t.
{Fn}∞n=0 is a random variable T : Ω → N ∪ {0,∞} such that for every n ≥ 0,
the event {T ≤ n} is in Fn.

A discrete-time stochastic process is a sequence Γ = {Xn}∞n=0 of random
variables in (Ω,F ,P). The process Γ is adapted to a filtration {Fn}∞n=0, if for
all n ≥ 0, Xn is a random variable in (Ω,Fn,P). A discrete-time stochas-
tic process Γ = {Xn}∞n=0 adapted to a filtration {Fn}∞n=0 is a martingale
(resp. supermartingale, submartingale) if for all n ≥ 0, E(|Xn|) < ∞ and it
holds almost surely (i.e., with probability 1) that E[Xn+1 | Fn] = Xn (resp.



A. SUPPLEMENTARY MATERIAL FOR SECTION 2 25

E[Xn+1 | Fn] ≤ Xn, E[Xn+1 | Fn] ≥ Xn). See [52] for details. Applying mar-
tingales to qualitative and quantitative analysis of probabilistic programs is a
well-studied technique [7,9,13].

A.2 Details for WPTS Semantics

We denote by Λ the set of all states, by ∆ the set of all weighted states, and
by Σ∆ the product σ-algebra (on ∆) among the discrete σ-algebra (L, 2L) for
locations, the σ-algebra ΣR|Vp| for program valuations, and the σ-algebra ΣR
for the multiplicative likelihood weight. We define Σn

∆ (for n ≥ 1) as the set
{A1 × · · · × An | ∀1 ≤ i ≤ n.(Ai ∈ Σ∆)}, and ∆∞ as the set of all infinite
sequences of weighted states.

The probability space for the WPTS Π is defined such that its sample space
is the set of all program runs, its σ-algebra is generated by the countable union⋃

n≥1{B × ∆∞ | B ∈ Σn
∆}), and its probability measure P is the unique one

such that (i) P(A × Λ∞) = µinit({v | (ℓinit,v, 1) ∈ A}) for all A ∈ Σ∆, and (ii)
P(A×B×∆∞) (for every A ∈ Σ∆, B ∈ Σn

∆ (n ≥ 1)) equals the probability w.r.t
the sampling of µinit (for the initial program valuation) and D (for a sampling
valuation in each step until the (n + 1)-th step) that a program run {Θn}n≥0

is subject to Θ0 ∈ A and (Θ1, . . . , Θn+1) ∈ B. For each program valuation v,
we denote by Pv the probability measure of Π when the initial distribution is
changed to the Dirac distribution at v.

A.3 Sampling-based Semantics

We recall one prominent semantics in the literature, i.e., the sampling-based
semantics [6,44]. We show that the transition-based semantics in our work is
equivalent to the widely-used sampling-based semantics in Bayesian statistical
probabilistic programming.

The sampling-based semantics by Borgström et al. [6] interprets a probabilis-
tic program as a deterministic program parameterized by a sequence of random
draws sampled during the execution of the program.

A sampling trace is a finite sequence t = ⟨r1, . . . , rn⟩ of real numbers, and
we define T :=

⋃
n∈N Rn as the set of all sampling traces. Given a probabilistic

program P , a configuration σ under the semantics is a tuple ⟨v, S, w, t⟩ where
v ∈ ValVp

, S is the statement to be executed, w ∈ [0,∞) is the global weight
variable whose value expresses how well the current computation matches the
observations, and t is a sampling trace. We denote by Σ the set of all configu-
rations.

The semantics operates on the configurations, where an execution of the
program is initialized with σ0 = ⟨v0, P, 1, t⟩, and the termination configurations
have the form of ⟨_, skip,_, []⟩, for which _ is a “wildcard” character that
matches everything. Fig. 6 shows the corresponding one-step reduction relation
→ (note that ⇓ is the usual big-step semantics for deterministic Boolean and
arithmetic expressions, so we omit it here).

Let →∗ be the reflexive transitive closure of the one-step reduction → in
Fig. 6. Given a probabilistic program P , we call a sampling trace t terminating



26 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

if ⟨v, P, 1, t⟩ →∗ ⟨v′, skip, w, []⟩ for some valuations v,v′ ∈ ValVp
and weight

w ∈ R≥0, i.e., the program P terminates under the samples drawn as in t.

⟨v, skip, w, t⟩ → ⟨v, skip, w, t⟩
v ⊢ E ⇓ r

⟨v, x := E,w, t⟩ → ⟨v[x 7→ r], skip, w, t⟩
v ⊢ B ⇓ b, b = true

⟨v, ifB thenS1 else S2 fi, w, t⟩ → ⟨v, S1, w, t⟩
v ⊢ B ⇓ b, b = false

⟨v, ifB thenS1 else S2 fi, w, t⟩ → ⟨v, S2, w, t⟩

w′ = pdfD(r) ≥ 0

⟨v, x := sample D,w, r :: t⟩ → ⟨v[x 7→ r], skip, w · w′, t⟩

v ⊢ B ⇓ b, b = true
⟨v,while B do S od, w, t⟩ → ⟨v, S;while B do S od, w, t⟩

v ⊢ B ⇓ b, b = false
⟨v,while B do S od, w, t⟩ → ⟨v, skip, w, t⟩

w′ = pdfD(x) ≥ 0

⟨v,observe(x,D), w, t⟩ → ⟨v, skip, w · w′, t⟩
⟨v, S1, w, t⟩ → ⟨v′, S′

1, w
′, t′⟩, S′

1 ̸= skip
⟨v, S1;S2, w, t⟩ → ⟨v′, S′

1;S2, w
′, t′⟩

⟨v, S1, w, t⟩ → ⟨v′, S′
1, w

′, t′⟩, S′
1 = skip

⟨v, S1;S2, w, t⟩ → ⟨v′, S2, w
′, t′⟩

⟨v, return x,w, t⟩ → ⟨v, skip, w, t⟩

Fig. 6. One-step reduction for probabilistic programs.

Below we define the notion of posterior distributions by the sampling-based
semantics. From the one-step reduction rules (in Fig. 6), we can reason about
the global behavior of probabilistic programs in terms of the sampling traces
they produce. That is, given a probabilistic program P , and a terminating trace
t such that ⟨v, P, 1, t⟩ →∗ ⟨v′, skip, w, []⟩ for valuations v,v′ ∈ ValVp and weight
w ∈ R≥0, we define the value function valP and the weight function wtP as
follows:

valP (v, t) =

{
v′ if ⟨v, P, 1, t⟩ →∗ ⟨v′, skip, w, []⟩
unspecified otherwise,

(2)

wtP (v, t) =

{
w if ⟨v, P, 1, t⟩ →∗ ⟨v′, skip, w, []⟩
0 otherwise.

