Check for
Updates

Adversarial Reconstruction of Trajectories: Privacy Risks and
Attack Models in Trajectory Embedding

Haochen Han Shuaiyu Yang Jiaxin Ding *
haochen_neyc@sjtu.edu.cn yangshuaiyu6791@sjtu.edu.cn jiaxinding@sjtu.edu.cn
Shanghai Jiao Tong University Shanghai Jiao Tong University Shanghai Jiao Tong University
Shanghai, China Shanghai, China Shanghai, China
Luoyi Fu Xinbing Wang Chenghu Zhou
yiluofu@sjtu.edu.cn xwang8@sjtu.edu.cn zhouch@lreis.ac.cn
Shanghai Jiao Tong University Shanghai Jiao Tong University Chinese Academy of Sciences
Shanghai, China Shanghai, China Beijing, China

Abstract

Human trajectories, representing sequences of location points over
time, are extensively collected and analyzed for various real-world
applications such as urban planning, transportation management,
and personalized location-based services. Trajectory embedding
transforms raw trajectories into vector representations, capturing
the underlying patterns and structures in the data. However, the
abstraction provided by vector representations introduces signif-
icant security and privacy risks. These embeddings, often shared
between entities or organizations, can be exploited by adversaries to
reconstruct original trajectories, thereby compromising individual
privacy. In this paper, we investigate the privacy issues of trajectory
embeddings from an adversary’s perspective. We propose two types
of attacks to reconstruct original trajectories using road network
information, addressing scenarios where the adversary has varying
degrees of access to the black-box representation model. The first
attack assumes unrestricted access to the model, allowing the adver-
sary to construct a large-scale dataset and train a neural network
to predict the road sequence of the trajectories. The second attack
considers limited access, where the adversary computes distance
coordinates between selected trajectory landmarks and road seg-
ments to infer different parts of the trajectory. Our experiments on
areal-world dataset demonstrate that the reconstructed trajectories
outperform baseline methods, achieving substantially lower recon-
struction errors and more accurate alignment with the original
trajectories, highlighting the significant vulnerability of trajectory
embeddings to privacy breaches. These findings underscore the
need for robust privacy-preserving mechanisms in spatio-temporal
data analysis.

*Jiaxin Ding is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1107-7/24/10

https://doi.org/10.1145/3678717.3691274

CCS Concepts

« Security and privacy; - Computing methodologies — Artifi-
cial intelligence;

Keywords

location privacy, trajectory embedding, reconstruction attack

ACM Reference Format:

Haochen Han, Shuaiyu Yang, Jiaxin Ding, Luoyi Fu, Xinbing Wang, and Chenghu
Zhou. 2024. Adversarial Reconstruction of Trajectories: Privacy Risks and
Attack Models in Trajectory Embedding. In The 32nd ACM International
Conference on Advances in Geographic Information Systems (SIGSPATIAL
’24), October 29-November 1, 2024, Atlanta, GA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3678717.3691274

1 Introduction

Human trajectories, representing sequences of location points over
time, are extensively collected and analyzed in various real-world
applications, ranging from urban planning [43] and transporta-
tion management [34] to personalized location-based services [38].
Trajectory embedding learning has emerged as a unified solution
to these applications by transforming raw trajectories into vector
representations. These embeddings facilitate multiple downstream
tasks, such as clustering [15, 44], classification [17], and anomaly
detection [22], by capturing the underlying patterns and structures
in the trajectory data.

Trajectory embeddings offer numerous advantages over tradi-
tional methods. By converting trajectories into fixed-size vector rep-
resentations, they simplify the complexity of spatio-temporal data
and enable the use of powerful machine learning models [17, 20, 40].
These embeddings can capture both spatial and temporal dependen-
cies, making them highly effective for applications such as traffic
prediction [33], travel time estimation [21], and location-based rec-
ommendations [35, 37]. Moreover, the use of embeddings allows the
sharing of trajectory data between entities or organizations without
directly exposing sensitive location information [23], thereby pro-
moting collaborative efforts and improving the overall utility of the
data. For example, organizations release their trajectory embedding
systems, such as LibCity, and pre-trained trajectory embeddings
can be published to facilitate downstream tasks [33]. In addition,
trajectory embeddings can also be shared among distributed deep
learning paradigms that effectively reduce computational load by

https://doi.org/10.1145/3678717.3691274
https://doi.org/10.1145/3678717.3691274
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3678717.3691274&domain=pdf&date_stamp=2024-11-22

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

adaptively partitioning deep learning inference tasks between mo-
bile devices and the cloud [18]. Trajectory embeddings can be com-
puted locally on mobile devices and then uploaded to the cloud for
further analysis, enhancing efficiency.

However, the abstraction provided by vector representations can
also introduce significant security and privacy risks. Trajectory data
are highly private and can reveal personal information. Previous
studies have shown that trajectory data can uncover details like
home and work addresses [30], identify social relationships [14],
and reveal unique movement patterns [10] that can uniquely iden-
tify individuals. As a result, privacy issues associated with location
reports and user trajectories have long been recognized as serious
concerns [2, 11]. Although trajectory embeddings do not explicitly
include human location information, the sharing between differ-
ent organizations or entities in various applications opens up new
vulnerabilities. In graph neural networks (GNNs), graph embed-
dings can be used to infer edges between nodes [16, 29]. This edge
information can be used to infer sensitive relations. In a social net-
work setting, for example, edge information can contain highly
private personal relations, and successful link inference can lead
to serious privacy consequences. Previous research on natural lan-
guage processing (NLP) has also shown that sentence embeddings
generated by language models for downstream tasks can be used
to infer keywords, attributes, and memberships highly associated
with original sentences and sensitive individual information, lead-
ing to significant privacy concerns [19, 31]. Similarly, these findings
can be extended to trajectory embeddings. Adversaries equipped
with trajectory embeddings and additional data, such as location
embeddings, can potentially reconstruct the original trajectories,
thus compromising the privacy of individuals, by exposing their
personal movements and sensitive location information [12]. Such
privacy risks are particularly concerning and challenging when
embeddings are shared or published, however, the potential for
reverse-engineering trajectory embeddings and the resulting pri-
vacy risks have not been thoroughly studied and understood.

In this paper, we systematically investigate the privacy issues of
trajectory embeddings from an adversary’s perspective, as shown
in Figure 1. We propose two types of attacks aimed at reconstruct-
ing the original trajectories using road network information as
contextual information to improve reconstruction accuracy and
enhance real-world applicability, addressing scenarios where the
adversary has varying degrees of access to the black-box represen-
tation model. The first attack assumes the adversary’s unrestricted
access to the model, enabling the adversary to construct a suffi-
cient additional dataset with mappings from trajectories to their
embeddings, and train a neural network with the fine-grained road
network details to predict the road sequence of the trajectories. The
second attack considers the limited access to the representation
model, where the adversary only has a limited number of trajec-
tories with embeddings. The adversary uses these trajectories as
landmarks, computes distances between road segments and the
selected trajectory landmarks as coordinates, along with estimated
distances of the embedding by a neural network, to infer the key
road segments of the original trajectories with embeddings.

