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ABSTRACT

With the proliferation of the mobile networks and location-based
services, huge volume of user trajectories are collected to analyze
the similarity among users and further unveil human mobility pat-
terns for downstream tasks, such as point-of-interest recommenda-
tion and tourism planning. In recent works, trajectory embedding
methods have been studied as efficient ways of trajectory similar-
ity computation and effective inputs for downstream tasks, which
embed trajectories into latent vector spaces equipped with the
Euclidean distance to approximate the trajectory similarity and
capture the characteristics of human mobility patterns. However,
we demonstrate that such embedding, though hiding the locations,
can leak the sensitive information of the trajectories, combined
with auxiliary data. In this work, we propose trajectory embedding
attack schemes to analyze the sensitive information leakage of the
embedding vectors. In the experiment, we demonstrate that the
passing areas, visited ROIs, and exact shapes of the trajectories are
vulnerable under attacks on embedding vectors by the adversary
with auxiliary information.
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1 INTRODUCTION

With the proliferation of mobile networks and location-based ser-
vices, huge volume of spatio-temporal data is generated and col-
lected from various sources, such as the GPS records from devices
with location service, user check-in data on social media, user call
detail records by telecommunication companies, appearance of
vehicles captured via roadside units, etc. A sequence of the spatio-
temporal data of a user forms a trajectory, which reflects the mobil-
ity patterns and daily habits of the user. The large-scale trajectory
datasets provide us unprecedented opportunities to mine trajecto-
ries and study human mobility patterns, which can be leveraged
to traffic monitoring [10, 27], planning [26], tourism planning [25],
pandemics spread prediction [24], etc.

Trajectory data mining and analyses are inherited with difficul-
ties from the heterogeneity of trajectories: trajectories are typically
collected with nonuniform sampling rates and different sampling
lengths usually with data missing and sparsity, and organized in
various structures, which makes it hard for downstream tasks to
take advantage of most data mining and machine learning models
requiring uniform-dimensional vectors as inputs. Traditional fea-
ture extraction requires heavy labor and is not generally applicable
among different tasks. Moreover, similarity or distance computa-
tion between trajectories, which is the most fundamental problem
of trajectory analyses and mining tasks, such as clustering[14],
classification[13], anomaly detection[15], is time consuming. Such
distance metrics include Hausdorff distance , Fréchet distance,
Dynamic Time Warping (DTW), Edit distance on Real Edit dis-
tance with Real Penalty (ERP) [5], Edit Distance on Real sequence
(EDR) [6], etc. Most of these metrics require quadratic computation
complexity with respect to the sampling lengths of trajectories,
which makes it a hurdle to process large-scale trajectory data.

In face of the above challenges, there has been a new research
area of trajectory embedding, which embeds the trajectories into
uniform low-dimensional latent vector spaces to capture the char-
acteristics of trajectories, with various machine learning models,
such as Seq2Seq [16], LSTM [30], and Transformer [7], inspired
by the success of embedding models in natural language process-
ing and graph representation learning. Such embedding vectors
can be used as inputs to facilitate downstream tasks with general
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data mining and machine learning models [7, 13, 34]. Besides, the
similarity between trajectories can be thereby approximated with
the Euclidean distance or cosine distance between the embedding
vectors, reducing the quadratic complexity of trajectory distance
computation to linear [16, 29, 30, 32]. Therefore, trajectory embed-
ding models, inherently capturing human mobility from trajecto-
ries, have potentials to bridge the gap between trajectory data and
general data mining along with machine learning tasks requiring
uniform-dimensional vector inputs.

However, trajectory data is highly private and can reveal per-
sonal sensitive information, such as frequent locations [20], social
ties [11], personal mobility motifs [8], etc, and privacy issues of
location reports and trajectories of users have long been recognized
as a serious concern [1, 9]. In the real world applications, there
are usually demands for the trajectory embeddings to be shared
among different downstream tasks, or even shared to the public,
sometimes along with labels. A natural question to ask is whether
trajectory embedding vectors leak sensitive information of users.
Different from word tokens in word embedding and vertices in
graph embedding, spatio-temporal points on a trajectory are in-
herently correlated. We would also like to ask: is such correlation
preserved in the trajectory embedding as well? Will the adversary
revert the sensitive locations on the trajectories with auxiliary in-
formation? If the answer of either question is yes, the trajectory
embedding is not ready to be widely shared between different par-
ties. These questions lead us to initiate a systematic analysis of the
privacy of trajectory embedding models by conducting adversarial
inference attacks by taking advantage of such correlation and aux-
iliary information. We assume that the adversary can have certain
levels of auxiliary information, such as the embeddings of specific
locations, or the embeddings of auxiliary trajectory datasets. Such
assumptions are common and reasonable in the real world sce-
narios, since in different applications, the embedding models are
allowed to run locally on the users’ devices and request the users
to upload their embeddings for better service, or users are allowed
to make queries on the models, and therefore, the embedding vec-
tors of locations and trajectories can be obtained, not to mention
the possible embedding information leakage by adversary’s hack-
ing infrastructures with weak security guarantees. The attacks we
consider can be summarized into two classes: the similarity-based
attack and the learning-based attack. In the similarity-based attack,
the adversary wants to find an area passed by the user by linking the
trajectory embedding and the auxiliary information of the location
embeddings. The objective of the learning-based attack, is to find
the locations on trajectories that are frequently visited by users,
and to revert the shape of the whole trajectory, by training machine
learning models with the help of auxiliary trajectory datasets and
the corresponding embeddings. An example of these attacks can be
found in Figure 1.