(3)



A. SUPPLEMENTARY MATERIAL FOR SECTION 2 27

Moreover, we denote the return variable by valP,ret(v, t), i.e., valP,ret(v, t) :=
v′[ret ]. We also consider the measure space (T , ΣT , µT ) where T =

⋃
n∈N Rn

(as mentioned previously), ΣT := {
⋃

n∈N Un | Un ∈ ΣRn} and µT (U) :=∑
n∈N λn(U ∩ Rn). By definition, the measure space (T , ΣT , µT ) specifies the

probability values for sets of sampling traces.

Posterior Distributions. Given a probabilistic program P , an initial program val-
uation v ∈ ValVp and a measurable set U ∈ ΣR, we define the set of terminating
traces where the value of the return variable falls into U as

TP,v,U := {t ∈ T | ⟨v, P, 1, t⟩ →∗ ⟨v′, skip, w, []⟩,v′[ret ] ∈ U}

and the set of all terminating traces as

TP,v := {t ∈ T | ⟨v, P, 1, t⟩ →∗ ⟨v′, skip, w, []⟩}.

Note that TP,v = TP,v,R. Therefore, we can define the unnormalised density w.r.t
P,v, U as

JP Kv(U) :=

∫
TP,v,U

wtP (v, t)µT (dt). (4)

That is, the integral takes all traces t on which P starts from v and evaluates
to a value in U , weighting each t with the weight wtP (v, t) of the corresponding
execution. The normalising constant is thus defined by

ZP,v :=

∫
TP,v

wtP (v, t)µT (dt). (5)

Therefore, the normalised posterior distribution is defined as posteriorP (v, U) :=
JP Kv(U)
ZP,v

.
We call a program P integrable if its normalised constant is finite, i.e, 0 <

ZP,v < ∞ for any v ∈ ValVp
. Given an integrable program, we are interested in

deriving lower and upper bounds on the posterior distribution.

Definition 6 (Interval Bounds). Given an integrable probabilistic program
P , a program valuation v ∈ ValVp

, and a measurable set U ∈ ΣR, we call [l, u]
an interval bound of posteriorP (v, U) if l ≤ posteriorP (v, U) ≤ u for two reals
0 ≤ l ≤ u ≤ 1.

Equivalence between Posterior Distributions and Expected Weights. [Please sum-
marize the main results of the next subsection here, and put the next subsection
into the appendix.]

Below we will introduce the equivalence between posterior distributions and
expected weights.



28 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

Lemma 1. For all non-negative bounded measurable function g : R|Vp| → R,
and a program state Ξ = (ℓ,v), and a statement P := S1;S2, we have that

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

=

∫
TS1,v

wtS1
(v, t)µT (dt)

(
[valS1

(v, t) = v′]

·
∫
TS2,v′

wtS2
(v′, t′) · g(valS2

(v′, t′))µT (dt
′)
)

Proposition 1. For all non-negative bounded measurable function g : R|Vp| →
R, a probabilistic program P and an initial program state Ξ = (ℓ,v) ∈ Λ, we
have that

EΞ [W∞ · g(O∞)] =

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt).

See the proof in Appendix A.

Theorem 6. Given a probabilistic program P , an initial program state Ξ ∈ Λ
and a measurable set U ∈ ΣR, it holds that EΞ [W∞ · [O∞ ∈ U ]] = JP Kv(U).
Moreover, the expected weight EΞ [W∞] is equivalent to the normalising constant
ZP .

Proof. We instantiate Proposition 1 with g(x) = [x ∈ U ]. For any initial program
state Ξ = (ℓ,v), we have that

EΞ [W∞ · [O∞ ∈ U ]] =

∫
TP,v

wtP (v, t) · [valP (v, t) ∈ U ]µT (dt)

=

∫
TP,v,U

wtP (v, t)µT (dt)

= JP Kv(U)

We prove EΞ [W∞] = ZP by setting U = R.

By Theorem 6, we show the equivalence between posterior distributions under
sampling-based semanctis and expected weights under transition-based semanc-
tis. In the following, we will focus on developing approahces to infer interval
bounds on expected weights.



A. SUPPLEMENTARY MATERIAL FOR SECTION 2 29

A.4 Connections between Two Semantics

Lemma 1 For all non-negative bounded measurable function g : R|Vp| → R, and
a program state Ξ = (ℓ,v), and a statement P := S1;S2, we have that∫

TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

=

∫
TS1,v

wtS1
(v, t)µT (dt)

(
[valS1

(v, t) = v′]

·
∫
TS2,v′

wtS2(v
′, t′) · g(valS2(v

′, t′))µT (dt
′)
)

Proof.

Proposition 1 For all non-negative bounded measurable function g : R|Vp| →
R, a probabilistic program P and an initial program state Ξ = (ℓ,v) ∈ Λ, we
have that

EΞ [W∞ · g(O∞)] =

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt).

the order in appendix A need to be readjusted and the opinion is mentioned
here: µT (dt) → dµT (t), PΞ(dω) → dPΞ .

Proof. We prove by induction on the structure of statements.

– Case P ≡ “skip”.

EΞ [W∞ · g(O∞)] =

∫
W∞(ω) · g(O∞(ω))PΞ(dω)

= g(v)

=

∫
TP,v

[t = []] · g(v)µT (dt)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

– Case P ≡ “x := E”.

EΞ [W∞ · g(O∞)] =

∫
W∞(ω) · g(O∞(ω))PΞ(dω)

= g(v[x 7→ JEK(v)])

=

∫
TP,v

[t = []] · g(v[x 7→ JEK(v)])µT (dt)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)



30 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

– Case P ≡ “x := sample D”.

EΞ [W∞ · g(O∞)] =

∫
W∞(ω) · g(O∞(ω))PΞ(dω)

=

∫
g(v[x 7→ r])µD(dr)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

– Case P ≡ “observe(x,D)”.

EΞ [W∞ · g(O∞)] =

∫
W∞(ω) · g(O∞(ω))PΞ(dω)

= Wℓ(v) · g(v)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

– Case P ≡ “return x”.

EΞ [W∞ · g(O∞)] =

∫
W∞(ω) · g(O∞(ω))PΞ(dω)

= g(v)

=

∫
TP,v

[t = []] · g(v)µT (dt)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

– Case P ≡ “if B then S1 else S2 fi”. Assume the next state corresponding
to the then-branch (resp. else-branch) is Ξ1 = (ℓ1,v) (resp. Ξ2 = (ℓ2,v)).
Then we obtain that

EΞ [W∞ · g(O∞)] = [JBK(v) = true] · EΞ1 [W∞ · g(O∞)] + [JBK(v) = false] · EΞ2 [W∞ · g(O∞)]

= [JBK(v) = true] ·
∫
TS1,v

wtS1(v, t) · g(valS1(v, t))µT (dt)

+[JBK(v) = false] ·
∫
TS2,v

wtS2(v, t) · g(valS2(v, t))µT (dt)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)



B. SUPPLEMENTARY MATERIAL FOR SECTION 4 31

– Case P ≡ “S1;S2”.