Our study conducts extensive experiments on a real-world dataset
to evaluate the effectiveness of these attacks. The results demon-
strate that the reconstructed trajectories under adversarial attacks

Haochen Han, Shuaiyu Yang, Jiaxin Ding, Luoyi Fu, Xinbing Wang, and Chenghu Zhou

significantly outperform the baseline methods, achieving substan-
tially lower reconstruction errors and more accurate alignment
with the original trajectories. We also analyze the characteristics of
trajectory embeddings and find that the beginning and end parts of
trajectories contribute most in embedding. This observation aligns
with the fact that human trajectories exhibit a strong spatial cor-
relation. Furthermore, these points, usually corresponding to the
origin and destination, are particularly significant, as they often
represent key locations on the trajectory, such as home, work, or
places of frequent visit. For adversaries, this also means that the
start and end points of trajectories are more susceptible to attacks,
potentially revealing visited locations and constituting an invasion
of privacy. Our experiment results underscore the need for robust
privacy-preserving mechanisms in spatio-temporal data analysis
to protect against such adversarial threats. Our contribution can be
summarized as follows:

e We propose two adversarial reconstruction attacks on tra-
jectory embeddings under different assumptions. The first
attack can reconstruct complex-shaped trajectories that align
with the road network through unlimited queries to the tar-
get model. This attack leverages the model’s full capabilities
to accurately predict the sequence of road segments. The sec-
ond attack infers key road segments by calculating distance
coordinates to trajectory landmarks, identifying locations
most similar to the estimated coordinates of the original
trajectory using a limited amount of data. This approach
demonstrates the feasibility of effective reconstruction even
with restricted access to the model.

e We conduct extensive experiments to show the effective-
ness of the proposed attacks. Experimental results show that
current trajectory embedding models are highly vulnerable
to our attacks, achieving substantially lower reconstruction
errors and more accurate alignment with the original trajec-
tories compared to baseline methods.
We discuss the characteristic of trajectory embeddings from
an adversary’s perspective. Our results demonstrate that
trajectory embeddings place emphasis on the start and end
points, which are crucial for accurately capturing the overall
movement patterns. This insight explains the high perfor-
mance of the attack experiments, as adversaries can exploit
these critical points to reconstruct trajectories effectively.

2 PRELIMINARIES

2.1 Notations

We denote a trajectory ast = [p1, p2, ..., pn], where p; = [lon;, lat;]
represents the i-th location of the trajectory in the form of a longi-
tude and latitude pair. A vehicle trajectory, constrained by roads,
can be mapped onto the road network. The road network is denoted
as a directed graph G = (V, &, X) where YV represents the set of
endpoints of road segments, & represents the set of directed roads
and X is the locations of all elements. A node v € V is a point
defined by a longitude and latitude pair where two roads interact,
and a road segment r = [p1, pa2, ..., pn] € & is essentially a trajec-
tory where vehicles can only travel from the start to the end. We
denote a road mapped trajectory as ™% = [v1,03,...,0,], where
v; represents the i-th node visited by the original trajectory. The

Adversarial Reconstruction of Trajectories: Privacy Risks and Attack Models in Trajectory Embedding

Private Trajectory t
Tlvate ajestory Embedding Model f

RN
Malicious s

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Downstream Tasks

iy

Trajectory Embedding
z=f(t)

(e .

/ .
+" Unauthorized

Application \‘ ¥ Sharing
. . Adversa
Locating Key Points o) Y e Recover Trajectory
Limited Unlimited
—
Query Query

Road
Network

"

Auxiliary
Dataset

Figure 1: Overview of trajectory reconstruction attack. The embedding z of a private trajectory ¢, which is shared to third party
organizations for downstream tasks, can be obtained by an adversary. The adversary implements attack algorithms to recover
the original trajectory ¢ with the assistance of road network information and an auxiliary dataset. Depending on the query
capability of the model, the adversary can either reconstruct complex-shaped trajectories or merely locate key points.

Table 1: Notations.

Notation Description

t Trajectory

gmap Road mapped trajectory

p Spatial point

G = (V,E,X) Road network

reé& Road segment (also edge of G)
veV Endpoint of road segment (also node of G)
f Target trajectory embedding model
d Dimension of trajectory embeddings
z Trajectory embedding

A Attack model

frequently used notations introduced here and in the following
sections are summarized in Table 1.

2.2 Trajectory Representation Learning

Trajectory data analysis has been extensively studied over a long
period. Traditional algorithms, which count on point-to-point com-
parisons to compute trajectory similarity, often exhibit high time
complexity and rely on unique models for specific tasks [1, 3, 5, 42].
To achieve better generality, trajectory representation learning
methods transform trajectories into low-dimensional embedded
vectors, providing a unified solution. Formally, a trajectory embed-
ding model is defined as f : t — z, where z € R? represents the
trajectory embedding. The learned embeddings can be employed
for various trajectory analysis tasks, such as similarity computa-
tion [40], traffic prediction [33] and location-based recommenda-
tion [35].

There exists a large amount of previous work on trajectory rep-
resentation learning [7, 36]. Early models primarily utilize encoder-
decoder architectures to predict surrounding locations. These pio-
neer approaches such as t2vec [20], traj2vec [41] sample trajectories
at low sampling rates and learn trajectory representations by recov-
ering the original trajectories. Supervised learning methods have
also been incorporated into trajectory representation learning to
enhance capabilities for specific tasks such as similarity computa-
tion [40] and anomaly detection [22]. Recent works have turned to
graph neural networks to further capture information about the
road network [8, 17]. This learning pattern first generates road
representations in vector form and then uses a sequence model to
compute trajectory embeddings based on these road embeddings.
Contrastive learning [6] is a commonly used learning technique in
this paradigm, which constructs positive and negative data samples
with the aim of reducing the distance between positive pairs and
increasing the distance between negative pairs. For both contrastive
and non-contrastive representation models, it is assumed that the
embeddings of close trajectories should approximately maintain
this closeness in the latent space. This property can be leveraged
to build attack models for adversaries.

3 PROBLEM FORMULATION
3.1 Motivation

In this paper, we consider a black-box representation model trained
by location service providers. Users can access the model to calcu-
late trajectory embeddings for downstream tasks. Specifically, users
send a trajectory ¢ to the service provider and obtain a vector z that
embeds the spatial information of t. This kind of vectors can then
be shared through online platforms for further analysis in practice
since the trajectory information is transformed into a vector form.
For example, location service providers can cooperate with other
recommendation platforms to utilize multiple data sources and the
embedded vectors are regarded as a promising choice to mitigate

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

privacy issues. However, recovering a trajectory from the vector
representation can result in severe privacy concerns.

Previous research in the language and graph domains has demon-
strated that embedded vectors can leak information about original
data [27, 45]. In these attack studies, the adversary uses auxiliary
datasets to access black-box models and obtain training data to
decode the embedding vectors. Research in trajectory models fol-
lows methods derived from language models, treating trajectories
as simple sequences without considering spatial relations among
locations [12]. This approach typically divides an area into multiple
cells to form a vocabulary, applying language processing methods
to trajectories composed of these cells. However, vehicle trajecto-
ries can be more accurately represented using road segments. The
application of map matching methods can further enhance the tra-
jectory recovery task. From an adversary’s perspective, an intuitive
way to extract trajectory information from embedded vectors is to
leverage a road network, which is the focus of this paper.