To the best of our knowledge, our work is the first to study tra-
jectory embedding attacks. This work is inspired partly by previous
works of attacks on text embedding [19, 21], where the attacks
are conducted to recover the text or sensitive information from
word or sentence embeddings. However, the embedding attacks
on trajectories are significantly different from those on sentences,
since trajectories are inherent with spatio-temporal correlation and
geometric properties in contrast to co-occurrence and semantic

Jiaxin Ding, Shichuan Xi, Kailong Wu, Pan Liu, Xinbing Wang, and Chenghu Zhou

relations for natural language processing, and the way in which
such information is kept in the embedding is different, which needs
systematically studying. In this work, we first propose the poten-
tial risks of trajectory embedding, provide attack models based
on the spatio-temporal characteristics of trajectories, and design
new metrics to evaluate the performance of different attacks based
on the trajectory geometric properties. All above, we provide a
new framework to study trajectory embedding information leakage
risks, which, on the other hand, can also provide interpretation for
the information kept in the embedding. Our contribution can be
summarized as follows:

e To the best of our knowledge, we are the first to analyze the
sensitive information leakage in trajectory embedding mod-
els, which is also a thorough interpretation of the features
preserved in the trajectory embeddings from the viewpoint
of adversary.

e We propose two classes of attacks: similarity-based attack
and learning-based attack. We also propose evaluation met-
rics to analyze the sensitive information leakage of users.

e We conduct extensive experiments on different trajectory
embedding models under the attacks. The experiments demon-
strate that the trajectory embedding models are vulnerable
under attacks and can leak sensitive information of users.

2 RELATED WORK

Trajectory Embedding Models. Trajectory embedding models,
mostly based on Recurrent Neural Networks (RNN), are proposed
to capture features of trajectories and enhance performance of
downstream tasks such as similarity computation, clustering and
classification for different types of trajectories in real-world ap-
plications. With user check-in trajectory data, TULER [13] uses
trajectory embedding to link trajectories to users. At2vec [34] uti-
lizes a Seq2Seq framework to learn trajectory representation to
calculate activity similarity of users. For GPS trajectory data, t2vec
[16] adopts the encoder-decoder framework with cell sequences of
sub-trajectories as input, and its objective is to maximize the prob-
ability of the decoder recovering the original cell sequences given
the embedding vectors. NEUTRA]J [30] combines metric learning,
and improves the RNN-based model by adding a spatial attention
memory module. In Traj2SimVec [32], sub-trajectory distance and
optimal matching are included in the loss function to embed trajec-
tories with structural information. T3S [29] combines self-attention
mechanism and LSTM networks into the embedding model, to pre-
serve more structural and spatial information of trajectories. Toast
[7]is a Transformer-based embedding model. It utilizes a traffic
context aware skip-gram module for pre-training on road networks
and a trajectory enhanced Transformer module for learning road
segments’ and trajectories’ representations. Apart from works on
trajectory embedding models, there are also some studies on loca-
tion or POI embedding models. Geo-Teaser[35] adopts word2vec
framework and learns POI embeddings with temporal informa-
tion under different temporal states like weekdays and weekends.
DeepMove[37] adopts the Skip-gram framework to learn place
representations based on large scale human movement data. By
considering the co-occurrence of origin-destination locations for
extracting human mobility patterns, Yao et al. proposed a N-gram
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Figure 1: An example of attack results on t2vec trajectory
embedding model. The blue curve in the figures denotes the
original trajectory. The highlighted regions in (a), (b) are the
recovered passing areas and visited ROIs. The red curve in
(c) is the trajectory recovered from the embedding.

model to learn city zones’ embeddings[31]. TALE[23] utilizes a
tree structure in a hierarchical softmax model to extract temporal
information from user trajectories to learn distributed location rep-
resentations. CTLE[17] proposed a contextual location embedding
model based on bidirectional Transformer to better encode a loca-
tion’s variable functionalities, and a temporal encoding module to
incorporate temporal information into location embeddings. The
POI embedding is less sensitive and can be viewed as a special tra-
jectory embedding with only one location. In this work, we mainly
focus on the trajectory embedding.