EΞ [W∞ · g(O∞)] =

∫
W∞(ω)PΞ(dω)

∫
[ωT = Ξ ′] ·W∞(ω′) · g(O∞(ω′))PΞ′(dω′)

=

∫
W∞(ω)PΞ(dω)

(
[ωT = Ξ ′] ·

∫
·W∞(ω′) · g(O∞(ω′))PΞ′(dω′)

)
=

∫
W∞(ω)PΞ(dω)

(
[ωT = Ξ ′] ·

∫
TS2,v′

wtS2(v
′, t′) · g(valS2(v

′, t′))µT (dt
′)

)

=

∫
TS1,v

wtS1(v, t)µT (dt)
(
[valS1(v, t) = v′]

·
∫
TS2,v′

wtS2(v
′, t′) · g(valS2(v

′, t′))µT (dt
′)
)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

Here ωi is the i-th element of the sequence ω = {Ξn}n∈N, i.e., ωi := Ξi. ωT

is the last element of ω, and Ξ ′ = (ℓ′,v′). The third and fourth equalities
follow from the induction hypothesis, and the last equality from Lemma 1.

– Case P ≡ “while B do S od”. Assume the next state corresponding to
the entry of the loop (resp. the exit of the loop) is Ξ1 = (ℓ1,v) (resp.
Ξ2 = (ℓ2,v)). Then we obtain that

EΞ [W∞ · g(O∞)] = [JBK(v) = true] · EΞ1
[W∞ · g(O∞)] + [JBK(v) = false] · EΞ2

[W∞ · g(O∞)]

= [JBK(v) = true] ·
∫

W∞(ω) · g(O∞)PΞ1
(dω) + [JBK(v) = false] · g(v)

= [JBK(v) = true] ·
∫
TS;P,v

wtS;P (v, t) · g(valS;P (v, t))µT (dt)

+[JBK(v) = false] ·
∫
Tskip,v

[t = []] · g(valskip(v, t))µT (dt)

=

∫
TP,v

wtP (v, t) · g(valP (v, t))µT (dt)

B Supplementary Material for Section 4

B.1 Basics of Fixed Point Theory

Given a partial order ⊑ on a set K and a subset K ′ ⊆ K, an upper bound of
K ′ is an element u ∈ K that is no smaller than every element of K ′, i.e., ∀k′ ∈
K ′. k′ ⊑ u. Similarly, a lower bound for K ′ is an element l that is no greater
than every element of K ′, i.e. ∀k′ ∈ K ′. l ⊑ k′. The supremum of K ′, denoted
by
⊔
K ′, is an element u∗ ∈ K such that u∗ is an upper-bound of K ′ and for

every upper bound u of K ′, we have u∗ ⊑ u. Similarly, the infimum
d

K ′ is a



32 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

lower bound l∗ of K ′ such that for every lower-bound l of K ′, we have l ⊑ l∗. We
define ⊥ :=

d
K and ⊤ :=

⊔
K. In general, suprema and infima may not exist.

A partial order (K,⊑) is called a complete lattice if every subset K ′ ⊆ K has
a supremum and an infimum. Given a partial order (K,⊑), a function f : K → K
is called monotone if for every k1 ⊑ k2 in K, we have f(k1) ⊑ f(k2).

Given a complete lattice (K,⊑), a function f : K → K is called continuous
if for every increasing chain k0 ⊑ k1 ⊑ . . . in K, we have f(

⊔
{kn}∞n=0) =⊔

{f(kn)}∞n=0, and cocontinuous if for every decreasing chain k0 ⊒ k1 ⊒ . . . of
elements of K, we have f(

d
{kn}∞n=0) =

d
{f(kn)}∞n=0.

Given a complete lattice (K,⊑) and a function f : K → K, an element k ∈ K
is called a fixed-point if f(k) = k. Moreover, k is a pre fixed-point if f(k) ⊑ k and
a post fixed-point if k ⊑ f(k). The least fixed-point of f , denoted by lfpf, is the
fixed-point that is no greater than every fixed-point under ⊑ . Analogously, the
greatest fixed-point of f , denoted by gfpf , is the fixed-point that is no smaller
than all fixed-points.

Theorem 7 (Kleene [41]). Let (K,⊑) be a complete lattice and f : K → K
be an continuous function. Then, we have

lfp f =
⊔

i≥0

{
f (i)(⊥)

}
.

Analogously, if f is cocontinuous, then we have

gfp f =
d

i≥0

{
f (i)(⊤)

}
.

B.2 Proofs for Our Fixed-Point Approach

Theorem 2. The expected-weight function ew is the least fixed point of the
expected-weight transformer ewt.

Proof. Define the step-bounded weight random variable Wn
(ℓ,v) starting from any

program state Ξ = (ℓ,v) for a step bound n ∈ N by

Wn
(ℓ,v)(ω) =

{
W(ℓ,v)(ω) if T (ω) ≤ n

0 otherwise
.

Since we always assume that the underlying WPTS is almost-surely terminat-
ing, it follows that the sequence of random variables {Wn}n∈N converges non-
decreasingly to W .

Given any program state Ξ = (ℓ,v) with a unique transition τ = ⟨ℓ, ϕτ , fτ ⟩
satisfying v |= ϕτ , define the step-bounded expected-weight function ewn by
ewn(ℓ,v) = E(ℓ,v) [W ]

n
(ℓ,v). Without loss of generality, we assume there is only

one fork fτ in this transition. Assume the next sampling valuation from Ξ is r0
and the next program state is Ξ ′ = (ℓ′,v′), i.e., v′ = fτ (v, r0). Following the
symbols in Section 5, we denote the probability space of the WPTS Π starting



B. SUPPLEMENTARY MATERIAL FOR SECTION 4 33

from (ℓ,v), i.e., the program runs starting from (ℓ,v) as (Ω,F ,P)Ξ . By Tonelli-
Fubini Theorem, we have that for all n ≥ 0,

ewn+1(ℓ,v) =

∫
Wn+1

(ℓ,v) dPΞ

=

∫
Wn+1

(ℓ,v) d(Dr0 × PΞ′)

=

∫
W (ℓ,v) ·Wn

(ℓ′,v′)(ω) d(Dr0 × PΞ′)

=

∫
r0

∫
ωΞ′

W (ℓ,v) ·Wn
(ℓ′,v′)(ω) dPΞ′ dDr0

=

∫
r0

W (ℓ,v) ·

(∫
ωΞ′

Wn
(ℓ′,v′)(ω) dPΞ′

)
dDr0

=

∫
r0

W (ℓ,v) · ewn(ℓ′,v′) dDr0

= Er0 [W (ℓ,v) · ewn(ℓ′,v′)]

= ewt(ewn)(ℓ,v)

By applying MCT to the both sides of the equality above, we have that

ew(ℓ,v) = ewt(ew)(ℓ,v).