3.2 Attack Model

Basically, the adversary obtains an embedded vector z of a trajec-
tory t. This trajectory and the related vector are termed the target
trajectory and the target embedding, respectively. We assume that
the adversary has city-level information about the area where the
target trajectory is located. Additionally, the adversary can obtain
the city’s road network from online map resources. The goal of
the adversary is to reconstruct the original input trajectory from
the given embedding. Achieving this goal can expose private in-
formation such as home and workplace locations and even pose
a threat to personal security. We follow the commonly studied
assumption of the black-box scenario where the target model f
(the representation model used to generate the target embedding)
is already pre-trained and its parameters are frozen [19, 27, 45].
The adversary can only access the target model without knowing
the model architecture and parameters. The adversary keeps an
auxiliary trajectory dataset Dgy,, Which contains trajectory data lo-
cated in the same area as the target trajectory. The auxiliary dataset
can be generated in various ways. The adversary can collect real
vehicle trajectories recorded by GPS devices. If the adversary has
no capability to collect trajectory data, an alternative method is to
create a synthetic dataset. For example, the adversary can generate
random source-destination pairs and obtain trajectories through
navigation services. while individual human movement patterns
exhibit significant variation, human vehicle trajectories generally
follow similar distributions at a macro level [28]. We assume that
the auxiliary dataset has a distribution similar to that of the target
trajectory.

In this paper, we consider two types of adversary based on their
ability to query the model. The first adversary can access the model
without restriction, allowing one to construct a large-scale attack
dataset and subsequently train an attack network. The provider
of the trajectory representation model is a natural example of an
adversary of this type. For the second adversary, we relax the as-
sumption by limiting the number of queries that the adversary can
make to the model to a far smaller number. This type of adversary
can arise in various scenarios, such as when service providers re-
strict user access to the model or when the attacker obtains only a

Haochen Han, Shuaiyu Yang, Jiaxin Ding, Luoyi Fu, Xinbing Wang, and Chenghu Zhou

small number of samples from a data breach. It is also possible that
the adversary is unable to afford the high cost of numerous queries.
Since the number of available auxiliary trajectories corresponds to
the number of queries, we refer to the size of the auxiliary dataset
as the maximum number of queries for simplicity. Formally, the
attack is defined as follows.

t=A(z f, Daux)- (1)

4 Adversarial RECONSTRUCTION ATTACK

In this section, we present the proposed adversarial reconstruction
attack (ARA) in different settings. Adversary 1 learns a decoder with
unlimited queried data to directly recover the trajectories. Adver-
sary 2 searches for roads whose distance coordinates to pre-selected
landmarks are most similar to those of the original trajectory and
links them to form a reconstruction. We refer to the two attacks as
ARA-1 and ARA-2 for simplicity.

4.1 Attack 1: Trajectory Reconstruction Attack
with Unlimited Queries

With unlimited queries to the target model, the adversary can fully
exploit the information contained within the embedded vectors and
thus train an attack neural network to recover the target trajectory.
Figure 2 shows the overall process of this attack. To invert a trajec-
tory given its embedding, we propose to use a generative network
®, computing the next probable point based on the embedding and
previous outputs by maximizing the probability of the mapped
trajectory Pr(t;?g(p | f(taux)), where tgyx = [p1,p2,---,pn] de-
notes a trajectory of n points from the auxiliary dataset Dgyx and
f is the target model. To construct the training set, the adversary
sends queries with auxiliary trajectories to the target model and
obtains mappings from trajectories to their embeddings. During
the training stage, the embedding is used as features. We perform
a map matching algorithm [24] on the GPS point trajectory tgyx
to obtain the mapped one t;’;‘;f’ = [o1,02,...,0y7] which serves
as the embedding label. The mapped trajectories need to be set
to a uniform length n;,4y, facilitating efficient batch processing.
For a trajectory longer than the length, we reserve the source and
destination nodes and randomly sample the rest until the length
reaches nmqx. Trajectories shorter than np,qx are padded to match
the uniform length. The reconstruction network @ is trained by
minimizing the cross entropy loss at each step:

Nmax

Lo(tgd';00) == > 10g(Pr(0; | f(tawx),01,02,...,0i-1)), (2)

i=1

where v; denotes the i-th node in the mapped trajectory. In the
inference stage, the target embedding is input to the reconstruction
model and the adversary obtains a node sequence. By mapping the
sequence onto the road network, the adversary can further obtain
a complex-shaped trajectory that approximates the locations and
directions of the target trajectory.

It should be noted that the attack network is essentially a one-to-
many decoder based on the frozen target encoder model. Instead of
using a sequence as the input to the encoder, the trajectory embed-
dings are projected to the hidden dimension of the attack model

Adversarial Reconstruction of Trajectories: Privacy Risks and Attack Models in Trajectory Embedding

[- " ;
Trajectory
Embedding vz
z Map
I v Matching

/ d

Trajectory
t

Figure 2: Attack framework of attack 1. The reconstruction
network is a decoder which takes a trajectory embedding as
input and generates a node point sequence. A map matching
algorithm is then applied to the generated sequence to obtain
a precise path.

and then fed to the decoder as the initial input. The model @ re-
ceives the embedding as input and then computes the hidden state.
The hidden state undergoes two processes: first, it is decoded to
generate the output node which is essentially a multi-class classi-
fication task; second, it is passed to the next decoding unit. After
the final unit, we obtain a sequence of output nodes. Then a map
matching algorithm [24] is applied to this sequence to better fit the
information from the road network, resulting in the reconstruction
f of the target trajectory.

4.2 Attack 2: Trajectory Reconstruction Attack
with Limited Queries

In the first attack, the adversary needs to send numerous queries
to train the attack network. For an adversary with relatively few
queries, the trained attack network can yield a catastrophic result.
In such situations, we propose to locate a series of key points that
the target trajectory is likely to pass through using landmarks. The
adversary uses the queried trajectories as landmarks, computing
distances between between road segments and the selected tra-
jectory landmarks as coordinates, along with a neural network to
estimate the coordinate of the target embedding. By selecting road
segments with the most similar coordinates, the adversary can in-
fer the key road segments of the original trajectory. The detailed
process is presented in Algorithm 1.