This shows that ew is a fixed point of ewt. Furthermore, given any fixed point h of
ewt, since (i) ew0 ≤ h and (ii) ewn ≤ h implies ewn+1 = ewt(ewn) ≤ ewt(h) = h,
one can prove by a straightforward induction on n that ewn ≤ h for all n ≥ 0.
It follows from ew = lim

n→∞
ewn that ew is the least fixed point of ewt.

In order to show the uniqueness of the fixed point, we first prove that ewt is
both continuous and cocontinuous.

Proposition 2. If M ∈ [0,∞), then the expected-weight transformer ewt :
KM → KM is both continuous and cocontinous.

Proof. We first prove that ewt is well-defined. Given an arbitrary h ∈ KM , for
any Ξ = (ℓ,v) ∈ Λ,

– When ℓ = ℓout, ewt(h)(ℓ,v) = 1.
– When ℓ ̸= ℓout, for a unique transition τ = ⟨ℓ, ϕτ , fτ , ℓ

′⟩ such that v |= ϕτ ,

ewt(h)(ℓ,v) = Er [h(ℓ
′, fτ (v, r)) ·W (ℓ,v)]

≤ M ·maxscore

< ∞

where maxscore is the maximum of W given any state Ξ. As W is a nonnegative
function, we can prove that ewt(h)(ℓ,v) ≥ 0. Thus, ewt is well defined. Next,
we prove that ewt is monotone. Given any two functions h1, h2 ∈ KM such that
h1 ≤ h2, by case analysis on (ℓ,v),



34 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

– If ℓ = ℓout, ewt(h1)(ℓ,v) = 1 = ewt(h2)(ℓ,v).
– If ℓ ̸= ℓout, given a unique transition τ = ⟨ℓ, ϕτ , fτ , ℓ

′⟩ such that v |= ϕτ ,

ewt(h1)(ℓ,v) = Er [h1(ℓ
′, fτ (v, r)) ·W (ℓ,v)]

≤ Er [h2(ℓ
′, fτ (v, r)) ·W (ℓ,v)]

= ewt(h2)(ℓ,v)

Therefore, ewt(h1) ≤ ewt(h2), hence it is monotone. Then we prove upper con-
tinuity of ewt. Choose any increasing chain h0 ⊑ h1 ⊑ h2 ⊑ · · · and do another
case analysis on (ℓ,v):

– If ℓ = ℓout, then

ewt(
⊔
n≥0

{hn})(ℓ,v) = 1 =
⊔
n≥0

{ewt(hn)} (ℓ,v).

– Otherwise, for a unique transition τ = ⟨ℓ, ϕτ , fτ ⟩ such that v |= ϕτ (whether
to add the term wtj(v, r)):

ewt(
⊔
n≥0

{hn})(ℓ,v)

=Er

wtj(v, r) · (
⊔
n≥0

{hn})(ℓ′, fτ (v, r))


=Er

[
sup
n≥0

{hn(ℓ
′, fτ (v, r))}

]
=Er

[
lim

n→∞
{hn(ℓ

′, fτ (v, r))}
]

MCT
= lim

n→∞
Er [hn(ℓ

′, fτ (v, r))]

= lim
n→∞

ewt(hn)(ℓ,v)

= sup
n≥0

{ewt(hn)(ℓ,v)}

=
⊔
n≥0

{ewt(hn)} (ℓ,v)

The “MCT” above denotes the monotone convergence theorem. A similar argu-
ment establishes cocontinuity for integrable h0 and decreasing chains.

Then the uniqueness follows from Theorem 7.
Theorem 2. Let Π be a non-score-recursive WPTS whose weights are bounded
in [−M,M ] for a finite M ≥ 1. Then the expected-weight function ew is the
least fixed point of the expected-weight transformer ewt in the complete lattice
(KM ,≤). Furthermore, if the WPTS Π is AST, then the function ew is the
unique fixed point of the higher-order function ewt in (KM ,≤) when M ≥ 1.

Proof. The proof follows similar arguments in [48, Theorem 4.4]. By Proposi-
tion 2, we have that for every state Ξ = (ℓ,v),



B. SUPPLEMENTARY MATERIAL FOR SECTION 4 35

– lfp ewt(ℓ,v) = lim
n→∞

ewtn(⊥)(ℓ,v), and

– gfp ewt(ℓ,v) = lim
n→∞

ewtn(⊤)(ℓ,v).

By the definition of ewtnM and Proposition 2, we have that

– ewtn(⊥)(ℓ,v) = EΞ [W · [T ≤ n]]−M · P(T > n), and
– ewtn(⊤)(ℓ,v) = EΞ [W · [T ≤ n]] +M · P(T > n).

Recall that we assume the underlying PTS to be almost-surely terminat-
ing. Hence, lim

n→∞
P(T > n) = P(T = ∞) = 0. It follows that lfp ewt(ℓ,v) =

gfp ewt(ℓ,v), i.e., the fixed point is unique.

B.3 Proof for the OST Variant

Theorem 3 (The OST Variant) Let {Xn}∞n=0 be a martingale (resp. supermartin-
gale) adapted to a filtration {Fn}∞n=0, and T be a stopping time w.r.t. {Fn}∞n=0.
Then the following condition is sufficient to ensure that E (|XT |) < ∞ and
E (XT ) = E(X0) (resp. E (XT ) ≤ E(X0)):

– There exist real numbers λ, c1, c2, c3 > 0 and c3 < c2 such that (i) for
sufficiently large n ∈ N, it holds that P(T > n) ≤ c1 · e−c2·n; (ii) for all
n ∈ N, |Xn+1 −Xn| ≤ λ · nd · ec3·n almost surely.

Proof. We only prove the “≤” case, the “=” case is similar. For every n ∈ N0,

|XT∧n| =

∣∣∣∣∣X0 +

T∧n−1∑
k=0

(Xk+1 −Xk)

∣∣∣∣∣
=

∣∣∣∣∣X0 +

∞∑
k=0

(Xk+1 −Xk) · 1T>k∧n>k

∣∣∣∣∣
≤ |X0|+

∞∑
k=0

|(Xk+1 −Xk) · 1T>k∧n>k|

≤ |X0|+
∞∑
k=0

|(Xk+1 −Xk) · 1T>k| .



36 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

Then

E

(
|X0|+

∞∑
k=0

|(Xk+1 −Xk) · 1T>k|

)
= (By Monotone Convergence Theorem)

E (|X0|) +
∞∑
k=0

E (|(Xk+1 −Xk) · 1T>k|)

= E (|X0|) +
∞∑
k=0

E (|Xk+1 −Xk| · 1T>k)

≤ E (|X0|) +
∞∑
k=0

E
(
λ · kd · ec3·k · 1T>k

)
= E (|X0|) +

∞∑
k=0

λ · kd · ec3·k · P (T > k)

≤ E (|X0|) +
∞∑
k=0

λ · kd · ec3·k · c1 · e−c2·k

= E (|X0|) + λ · c1 ·
∞∑
k=0

kd · e−(c2−c3)·k

< ∞ .

where the first inequality is obtained by Condition (ii), and the second inequality
is derived from Condition (i).

Therefore, by Dominated Convergence Theorem and the fact that XT =
lim
n→∞

XT∧n a.s.,

E (XT ) = E
(
lim
n→∞

XT∧n

)
= lim

n→∞
E (XT∧n) .

Finally, the result follows from properties for the stopped process {XT∧n}n∈N0

that
E (XT ) ≤ E (X0) .

B.4 Proofs for Our OST-Based Approach

Theorem 4. [Upper Bounds on Expected Weights] Consider a WPTS Π with
a d-degree polynomial PUWF h and an affine invariant I, if Π has (1) the
concentration property, i.e., P(T > n) ≤ c1·e−c2·n for c1, c2 > 0, (2) the bounded-
update property, and (3) the weight of each step is bounded by ec3 for 0 < c3 <
c2, then Evinit

[wT ] ≤ h(ℓinit,vinit) for any initial state (ℓinit,vinit).

Proof. Define the stochastic process {Xn}∞n=0 as Xn := h(ℓn,vn) where (ℓn,vn)
is the program state at the n−th step of a program run. Then construct a
stochastic process {Yn}∞n=0 such that Yn := Xn ·

∏n−1
i=0 Wi where Wi is the



B. SUPPLEMENTARY MATERIAL FOR SECTION 4 37

weight at the i−th step of the program run. According to Condition (C1), we
have that E [Xn+1 ·Wn|Fn] ≤ Xn. Therefore, by the “take out what is known”
property of conditional expectation (see [52]), it follows that

E

[
Xn+1 ·

n∏
i=0

Wi|Fn

]
≤ Xn ·

n−1∏
i=0

Wi

⇔ E [Yn+1|Fn] ≤ E [Yn] ,

which means that E [Yn+1] ≤ E [Yn] from the basic property of conditional ex-
pectation. By an easy induction on n, we have that E [Yn] ≤ E [Y0] < ∞ for all
n ≥ 0, thus the conditional expectation is also taken in the normal sense as each
Yn is indeed integrable. Hence, {Yn}∞n=0 is a supermartingale. Moreover, we have
from the bounded-update property that |Xn+1| ≤ ζ · (n+ 1)d for a real number
ζ > 0. By definition, we obtain that for sufficiently large n,

|Yn+1 − Yn| =

∣∣∣∣∣Xn+1 ·
n∏

i=0

Wi −Xn ·
n−1∏
i=0

Wi

∣∣∣∣∣
≤

∣∣∣∣∣Xn+1 ·
n∏

i=0

Wi

∣∣∣∣∣+
∣∣∣∣∣Xn ·

n−1∏
i=0

Wi

∣∣∣∣∣
< ec3·n · (|Xn+1|+ |Xn|)
≤ ec3·n · [ζ · (n+ 1)d + ζ · nd]

≤ λ · nd · ec3·n

where the first inequality is induced by the triangle inequality, and the second
inequality is derived from the bounded stepwise weight condition such that each
Wi ∈ [0, ec3 ] and the fact W0 = 1. By applying the OST variant (Theorem 3),
we obtain that E [YT ] ≤ E [Y0]. By definition and Condition (C2),

YT = h(ℓT ,vT ) ·
T−1∏
i=0

Wi

= h(ℓout,vT ) ·
T−1∏
i=0

Wi

=

T−1∏
i=0

Wi

Finally, we have that EΞ [W∞] = E
[∏T−1

i=0 Wi

]
≤ E [Y0] = h(ℓinit,vinit).

Theorem 4. [Lower Bounds on Expected Weights] Consider a WPTS Π with
a d-degree polynomial PLWF h and an affine invariant I, if Π has (1) the
concentration property, i.e., P(T > n) ≤ c1 · e−c2·n for c1, c2 > 0, (2) the
bounded-update property, and (3) the weight of each step is bounded by ec3

for 0 < c3 < c2, then Evinit
[w∞] ≥ h(ℓinit,vinit) for any initial state (ℓinit,vinit).



38 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

Proof. Define the stochastic process {Xn}∞n=0 as Xn := h(ℓn,vn) where (ℓn,vn)
is the program state at the n−th step of a program run. Then construct a
stochastic process {−Yn}∞n=0 such that −Yn := −Xn ·

∏n−1
i=0 Wi where Wi is

the weight at the i−th step of the program run. According to Condition (C1’),
we have that E [−Xn+1 ·Wn|Fn] ≤ −Xn. Therefore, by the “take out what is
known” property of conditional expectation (see [52]), it follows that

E

[
−Xn+1 ·

n∏
i=0

Wi|Fn

]
≤ −Xn ·

n−1∏
i=0

Wi

⇔ E [−Yn+1|Fn] ≤ E [−Yn] ,

which means that E [−Yn+1] ≤ E [−Yn] from the basic property of conditional
expectation. By an easy induction on n, we have that E [−Yn] ≤ E [−Y0] < ∞ for
all n ≥ 0, thus the conditional expectation is also taken in the normal sense as
each Yn is indeed integrable. Hence, {−Yn}∞n=0 is a supermartingale. Moreover,
we have from the bounded-update property that |Xn+1| ≤ ζ · (n+ 1)d for a real
number ζ > 0. By definition, we obtain that for sufficiently large n,

|−Yn+1 − (−Yn)| =

∣∣∣∣∣Xn+1 ·
n∏

i=0

Wi −Xn ·
n−1∏
i=0

Wi

∣∣∣∣∣
≤

∣∣∣∣∣Xn+1 ·
n∏

i=0

Wi

∣∣∣∣∣+
∣∣∣∣∣Xn ·

n−1∏
i=0

Wi

∣∣∣∣∣
< ec3·n · (|Xn+1|+ |Xn|)
≤ ec3·n · [ζ · (n+ 1)d + ζ · nd]

≤ λ · nd · ec3·n

where the first inequality is induced by the triangle inequality, and the second
inequality is derived from the bounded stepwise weight condition such that each
Wi ∈ [0, ec3 ] and the fact W0 = 1. By applying the variant of Optional Stopping
Theorem (Theorem 3), we obtain that E [−YT ] ≤ E [−Y0], so E [YT ] ≥ E [Y0]. By
definition and Condition (C2’),

−YT = −h(ℓT ,vT ) ·
T−1∏
i=0

Wi

= −h(ℓout,vT ) ·
T−1∏
i=0

Wi

= −
T−1∏
i=0

Wi

Finally, we have that EΞ [W∞] = E
[∏T−1

i=0 Wi

]
≥ E [Y0] = h(ℓinit,vinit).