We first select several trajectories from Dy, x as landmarks. Here
the number of landmarks m is set to be small (less than 5 in this
work), following the setting in the previous network alignment
studies [26]. We denote distance(t1, t2) to represent the distance
between trajectory t; and t2. A toy example is shown in Figure 3.
We designate the central red point as the target location, and the
green trajectories as the landmarks. The blue line segments repre-
sent the shortest paths from the target point to the landmarks, with
the lengths corresponding to the nearest Euclidean distances be-
tween the point and the landmarks. These distances are considered
as a coordinate, where nearer points have closer coordinates. We
assume that the adversary, lacking precise knowledge of the target
point’s location, can obtain an approximate distance coordinate of
the target point. By repeatedly computing distance coordinates for
various locations throughout the area, the adversary can approx-
imate the target point’s location by selecting the point with the
smallest distance coordinate error. Given that the coordinates are

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Algorithm 1 Attack with Limited Queries

Input: Target embedding z, target model f, road segment set &,
auxiliary dataset Dy, landmark number m, trajectory part
number k, most similar road number ¢

Output: The reconstructed trajectory ¢

i 0

2: Send queries: Zaux < f(Daux)

3: Train estimation networks {‘I’i}l'.’:l with (Dauxs Laux)
4: Select landmarks I, s, . .., I € Daux

5: fori=0,1,...,k-th trajectory part do

6: Target coordinate y* « 0

7. Road coordinate xi, xé, R xlié)\ —0

8. for j=1,2,...,m-thlandmark /; do

9: [—1j

10: Y — ' UTi(z f(])

11: forw=12,...,|E|-throad ry, € & do

12: T Iy

13: xk e xi U distance(r, 1%

14: end for

15: end for

16: Sortry,ra,....rg| on lIxi, — y*|| in an ascending order

17: Selected road set R « {r1,r2,...,7¢}
18: Find center pc = Y, ,eg r/|R|

190 fe—tUpc

20: end for

21: return

not exact, this approach can be generalized by clustering a set of
points with the smallest differences. As Euclidean distances cannot
be applied to trajectories of different lengths, we utilize standard tra-
jectory distance metrics to locate a target trajectory, which can be
Hausdorff distance [3], Fréchet distance [1], dynamic time warping
(DTW) [42], edit distance on real sequences (EDR) [5], etc. These
distance metrics are inherently designed to compare two trajecto-
ries in both locations and directions, and are thus unsuitable for
comparing a single point to a trajectory. Instead of using individual
spatial points as in the toy example, we utilize road segments as
units to locate the target trajectory.

Because this landmark method can only locate one position at
a time, we further divide the trajectory into multiple segments
and reconstruct the entire trajectory by locating the endpoints of
each segment. Specifically, we divide the trajectory into k equal
segments and consider the points near each division point as a
sub-trajectory. This means that a trajectory divided into k parts has
k+1 subtrajectories, with the first part and the last part shorter than
the others. By locating different subtrajetories using landmarks, we
can link the located positions to form a rough directed trajectory.
For instance, we construct a source-destination pair when k equals
1, and add a midpoint when k equals 2. We denote the i-th (i =
0,1,...,k) subtrajectory of a trajectory t = [p1,pa,...,pn] as t!
that includes the points whose indices are around ["TX’J

We use road segments as the basic trajectory unit to infer the
probable location of a subtrajectory. For the i-th subtrajectory of the
landmarks, the w-th (w = 1,2,...,|&|) road segment r has a coordi-

nate with respect to the subtrajectory as x%, = [(x%,)1, (x%,)2, ..., (x}))m],

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

where (xfw)j = distance(r, I') denotes the distance between the w-
th road r,, and that part of j-th (j = 1,2,...,m) landmark /.

saigueiros
i

Francos,

%

—— —
~L

Trindad®es,
PTG
Porto /5 1.4 J

4 “Aliados Canipo
@ 20de Agosto,

Heroisn

{2 Ponte

oo V - “infante ‘\’//‘

£ T W 4
:) desio

Pontest <44 o

Figure 3: A toy example illustrating the distance coordinate of
trajectory landmarks. The green trajectories are pre-defined
landmarks and the red point is the target location. The dis-
tances between the given point and these landmarks are
computed as the lengths of the blue line segments. These dis-
tances serve as a coordinate in a multi-dimensional space. By
comparing an approximate coordinate with the best-matched
coordinates across the area, an approximate location can be
identified.

The next is to compute the distance coordinate of the target
trajectory with the target embedding. We propose to train a distance
estimate network ¥/ which takes in two embeddings as input and
outputs the distance between the certain i-th subtrajectory of the
two original trajectories:

Y (f (1), f(t2)) = distance(t], 1}). ®)
In this way, we can estimate the distance between the target tra-
jectory and the landmarks by feeding them into ¥ and then obtain
an approximate distance coordinate of the target trajectory. This
network can be trained on a small auxiliary data set. For any trajec-
tory pair from the auxiliary trajectories, the network ¥ minimizes
the squared error between the output and the distance of the two
trajectories. To construct the features of the inputs, we concatenate
the two trajectory embeddings, as a result of which the output is
not symmetric for different input orders. Consequently, the dis-
tance needs to be computed as the average of the inputs of the
two orders. Essentially, this distance computing method extends
the size of the auxiliary dataset to a second order O(|Daux|?),
which allows for training with fewer queries. The target coordinate
yi = [yi, yé, ..., y,] can be computed by:
1 1
i = ¥ (Z,f(l))er‘P (f(l),Z), @
where ¢ is the target trajectory and [is the j-th trajectory land-
mark from Dgyy. We implement clustering on the g roads with
coordinates most similar to the target trajectory by computing the
average location of the selected roads. By repeatedly computing
the k + 1 subtrajectories using landmark locating, the adversary

Haochen Han, Shuaiyu Yang, Jiaxin Ding, Luoyi Fu, Xinbing Wang, and Chenghu Zhou

can obtain a (k + 1)-point trajectory, representing an inversion of
the target embedding.

5 EVALUATION
5.1 Experimental Setup

Dataset. Our experiments are conducted on the real-world dataset
Porto [25]. Porto is an widely used open-source dataset released in a
Kaggle competition which consists of over 1.7 million taxi trajecto-
ries from 2013 to 2014. We randomly select 10,000 trajectories from
it as the target trajectories, which are embedded into vector repre-
sentations by the target model. We download the road map of Porto
from OpenStreetMap! and build the road network G = (V, &,X)
as defined in Section 2.1 for attack purposes. We implement a map
matching algorithm [24] to obtain mapped trajectories and retain
only trajectories with a Hausdorff distance of less than 500 meters
from the original trajectory as training data for the adversary.
Trajectory Embedding Models. We use four trajectory embed-
ding models to perform our attack.

e Transformer [32] is an embedding model for sequential
data by leveraging self-attention mechanisms to capture
contextual relationships within the input sequence. We treat
trajectories as cell sequences and use a masked prediction
task to train the model.

e T2vec [20] converts trajectories to cell sequences and learn
a sequence-to-sequence representation model with recon-
struction loss.

e NeuTraj [40] utilizes a metric learning method in a recur-
rent neural network (RNN) architecture for fast similarity
computation.

o START [17] uses a graph attention network to generate road
representations and leverages a Transformer architecture to
learn trajectory representations based on masked prediction
and contrastive learning.

The chosen models each represent a typical category of trajectory
embedding models. Transformer is a pure sequence model without
consideration of spatial information. T2vec belongs to the encoder-
decoder architecture with a reconstruction loss. NeuTraj is designed
specifically for similarity computation in a supervised learning
pattern. START stands for the GNN plus a sequence model type.
All the embedding models are frozen before the attack experiments.
We set the dimension d of the output trajectory embeddings to
be 64, 128 and 256, which are commonly used in the real-world
applications.

Implementations. All experiments are conducted on Ubuntu 20.04
with an NVIDIA GeForce 3090 GPU. We use PyTorch 1.12.1 to
implement all the embedding models and attack models.