C. SUPPLEMENTARY MATERIAL FOR SECTION 5 39

B.5 Correctness of Truncation

Theorem 5. Suppose that (∗) for each fork FM,♯ = ⟨♯, p,upd,M⟩ derived from
some F = ⟨ℓ′, p,upd,wt⟩ in a transition with source location ℓ (see (‡)) from
the construction of ΠB,M , we have that ewt(ℓ′, upd(v)) ≤ M(v) for all v in
some reachable state (ℓ,v). Then ewΠ(v) ≤ ewΠB,M

(v) for all initial program
valuation v. Analogously, if it holds the condition (⋆) which is almost the same as
(∗) except for that “ewt(ℓ′, upd(v)) ≤ M(v)” is replaced with “ewt(ℓ′, upd(v)) ≥
M(v)”, then we have ewΠ(v) ≥ ewΠB,M

(v) for all initial program valuation v.

Proof. We first prove that when every score function M in a FM,♯ derived from
a transition with source location ℓ is equal to the function ewt(ℓ,−), we have that
ΠB,M is equal to Π. By Theorem 2, the expected weight functions ewΠ , ewΠB,M

are the least fixed point of the higher-order operator ewt defined in Definition 3.
We prove that both ewΠ ≤ ewΠB,M and ewΠ ≥ ewΠB,M holds. Note that since
we choose the scoring function to be the exact expected weight function of Π,
it holds that ewΠ(−,v) = ewΠB,M(−,v) for all program valuations outside B.
Thus, the nontrivial part is to consider program valuations inside the truncated
range.

– ewΠ ≤ ewΠB,M : To show that ewΠ ≤ ewΠB,M , it suffices to observe that
ewΠB,M satisfies ewtΠ(ewΠB,M) = ewΠB,M . Since ewΠ is the least fixed
point of the higher order equation, we directly obtain that ewΠ ≤ ewΠB,M .

– ewΠ ≥ ewΠB,M : To show that ewΠ ≥ ewΠB,M , it suffices to observe that
ewΠ (extended with the ♯ location whose score function is 1) satisfies the
higher-order equation of ΠB,M. Thus, we directly have that ewΠ ≥ ewΠB,M .

Then we prove the theorem. We only prove the upper-bound case, since the
lower-bound case can be proved similarly. The proof follows from Theorem 2.
Denote ⊥ as the bottom element of the complete lattice (KM ,≤). Then by The-
orem 2, we have that lim

n→∞
ewtnΠ(⊥) = ewΠ and lim

n→∞
ewtnΠB,M

(⊥) = ewΠB,M .
Since ewΠ(v) ≤ M(v) for all v ∈ exit(Π) , one can perform a straightforward
induction on n that ewn,ewΠ

ΠB
≤ ewn,f

ΠB
for all n. ⊓⊔

C Supplementary Material for Section 5

Theorem 8. Let Π be a non-score-recursive WPTS with score functions
f1, . . . , fk on the transitions to the termination location ℓout. Suppose we have
a non-negative real number ϵ and polynomials f ′

1, . . . , f
′
k such that for all

x ∈ exit(Π) and 1 ≤ j ≤ k, |f ′
j(x) − fj(x)| ≤ ϵ. Then we have that

|ewΠ(v) − ewΠ′(v)| ≤ ϵ for all initial program valuation v, where Π ′ is ob-
tained from Π by replacing each fj (1 ≤ j ≤ k) with f ′

j.

Proof. By Theorem 2, we have that lim
n→∞

ewtnΠ(⊥) = ewΠ and lim
n→∞

ewtnΠ′ =

ewΠ′ . Since |f ′
j−fj | ≤ ϵ for every j, one can perform a straightforward induction

on n to prove that for all n ≥ 0, it holds that that |ewtnΠ(⊥)−ewtnΠ′(⊥)| ≤ ϵ. ⊓⊔



40 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

C.1 Possible Approaches for Computing Mup and Mlow of
Score-recursive WPTS’s

Fix a score-recursive WPTS Π, and assume it has (1) the concentration property,
i.e., P(T > n) ≤ c1 · e−c2·n for c1, c2 > 0, (2) the bounded-update property, and
(3) the stepwise weight is bounded by ec3 for 0 < c3 < c2. Then given the
bounded ranges B and B′ as computed in Section 5, we derive the upper bound
Mup and the lower bound Mlow for the expected weight from B′\B as follows.

For any v ∈ B′\B,

JΠK(v) = Ev [wT ]

=

∞∑
n=1

P(T = n) · wn

≤
∞∑

n=0

P(T > n) · wn

≤ 1 +

∞∑
n=1

P(T > n) · wn

= 1 +

n∗−1∑
n=1

P(T > n) · wn +

∞∑
n=n∗

P(T > n) · wn

≤ 1 +M +

∞∑
n=n∗

P(T > n) · wn

= M ′ +

∞∑
n=n∗

P(T > n) · wn

≤ M ′ +

∞∑
n=n∗

c1 · e−c2·n · wn

≤ M ′ +

∞∑
n=n∗

c1 · e−c2·n · ec3·n

= M ′ + c1 ·
∞∑

n=n∗

(ec3−c2)n

= M ′ + c1 ·
a

1− q

= Mup

where
n∗−1∑
n=1

P(T > n) · wn ≤
n∗−1∑
n=1

wn ≤
n∗−1∑
n=1

(ec3)n =
a′ · (1− (q′)(n

∗−1))

1− q′
=: M

and a′ = ec3 , q′ = ec3 . The first inequality is obtained from the fact that

P(T > n) = P(T ≥ n+ 1) = P(T = n+ 1) + P(T = n+ 2) + . . . ,



C. SUPPLEMENTARY MATERIAL FOR SECTION 5 41

thus,
P(T = n+ 1) ≤ P(T > n).

The second inequality is derived by the fact that P(T > 0) ≤ 1 and w0 = winit =
1. The third inequality is obtained by the definition of M above. The fourth
inequality is obtained by the concentration property, while the fifth inequality
is derived by the bounded stepwise weight condition.

For Mlow, we trivially set Mlow = 0. We can refine it heuristically, e.g.,
according to the monotonicity of the scoring function.

C.2 Overapproximation via Polynomial Interpolations

Given a non-polynomial function f(x) over the interval I = [a, b], we aim to
approximate f(x) by polynomials p(x)’s. The correctness of approximation is
based on a classical theorem called Weierstrass’ Theorem [24].

Theorem 9 (Weierstrass’ Theorem). Let f(x) be a continuous function on
the (closed) interval [a, b]. Then there is a sequence of polynomials pn(x) (of
degree n) such that

lim
n→∞

||f − pn||∞ = 0.

We also need the following theorem to measure the derived polynomials. The
property of Lipschitz continuity supports the following theorem easily.

Theorem 10. Suppose r(x) is a continuous and differentiable function on a
compact convex set Ψ ⊆ R. Assume that a collection of points {x1, x2, . . . , xk}
are sampled uniformly from Ψ and s ∈ R>0 is the sampling spacing. Let r0 =
max{|r(x1)|, |r(x2)|, . . . , |r(xk)|}, and β = supx∈Ψ ||∇r(x)||, then

|r(x)| ≤ β · s+ r0, ∀ x ∈ Ψ. (6)

Then our scheme is as follows.

– Split the interval I = [a, b] uniformly into m partitions, i.e., I1 = [a1, b1], I2 =
[a2, b2], . . . , Im = [am, bm].

– For each partition Ii = [ai, bi], define a n-degree polynomial pin(x) :=∑n
j=0 cij · xj .

1. Pick a non-negative integer k > n and sample k points uniformly from
f over Ii. That is,

D = {(x1, f(x1)), (x2, f(x2)), . . . , (xk, f(xk))}

where xl ∈ Ii for all 1 ≤ l ≤ k.
2. Let pin(xl) = f(xl) for all 1 ≤ l ≤ k, then we have a linear system

V · c = f where

V =


1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

...
1 xk x2

k · · · xn
k

 ,

c = [ci0, ci1, . . . , cin]
T and f = [f(x1), f(x2), . . . , f(xk)]

T .



42 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

3. By solving the above overdetermined system, we obtain pin(x) as the
approximation of f(x) over the interval Ii = [ai, bi].

4. Having pin(x), evaluate an error bound γi such that

∀ x ∈ Ii, |f(x)− pin(x)| ≤ γi. (7)

Let r(x) = f(x) − pin(x) and Ψ = Ii, then we obtain r0 =
max{|r(x1)|, |r(x2)|, . . . , |r(xk)|} by Theorem 10. To derive the Lipschitz
constant β of r(x) over the interval Ii, we pick a non-negative integer
q = 10k, and sample q points uniformly from f , i.e., we have another col-
lection of points {x′

1, x
′
2, . . . , x

′
q}. Let β = max{|∇r(x′

1)|, . . . , |∇r(x′
q)|},

then
γi := β · s+ r0

where s is the corresponding sampling spacing of the q points.
– Now we have a set Dp of tuples of intervals, polynomials and error bounds,

i.e.,
Dp = {(I1, p1n(x), γ1), . . . , (Im, pmn (x), γm)} (8)

The approximation error bounds γi’s are taken into account when we syn-
thesize the polynomial template h. Given a non-polynomial function f(x) such
that score(f(x)) occurs in the program, we obtain a set Dp in the form of (8).
For each interval Ii, we introduce a new variable ri and approximate f(x) over
Ii as pin(x) + ri with ri ∈ [−γi, γi]. That is, for 1 ≤ i ≤ m, we have

∀ x ∈ Ii, f(x) ≈ pin(x) + ri with ri ∈ [−γi, γi]. (9)

For a state (ℓ,v) such that ℓ is the location before the command score(f(x)),
there is the unique transition τ = ⟨ℓ, true, F ⟩ such that F = ⟨ℓ′, 1,1, f⟩ and ℓ′

is the location that follows the command score(f(x)). Then for all valuations
v ∈ I(ℓ) ∧ ΦB and 1 ≤ i ≤ m, it should hold that

– for all v[x] ∈ Ii and ri ∈ [−γi, γi], we have that ewt(h)(ℓ,v) ≤ h(ℓ,v) (for
upper bounds) and ewt(h)(ℓ,v) ≥ h(ℓ,v) (for lower bounds) where

ewt(h)(ℓ,v) = (pin(x) + ri) · h(ℓ′,v).

D Application of Positivstellensatz’s

In Step A5 of our algorithm, constraints are established in the form ∀v ∈
P.(g(v) ≥ 0) where P is a polyhedron over program variables Vp and are grouped
conjunctively. Thus, the key point is how to tackle the each such constraint. In
our algorithm, we follow the exact treatment through the application of Putinar’s
and Handelman’s Positivstellensatz in [35,22]. Below we describe the detailed
application.



D. APPLICATION OF POSITIVSTELLENSATZ’S 43

D.1 Application of Putinar’s Positivstellensatz

We recall Putinar’s Positivstellensatz below.

Theorem 11 (Putinar’s Positivstellensatz [35]). Let V be a finite set of
real-valued variables and g, g1, . . . , gm ∈ R[V ] be polynomials over V with real
coefficients. Consider the set S := {x ∈ RV | gi(x) ≥ 0 for all 1 ≤ i ≤ m} which
is the set of all real vectors at which every gi is non-negative. If (i) there exists
some gk such that the set {x ∈ RV | gk(x) ≥ 0} is compact and (ii) g(x) > 0
for all x ∈ S, then we have that

g = f0 +
∑m

i=1 fi · gi (10)

for some polynomials f0, f1 . . . , fm ∈ R[V ] such that each polynomial fi is the
a sum of squares (of polynomials in R[V ]), i.e. fi =

∑k
j=0 q

2
i,j for polynomials

qi,j’s in R[V ].

In this work, we utilize the sound form in (10) for witnessing a polynomial g
to be non-negative over a polyhedron P for each constraint ∀v ∈ P.(g(v) ≥ 0)
from Step A5 of our algorithm. Let ∀v ∈ P.(g(v) ≥ 0) be such a constraint for
which the polyhedron P is defined by the linear inequalities g1 ≥ 0, . . . , gm ≥ 0.
Let Vp = {v1, v2, . . . , vt} be the set of program variables and define Md(Vp) =
{m1,m2, . . . ,mr} as the set of all monomials of degree at most d over Vp,
i.e. Md(Vp) := {

∏t
i=1 v

αi
i | ∀i αi ∈ N ∧

∑t
i=1 αi ≤ d}. The application

of Putinar’s to ∀v ∈ P.(g(v) ≥ 0) has the following steps.