5.2 Performance of Attack 1

Experimental Settings. For adversary 1, an RNN model with a
hidden dimension of 2d and an output dimension of |&| is trained as
the reconstruction network ®. We utilize the gate mechanism [9] to
capture data dependencies and use Softmax as the activation func-
tion of the output layers. The maximum length of the output npmax
is set to be 20. We randomly select 100,000 trajectories from Porto

!https://www.openstreetmap.org/

https://www.openstreetmap.org/

Adversarial Reconstruction of Trajectories: Privacy Risks and Attack Models in Trajectory Embedding

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Table 2: Comparison of the performance of ARA-1 and baselines with embedding dimensions at 128. Absolute distances HD
and FD are measured in meter and normalized distanced NHD and NFD are relative to the diameter of the trajectory.

Model Method PrecisionT Recallf F17 HD| NHD| FD| NFD|
MLC 0.7348 0.5172 0.5312 - - - -
Transformer EIA 0.6642 0.1875 0.2895 408.24 0.1450 602.16 0.2085
ARA-1 0.8358 0.7784 0.7984 388.19 0.1497 452.15 0.1761
MLC 0.6687 0.2817 0.3633 - - - -
t2vec EIA 0.5796 0.1976 0.2887 528.27 0.1748 617.71 0.2037
ARA-1 0.8938 0.8447 0.8642 243.91 0.0948 290.36 0.1131
MLC 0.7687 0.4855 0.5245 - - - -
NeuTraj EIA 0.5893 0.1988 0.2928 539.67 0.1809 595.32 0.1991
ARA-1 0.8631 0.8067 0.8281 271.45 0.1061 313.50 0.1226
MLC 0.7688 0.4529 0.4866 - - - -
START EIA 0.5895 0.2289 0.3231 613.45 0.2027 734.08 0.2399
ARA-1 0.9262 0.8834 0.9012 272.55 0.1031 333.30 0.1268

that do not overlap with the target trajectories as the adversary’s
auxiliary data, where the ratio of the training set to the validation
set is set to 9:1. We compare our method with two baseline attacks
to demonstrate the efficiency of the proposed attack.

e Multi-label classification (MLC) [31] ignores the spatial
dependencies of points in a trajectory. The adversary trains
a Multi-Layer Perceptron (MLP) with binary cross entropy
loss to predict nodes of the original trajectory ¢ given the
trajectory embedding z. We set two hidden layers with 2d
dimension.

e Embedding inversion attack (EIA) [12] ignores the inter-
action between the vehicle trajectory and the road network
and removes the map matching stage of our proposed attack.
By dividing the whole area into cellular grids, the attacker
aims at predicting a cell sequence of the original trajectory.

Evaluation Metrics. We consider two types of metrics: classifi-
cation metrics and geometry metrics. The classification metrics
include node-level precision, recall and F1 score for adversary 1
in the reconstruction network. This type of metrics can evaluate
the performance of the proposed method in recovering the origi-
nal trajectory nodes. The geometry metrics measure the difference
between the original trajectory and the reconstructed trajectory.
We select Hausdorff distance (HD) and Fréchet distance (FD) as
the distance metrics. Hausdorff distance measures the worst-case
mismatch between two sets, which is highly sensitive to outliers,
while Fréchet distance focuses on the continuous alignment be-
tween two trajectories, which is sensitive to the order of points. It
is noted that the trajectories vary in lengths, as a result of which an
absolute distance cannot fully capture the reconstruction error. We
normalize these distances by dividing the distances by the diameter
of the minimum enclosing circle of the original trajectory, denoted
as normalized Hausdorff distance (NHD) and normalized Fréchet
distance (NFD).

Comparison with Baselines. A reconstruction example by ARA-1
is shown in Figure 4(a), where the blue line represents the original
trajectory and the red line represents the reconstruction from its
embedding. The reconstructed trajectory by the adversary almost

(b) ARA-2

Figure 4: Examples of the reconstructed trajectories of the
two attacks with ARA-1 on (a) and ARA-2 on (b). The blue
trajectory is the original trajectory and the red trajectory is
the reconstructed trajectory.

coincides with the original trajectory and can even fill in gaps
at sparsely sampled locations. We compare our method with the
baselines (MLC and EIA), and the experimental results are displayed
in Table 2, where the trajectory embedding dimension is set to
128. As MLC only predicts a node set without sequence, we do

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

not compute the geometry metrics for it. It can be seen that our
proposed ARA-1 method outperforms the two baselines on all four
embedding models. For the classification metrics, the reconstruction
attack achieves a dominating F1 score of almost 0.8 on all models,
indicating the vast majority of points in the original trajectories
are recovered, while the other two methods has F1 scores of no
more than 0.6. This result reveals the high efficiency of leveraging
road matching in the attack works. Compared with EIA, trajectories
reconstructed by ARA-1 has smaller values in all four geometric
metrics, which demonstrates that the reconstructed trajectories
have positions closer to and larger directional similarities with the
original trajectories. This is consistent with the classification metric
results, since better classification implies closer distances.

—+— Transformer —=— t2vec NeuTraj —=+— START
0.95 0.30
0.90
0.25
0.85
o
2080 a 0.20
S
4 S
@07 0.15
0.70
0.10
0.65
0.60 0.05

64 128
Dimension of Embeddings

Figure 5: F1 scores and normalized Hausdorff distances (NHD)
of our reconstruction attack on all target models given dif-
ferent trajectory embedding sizes, i.e. 64, 128 and 256.

Impact of Trajectory Embedding Dimension. To explore the
influence of trajectory embedding dimension, we conduct our at-
tack on different sizes: 64, 128 and 256. Figure 5 displays the ex-
perimental results. F1 score and NHD are used to represent the
classification and geometry metrics, respectively. We observe a sig-
nificant decrease in the performance of Transformer embeddings
at an embedding dimension of 64, while the attacks perform stably
for the other three models across different embedding sizes. From
the representation perspective, this result partially demonstrates
the embedding capability of the representation model. Increasing
the embedding dimension from 64 to 128 yields a significant im-
provement, whereas increasing it from 128 to 256 does not store
useful information. This finding is consistent with the studies on the
embedding methods [17, 20, 40]. As Transformer is not designed
specifically for spatial data, it needs a larger dimension to fully
exploit the trajectory information.
Impact of Training Size. It is important to verify the necessity and
practicality of our attack. In our attack 1, we reconstruct trajectories
from vector representations with a neural network. This supervised
learning task is highly dependent on the size of the training set. If
the adversary does not have enough trajectories or is difficult to
access the representation model in a black-box manner to obtain a
sufficient amount of representation data, the performance of this
attack can be significantly compromised. We illustrate how the
attack effectiveness changes as the size of the training set varies,
as shown in Figure 6.

As we can see, the performance of reconstruction attack with the
RNN model remains satisfactory when the size of the training set

Haochen Han, Shuaiyu Yang, Jiaxin Ding, Luoyi Fu, Xinbing Wang, and Chenghu Zhou

exceeds 1x10%. When the size of the training set is reduced to 1x103
or less, both the Hausdorff distance and the normalized distance
relative to the diameter of the trajectory increase significantly. At
the size of the training size reaches 1x10Z%, the performance becomes
highly unstable. The average Hausdorff distance to the original
trajectories exceeds 2,000 meters for most of the target trajectories,
and the normalized Hausdorff distance is also greater than 1.0.
This indicates that the predicted trajectory is probably outside the
minimum enclosing circle of the trajectory. These experimental
results demonstrate that while our attack ARA-1 performs well
with sufficiently large datasets, it cannot cope with small training
sets.

5.3 Performance of Attack 2

Experimental Settings. For adversary 2, we train an MLP as
the distance estimation network ¥. The MLP consists of an input
layer with dimension of 2d, two hidden layers with dimension of
2d, and an output layer with dimension of 1. We use Relu as the
activation function of the hidden layers. The predicted distance
is the Hausdorff distance of the input embedding pair which is
linearly scaled to the range of 0-1, and Sigmoid is chosen to be the
activation function of the output layer. We set the landmark number
m to be 4 and the most similar road number g to be 10. Considering
that the errors of the reconstructed trajectories accumulate with
the trajectory part number k, we set different values of k, i.e. k €
{1,2,4}, to compare the experimental results. We fix the query
number to 100 as ARA-1 has a significant performance decline
when the data volume reaches 100. Due to the fact that we set
the trajectory data queries to be a small number, learning method
cannot provide a reliable result as shown in Section 5.2. We do not
compare with other baselines and validate our attack scheme based
on a small number of queried data.

Evaluation Metrics. We skip the classification metrics as there
exist no classification tasks; we only compute geometry metrics
defined in Section 5.2. In addition to the distance between the
original trajectory and the reconstructed trajectory, we take the
points of the reconstructed trajectory and compute the minimum
distance between the points and the original trajectory. We denote
the absolute distance as PD and the distance normalized by the
diameter as NPD.

Impact of Subtrajectory Number k. The subtrajectory number k
plays a vital role in the performance of attack 2. A small k implies
simple reconstruction, while a large k means complex but also accu-
mulates errors. Table 3 shows the geometry metrics of ARA-2 with
respect to different subtrajectory number k, where the embedding
dimension of the trajectory is set to be 128. Compared to the results
in Figure 6, we observe that ARA-2 performs better on small-scale
datasets, with all geometry metrics approximately half of those
of ARA-1. For instance, we can achieve 1140.72 meters Hausdorff
distance on NeuTraj model. An example with k = 2 is shown in
Figure 4(b), where the blue line represents a original trajectory
and the red line represents the reconstruction from its embedding.
Although the distance is larger compared to that with unlimited
queries, it can be seen that the reconstructed trajectory can still
capture the approximate location and direction of the original tra-
jectory. In addition, we observe that all distance metrics are largest

Adversarial Reconstruction of Trajectories: Privacy Risks and Attack Models in Trajectory Embedding

—4— Transformer

—8— t2vec

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

NeuTraj —*— START

3000
2500
’g 2000
2 1500
~

1000 ¥

500

10° 10
Size of Training Set

10° 10
Size of Training Set

10? 10° 10?

10°

E 2000

[a]
Y- 1500

3000

2500

1000-

500-

10° 10
Size of Training Set

10° 104 108

Size of Training Set

Figure 6: Distances of ARA-1 on different sizes of the training set. Absolute distances HD and FD are measured in meter and
normalized distances NHD and NFD are relative to the diameter of the trajectory.

when k increases to 4. NeuTraj performs best when k equals 1 and
has the smallest distances among the four models, with all the other
models best at k = 2. As NeuTraj is the only model trained with a
supervised distance computation label, it is reasonable to expect
that our attack by locating with landmarks on this model can be
more precise, thereby providing higher-level information about the
trajectory when k increases to 2. For the other models, increasing
the points indicates the accumulation of errors, and thus the best
results are achieved when k equals 1.

Table 3: The performance of ARA-2 with 100 queries. Abso-
lute distances HD and FD are measured in meter and normal-
ized distances NHD and NFD are relative to the diameter of
the trajectory.

Model k HD| NHD| FD| NFD|
1 1522.25 0.6123 1873.38 0.7530
Transformer 2 1643.22 0.6804 1941.05 0.7964
4 167753 07039 2032.00 0.8358

1 1182.95 0.4811 157030 0.6197

t2vec 2 1279.15 05277 1533.11 0.6275
4 147745 06153 1799.74 0.7325

1 1188.88 0.4816 161453 0.6427

NeuTraj 2 1140.72 0.4720 1441.40 0.5951
4 118069 0.5002 1520.02 0.6288

1 165840 0.6570 2024.63 0.7970

START 2 1634.68 0.736 2080.06 0.8252
4 171849 07233 2253.15 0.8981

Performance of Segments at Different Positions. The experi-
ments show the efficiency of our attack 2, the complete trajectory
path can be reconstructed from the representation vector with only
a few trajectories. We find that different subtrajectory segments
exhibit varying levels of error. Figure 7 shows the distance between
the reconstructed points of different positions and the original tra-
jectories. We observed that overall the distances at the start and
end points are smaller than those in the middle sections for all
models. This result indicates that the distance between the start
and end points of trajectories are easier to predict compared with
the middle parts.

—4— Transformer —#— t2vec NeuTraj —+— START
1200 0.50
1100 045
1000
0.40
E 900
= So3s
£ 800 z
0.30
700 /
600 0.25 /
500 stare 14 12 3/4 End 0-20 gire 1/4 172 3/4 End
Position Position

Figure 7: The distances of different positions of the recon-
structed points. Absolute distance PD is measured in meter
and normalized distance NPD is relative to the diameter of
the trajectory.

5.4 Characterising Trajectory Embeddings

In this section, we analyze the performance of attack 2, specifically
why the predictions at the start and end points perform better than
those at other positions of the trajectory. By deleting portions of
trajectory data at different positions, we explore the varying atten-
tion that trajectory representation models give to different parts
of the trajectory. Specifically, we uniformly divide the trajectory
into ten parts, sequentially delete one part at a time, and directly
connect the remaining parts to form ten new reduced trajectories.
These reduced trajectories are input into the representation model
to generate embeddings, and we compute the similarity between
the embeddings of the reduced trajectories and the embedding of
the original trajectory using cosine similarity and Euclidean dis-
tance as metrics. Due to the different similarity metric ranges of
various models, directly comparing the similarity scores can ob-
scure comparative results. We normalize these similarity scores
by linearly scaling them to the 0-1 range, denoted as normalized
similarity and normalized distance. It is important to note that this
normalization can result in a normalized similarity score of 0, which
does not indicate that the embedding of this reduced trajectory is
orthogonal to that of the original trajectory, but that it has the
lowest similarity to the original trajectory embedding among all
ten reduced trajectories. From the perspective of representation
learning, the selection of the nearest neighbor trajectory is based
on choosing the one with the highest embedding similarity, rather

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

than selecting trajectories based on an absolute similarity thresh-
old. Normalizing the similarity scores does not alter their relative
magnitudes, and thus does not affect the performance of the vector
representations.

The experimental results are shown in Figure 8, where the x-axis
represents the position of the starting point of the reduced segment.
For instance, 0 indicates that the first one-tenth part (0%-10%) of
the trajectory is reduced. It can be observed that reducings at the
start and end points result in more significant changes for all four
models. This indicates that the start and end points receive more
attention, explaining why we achieve more effective performance
at the start and end points in Attack 2.