– First, represent each fi in Eq. (10) as the positive semidefinite form fi =
vTQiv subject to the positive semidefinite constraint where each Qi is a
real matrix whose every entry is an unknown parameter.

– Second, compute an equation in the form (10) whose coefficients are affine
expressions in the unknown coefficients from our templates and the unknown
entries in the matrices Qi’s.

– Third, establish the affine constraints between the unknown coefficients in
the templates and the unknown entries in the matrices Qi’s by matching
the coefficients at the LHS and the RHS of the equation obtained from the
previous step.

The overall application processes all such constraints from Step A5 of our al-
gorithm by (i) collecting all the affine and the semidefinite constraints from the
first and the third steps above and (ii) solve them by semidefinite programming.

D.2 Application of Handelman’s Positivstellensatz

To present Handelman’s Positivstellensatz, we need the notion of monoid as
follows. Below we consider an arbitrary finite collection Γ = {g1, . . . , gk} (k ≥ 1)
of linear functions (i.e., degree-1 polynomials) in the program variables.

Definition 7 (Monoid). The monoid of Γ is defined by:

Monoid(Γ ) :=

{
k∏

i=1

hi | k ∈ N0 and h1, . . . , hk ∈ Γ

}
.



44 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

Then in our context, Handelman’s Positivstellensatz can be formulated as
follows.

Theorem 12 (Handelman’s Positivstellensatz [22]). Let g be a polynomial
in the program variables such that g(v) > 0 for all program valuations v ∈ P :=
{v′ ∈ R|Vp| | g1(v′) ≥ 0, . . . , gk(v

′) ≥ 0}. If P is compact, then we have

g =

d∑
i=1

ai · ui (11)

for some d ∈ N, real numbers a1, . . . , ad ≥ 0 and u1, . . . , ud ∈ Monoid(Γ ).

To apply Handelman’s Positivstellensatz, we consider a natural number which
serves as a bound on the number of multiplicands allowed to form an element in
Monoid(Γ ). Then Eq. (11) results in a system of linear equalities that involves
a1, . . . , ad and the coefficents of g. The application of Handelman’s Positivstel-
lensatz to each ∀v ∈ P.(g(v) ≥ 0) is simpler than that of Putinar’s Positivstel-
lensatz, and is as follows.

– First, compute an equation in the form (11) whose coefficients are affine
expressions in the unknown coefficients from our templates and the fresh
variables a1, . . . , ad from Eq. (11).

– Second, establish the affine constraints between the unknown coefficients in
the templates and the fresh variables a1, . . . , ad from Eq. (11) by matching
the coefficients at the LHS and the RHS of the equation obtained from the
previous step.

The overall application processes all such constraints from Step A5 of our al-
gorithm by (i) collecting all the affine constraints from the second steps above
and (ii) solve them by linear programming.

E Supplementary Materials for Experimental Results



E. SUPPLEMENTARY MATERIALS FOR EXPERIMENTAL RESULTS 45

0 0.5 1 1.5 2 2.5 3
start

0

0.1

0.2

0.3

0.4

0.5

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(a) Pedestrian v1

0 0.5 1 1.5 2
tortoise

0.045

0.05

0.055

0.06

0.065

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(b) Hare Tortoise Race v2

0 1 2 3
x

0

0.02

0.04

0.06

0.08

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(c) Random Walk v1

0 0.5 1 1.5 2 2.5 3
start

0

0.02

0.04

0.06

0.08

0.1

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(d) Pedestrian Multi-branches v3

Fig. 7. Part 1: NPD Bounds of Novel Examples



46 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

0 0.5 1 1.5 2
tortoise

0

0.05

0.1

0.15

0.2

0.25
N

P
D

Our upper bounds
Our lower bounds
Simulation results

(a) Hare Tortoise Race v1

0 0.5 1 1.5 2 2.5 3
x

0

0.02

0.04

0.06

0.08

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(b) Random Walk v2

0 0.5 1 1.5 2 2.5 3
x

0

0.02

0.04

0.06

0.08

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(c) Random Walk v3

0 0.5 1 1.5 2 2.5 3
x

0

0.02

0.04

0.06

0.08

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(d) Random Walk v4

0 0.5 1 1.5 2 2.5 3
start

0

0.02

0.04

0.06

0.08

0.1

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(e) Pedestrian Multi-branches v4

0 0.5 1 1.5 2
lambda

0

0.1

0.2

0.3

N
P

D

Our upper bounds
Our lower bounds
Simulation results

(f) Phylogenetic Birth Model

Fig. 8. Part 2: NPD Bounds of Novel Examples



E. SUPPLEMENTARY MATERIALS FOR EXPERIMENTAL RESULTS 47

0 0.5 1 1.5 2 2.5 3
start

0

0.05

0.1

0.15

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(a) Pedestrian

0 0.5 1 1.5 2 2.5 3
start

0

0.05

0.1

0.15

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(b) Pedestrain Large Deviation

0 0.5 1 1.5 2 2.5 3
start

-0.1

-0.05

0

0.05

0.1

0.15

0.2

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(c) Pedestrian Beta v1

0 0.5 1 1.5 2 2.5 3
start

-0.1

-0.05

0

0.05

0.1

0.15

0.2

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
IS Simulation results

(d) Pedestrian Beta v2

Fig. 9. Part 1: NPD Bounds of Our Approach and GuBPI



48 Peixin Wang, Hongfei Fu, Tengshun Yang, Guanyan Li, and Luke Ong

0 1 2 3
start

-0.1

0

0.1

0.2

0.3

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
IS Simulation results

(a) Pedestrian Beta v3

0 0.5 1 1.5 2 2.5 3
start

-0.1

-0.05

0

0.05

0.1

0.15

0.2

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
IS Simulation results

(b) Pedestrian Beta v4

0 0.5 1 1.5 2 2.5 3
start

0

0.1

0.2

0.3

0.4

0.5

0.6

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
IS Simulation results

(c) Pedestrian Multi-branches v5

0 0.2 0.4 0.6 0.8 1p

0.08

0.1

0.12

0.14

N
P

D

GuBPI upper bounds
GuBPI lower bounds
Our upper bounds
Our lower bounds
Simulation results

(d) Para Estimation Recursive

Fig. 10. Part 2: NPD Bounds of Our Approach and GuBPI


	Static Analysis of Posterior Inference in Bayesian Probabilistic Programming