—+— Transformer —&— t2vec NeuTraj —+— START
10 bt 1.0
= [}
Los Q08
S5 5
= b
£ kil
706 bos
° o
O [
Nog -% 0.4
©
3 £
S
go2 Soz2
0.0 00| T
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Clip Range Clip Range

Figure 8: Normalized similarity of the embeddings of the 10
reduced trajectories. The x-axis represents the position of
the starting point of the reduced segment. For instance, 0 in-
dicates that the first one-tenth part (0%-10%) of the trajectory
is reduced.

This result differs from findings in the natural language pro-
cessing field. In sentence embeddings, named entities with clear
semantics typically carry more information and thus hold greater
significance within the sentence [19]. The positional order of words
is less important because function words and other semantically
insignificant words can appear in various positions within the
sentence. For spatial trajectories, due to geographical constraints,
human beings cannot quickly transition from one location to a
distant one. The positions at the start and end can approximately
determine the positions in between. Our result is consistent with
this spatial attribute of trajectories.

6 RELATED WORK

Trajectory Representation Models. Trajectory data is typically
a sequence of points, with the common structures used to em-
bed trajectories into vector representations to be recurrent neural
networks (RNN) and transformer architectures [32]. We refer the
readers to [7, 36] for comprehensive overview of different trajectory
representation learning models, and introduce the target models
used in our attacks here. t2vec [20] utilizes an encoder-decoder
framework to learn trajectory representations, trained by recov-
ering trajectories based on masked ones. NeuTraj [40] is another
RNN-based trajectory embedding model that leverages a deep met-
ric learning approach for computing trajectory similarity in linear
time. START [17] utilizes the typical two-stage learning pattern:
first, training a graph neural network over the road network, and
second, learning trajectory representations through road embed-
dings by combining masked prediction and contrastive learning.

Haochen Han, Shuaiyu Yang, Jiaxin Ding, Luoyi Fu, Xinbing Wang, and Chenghu Zhou

It integrates spatio-temporal information and leverages the more
efficient Transformer framework, achieving state-of-the-art results.
These models encompass typical methods utilized in the field of
trajectory representation learning. Our attacks can be extended to
other models in the same manner.

Embedding Inversion Attack. Although embedding models pro-
vide a generalized solution for various downstream tasks, the poten-
tial of information leakage needs to be addressed. The adversary can
learn sensitive attributes of data embeddings from target models.
Embedding inversion has been extensively studied in the graph do-
main. Chanpuriya et al. [4] propose an optimization algorithm to re-
cover a graph from its node embeddings in a white-box setting. For
the black-box setting, there exist multiple attack studies [13, 16, 39]
focusing on the link identification task. These studies use auxiliary
data and train a shadow model, which requires numerous interac-
tions with the embedding model, which is similar to the setting
of our attack 1. Zhang et al. [45] proposes a graph reconstruction
attack with auxiliary graph-level embeddings in a black-box setting.
MNEMON [29] is a model-agnostic graph recovery attack frame-
work that can recover graph edges only through access to node
embeddings without interacting with the target model. This setting
is similar to that of our attack 2. In the area of natural language
processing (NLP), Song et al. [31] investigate the embedding in-
version attack in both white-box and black-box scenarios. They
treat sentences as non-sequential data, and only provide a word set
that the original sentence may contain. GEIA [19] addresses this by
using a transformer architecture to sequentially generate predicted
words to form a sentence. The only work on trajectory embedding
inversion [12] follows the traditional black-box setting. It directly
adopts methods derived in NLP and neglects the spatial relation of
trajectories. Our work improves on this by incorporating the road
network into the attack and also provides a solution for scenarios
with few interactions.

7 CONCLUSION

In this paper, we investigate the privacy risks associated with tra-
jectory embeddings from an adversarial perspective, proposing two
effective attack models. Our extensive experiments demonstrated
that these attacks significantly outperform baseline methods, reveal-
ing substantial vulnerabilities. We found that trajectory embeddings
emphasize the start and end points, making them particularly sus-
ceptible to privacy breaches. Our work highlights the urgent need
for robust privacy-preserving mechanisms in spatio-temporal data
embedding-based analysis. Our work informs the development of
more secure trajectory embedding methods, ensuring that the ben-
efits of trajectory analysis can be realized without compromising
individual privacy, and advancing the balance between data utility
and privacy in spatio-temporal data mining.

Acknowledgments

This work is supported by NSF China under Grant No. 61960206002,
62202299, 62020106005, the National Key Research and Develop-
ment Plan No. 2022YFB3904204, Shanghai Natural Science Founda-
tion No. 22ZR1429100.

Adversarial Reconstruction of Trajectories: Privacy Risks and Attack Models in Trajectory Embedding

References
[1] Helmut Alt and Michael Godau. 1995. Computing the Fréchet distance between

[2

3

[10

[11

[12

[14

(15

[16

[18

[19

[20

[21

[

=

]

]

]

]

]

]

two polygonal curves. International Journal of Computational Geometry & Appli-
cations 5, 01n02 (1995), 75-91.

Miguel E Andrés, Nicolas E Bordenabe, Konstantinos Chatzikokolakis, and Catus-
cia Palamidessi. 2013. Geo-indistinguishability: Differential privacy for location-
based systems. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security. 901-914.

E Belogay, C Cabrelli, U Molter, and R Shonkwiler. 1997. Calculating the Hausdorff
distance between curves. Inform. Process. Lett. 64, 1 (1997).

Sudhanshu Chanpuriya, Cameron Musco, Konstantinos Sotiropoulos, and Char-
alampos Tsourakakis. 2021. Deepwalking backwards: from embeddings back to
graphs. In Proceedings of International Conference on Machine Learning. 1473~
1483.

Lei Chen, M Tamer Ozsu, and Vincent Oria. 2005. Robust and fast similarity
search for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data. 491-502.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Proceed-
ings of International Conference on Machine Learning. 1597-1607.

Wei Chen, Yuxuan Liang, Yuanshao Zhu, Yanchuan Chang, Kang Luo, Haomin
Wen, Lei Li, Yanwei Yu, Qingsong Wen, Chao Chen, et al. 2024. Deep learning for
trajectory data management and mining: A survey and beyond. arXiv preprint
arXiv:2403.14151 (2024).

Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long, Yiding Liu, Arun Ku-
mar Chandran, and Richard Ellison. 2021. Robust road network representation
learning: When traffic patterns meet traveling semantics. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management.
211-220.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D
Blondel. 2013. Unique in the crowd: The privacy bounds of human mobility.
Scientific Reports 3, 1 (2013), 1-5.

Jiaxin Ding, Chien-Chun Ni, and Jie Gao. 2017. Fighting statistical Re-
Identification in human trajectory publication. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. 1-4.

Jiaxin Ding, Shichuan Xi, Kailong Wu, Pan Liu, Xinbing Wang, and Chenghu Zhou.
2022. Analyzing sensitive information leakage in trajectory embedding models.
In Proceedings of the 30th International Conference on Advances in Geographic
Information Systems. 1-10.

Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. 2020. Quantifying privacy
leakage in graph embedding. In Proceedings of MobiQuitous 2020-17th EAI Inter-
national Conference on Mobile and Ubiquitous Systems: Computing, Networking
and Services. 76-85.

Nathan Eagle, Alex Pentland, and David Lazer. 2009. Inferring friendship network
structure by using mobile phone data. Proceedings of the National Academy of
Sciences 106, 36 (2009), 15274-15278.

Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. 2021.
E2dtc: An end to end deep trajectory clustering framework via self-training. In
Proceedings of the 2021 IEEE 37th International Conference on Data Engineering.
696-707.

Xinlei He, Jinyuan Jia, Michael Backes, Neil Zhengiang Gong, and Yang Zhang.
2021. Stealing links from graph neural networks. In Proceedings of the 30th
USENIX Security Symposium. 2669-2686.

Jiawei Jiang, Dayan Pan, Houxing Ren, Xiaohan Jiang, Chao Li, and Jingyuan
Wang. 2023. Self-supervised trajectory representation learning with temporal
regularities and travel semantics. In Proceedings of the 2023 IEEE 39th International
Conference on Data Engineering. 843-855.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615-629.

Haoran Li, Mingshi Xu, and Yangqiu Song. 2023. Sentence Embedding Leaks
More Information than You Expect: Generative Embedding Inversion Attack to
Recover the Whole Sentence. In Proceedings of Findings of the Association for
Computational Linguistics. 14022-14040.

Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. 2018. Deep
representation learning for trajectory similarity computation. In Proceedings of
the 2018 IEEE 34th International Conference on Data Engineering. 617-628.
Yaguang Li, Kun Fu, Zheng Wang, Cyrus Shahabi, Jieping Ye, and Yan Liu. 2018.
Multi-task representation learning for travel time estimation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1695-1704.

[22]

[23]

[24

[25]

™
2

[27

[28

[29

@
=

[31

[32

[33

[34

[36

[37

(38]

(40]

(41

[42

[45

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Yiding Liu, Kaigi Zhao, Gao Cong, and Zhifeng Bao. 2020. Online anomalous
trajectory detection with deep generative sequence modeling. In Proceedings of
the 2020 IEEE 36th International Conference on Data Engineering. 949-960.
Mohammad Malekzadeh, Anastasia Borovykh, and Deniz Giindiiz. 2021. Honest-
but-curious nets: Sensitive attributes of private inputs can be secretly coded into
the classifiers” outputs. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security. 825-844.

Wannes Meert and Mathias Verbeke. 2018. HMM with non-emitting states for
Map Matching. In Proceedings of European Conference on Data Analysis.

Luis Moreira-Matias, Jodao Gama, Michel Ferreira, Joio Mendes-Moreira, and Luis
Damas. 2016. Time-evolving OD matrix estimation using high-speed GPS data
streams. Expert systems with Applications 44 (2016), 275-288.

Chien-Chun Ni, Yu-Yao Lin, Jie Gao, and Xianfeng Gu. 2018. Network alignment
by discrete ollivier-ricci flow. In Proceedings of International Symposium on Graph
Drawing and Network Visualization. 447-462.

Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang. 2020. Privacy risks of general-
purpose language models. In Proceedings of the 2020 IEEE Symposium on Security
and Privacy. 1314-1331.

Farjana Shatu, Tan Yigitcanlar, and Jonathan Bunker. 2019. Shortest path distance
vs. least directional change: Empirical testing of space syntax and geographic
theories concerning pedestrian route choice behaviour. Journal of Transport
Geography 74 (2019), 37-52.

Yun Shen, Yufei Han, Zhikun Zhang, Min Chen, Ting Yu, Michael Backes, Yang
Zhang, and Gianluca Stringhini. 2022. Finding mnemon: Reviving memories of
node embeddings. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 2643-2657.

Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-Laszl6 Barabasi. 2010.
Limits of predictability in human mobility. Science 327, 5968 (2010), 1018-1021.
Congzheng Song and Ananth Raghunathan. 2020. Information leakage in em-
bedding models. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 377-390.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 30 (2017).
Jingyuan Wang, Jiawei Jiang, Wenjun Jiang, Chao Li, and Wayne Xin Zhao.
2021. Libcity: An open library for traffic prediction. In Proceedings of the 29th
International Conference on Advances in Geographic Information Systems. 145-148.
Jingyuan Wang, Xin Lin, Yuan Zuo, and Junjie Wu. 2021. Dgeye: Probabilistic
risk perception and prediction for urban dangerous goods management. ACM
Transactions on Information Systems 39, 3 (2021), 1-30.

Jingyuan Wang, Ning Wu, Wayne Xin Zhao, Fanzhang Peng, and Xin Lin. 2019.
Empowering A* search algorithms with neural networks for personalized route
recommendation. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. 539-547.

Sheng Wang, Zhifeng Bao, J Shane Culpepper, and Gao Cong. 2021. A survey
on trajectory data management, analytics, and learning. Comput. Surveys 54, 2
(2021), 1-36.

Sheng Wang, Mingzhao Li, Yipeng Zhang, Zhifeng Bao, David Alexander Tedjop-
urnomo, and Xiaolin Qin. 2018. Trip planning by an integrated search paradigm.
In Proceedings of the 2018 International Conference on Management of Data. 1673~
1676.

Yong Wang, Guoliang Li, and Nan Tang. 2019. Querying shortest paths on time
dependent road networks. Proceedings of the VLDB Endowment 12, 11 (2019),
1249-1261.

Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. 2022. Linkteller: Recovering private
edges from graph neural networks via influence analysis. In Proceedings of the
2022 IEEE Symposium on Security and Privacy. 2005-2024.

Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing trajectory
similarity in linear time: A generic seed-guided neural metric learning approach.
In Proceedings of the 2019 IEEE 35th International Conference on Data Engineering.
1358-1369.

Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. 2017. Trajectory
clustering via deep representation learning. In Proceedings of the 2017 International
Joint Conference on Neural Networks. 3880-3887.

Byoung-Kee Yi, Hosagrahar V Jagadish, and Christos Faloutsos. 1998. Efficient
retrieval of similar time sequences under time warping. In Proceedings of the 14th
International Conference on Data Engineering. 201-208.

Nicholas Jing Yuan, Yu Zheng, Xing Xie, Yingzi Wang, Kai Zheng, and Hui Xiong.
2014. Discovering urban functional zones using latent activity trajectories. [EEE
Transactions on Knowledge and Data Engineering 27, 3 (2014), 712-725.
Mingxuan Yue, Yaguang Li, Haoze Yang, Ritesh Ahuja, Yao-Yi Chiang, and Cyrus
Shahabi. 2019. Detect: Deep trajectory clustering for mobility-behavior analysis.
In Proceedings of the 2019 IEEE International Conference on Big Data. 988-997.
Zhikun Zhang, Min Chen, Michael Backes, Yun Shen, and Yang Zhang. 2022.
Inference attacks against graph neural networks. In Proceedings of the 31st USENIX
Security Symposium. 4543-4560.

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Notations
	2.2 Trajectory Representation Learning

	3 PROBLEM FORMULATION
	3.1 Motivation
	3.2 Attack Model

	4 Adversarial RECONSTRUCTION ATTACK
	4.1 Attack 1: Trajectory Reconstruction Attack with Unlimited Queries
	4.2 Attack 2: Trajectory Reconstruction Attack with Limited Queries

	5 EVALUATION
	5.1 Experimental Setup
	5.2 Performance of Attack 1
	5.3 Performance of Attack 2
	5.4 Characterising Trajectory Embeddings

	6 RELATED WORK
	7 CONCLUSION
	Acknowledgments
	References