Embedding Attacks. Embedding attacks are mainly studied in
the areas of natural language processing (NLP), and graph repre-
sentation learning. Pan et al. construct two attacks against general-
purpose language models, pattern reconstruction attack and key-
word inference attack, to obtain sensitive information about the
original text from embeddings [19]. Song et al. study the attack mod-
els for word embedding and sentence embedding in white box and
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black box scenarios, including embedding inversion, attribute infer-
ence attack and membership inference attack [21]. In the domain
of graph learning, adversarial attacks against graph embedding
models have been extensively studied in black box or white box
scenarios [2—4], and data poisoning is also discussed [22, 33].

As far as we know, there are no systematic studies on trajectory
embedding attacks and our work is the first study on information
leakage in trajectory embedding models.

3 PRELIMINARIES

In this section, we present the definitions and introduce the attack
methods in this work.

3.1 Definitions

Definition 1. (Trajectory). A trajectory T! (i = 1,2, ..) is a sequence
of points sampled from a continuous movement curve. Specifically,
Ti = [P{, P;, P;], where P; denotes the location of the j;j, point
of T%.

The locations on a trajectory are in the form of longitude and
latitude pair for GPS trajectories. Usually to reduce the complexity,
we can partition region into grid cells with acceptable resolution
and map the coordinate of a location Pji. to the cell Cj. it belongs to,

and thereafter we obtain a trajectory cell sequence of T?, denoted
Tt = [C1, Gy ... G
Definition 2. (Trajectory Embedding). An embedding model ®
maps a trajectory T to an embedding vector ¢! = &(T?) € RY.
Definition 3. (Region of interest) A region of interest (ROI) R is
a region that is frequently traversed by trajectories and has rich
semantic information.

Through clustering algorithms such as DBSCAN, trajectory
points can be clustered into multiple clusters, and ROIs can be
defined according to these clusters without further information.

3.2 Threat Model

The threat model consists of three parts: embedding model ®, sen-
sitive trajectory dataset Dg.p, and auxiliary trajectory dataset Dgyx.
(1) The trajectory embedding model ® generates the corresponding
trajectory embeddings based on the input trajectories. For the ad-
versary, the model ® can be queried, that is, if the adversary sends
trajectories to the model as input, the model will then output the
corresponding embeddings. The attack model is black-box, that
is, the adversary can only query the model without knowing the
details of the model. (2) The sensitive trajectory dataset Dgep, is
a dataset containing all the sensitive trajectories. These sensitive
trajectories are generated by some users and contain sensitive infor-
mation, such as the passing areas and visited ROIs. The trajectory
embeddings of all trajectories in Ds.p, constitute the sensitive em-
bedding set Esep,. For the adversary, only Egepn, but not Dgep, can
be obtained. The adversary employ attack methods to recover the
sensitive information contained in Dsep, by attacking Egep. (3) The
auxiliary trajectory dataset Dy, is the dataset obtained by the ad-
versary and used to assist and realize the attack. With the auxiliary
trajectory dataset, the adversary can extract popular areas (ROIs) in
the spatial region, and the trajectory embeddings can be obtained
by querying the embedding model. Then, the adversary uses these
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Figure 2: Overview of attack methods, including similarity-based attack and learning-based attack.

auxiliary trajectories and corresponding embeddings to train the
inference models and the inversion models. In our work, we pro-
pose two types of attack: similarity-based attack and learning-based
attack. An overview of the attacks is shown in Figure 2.

The fundamental assumption of the similarity-based attack, based
on the spatial correlation of locations on a trajectory, is that a tra-
jectory embedding should be more similar to the embedding of a
trajectory’s nearby area than that of a far-away area. Therefore, in
the similarity-based attack, the adversary infers the coarse-grained
area that a trajectory is likely to go through, with the auxiliary
information of embeddings of pre-defined spatial regions, which
are generally the embedding vectors of the centers of the regions,
and the regions are not necessarily divided the same as the original
embedding models. Here, we assume that the adversary can issue
queries on the embedding model on the location level.

In the learning-based attack, including location inference attack
and embedding inversion attack, the adversary’s objective is to in-
fer fine-grained sensitive information including exact locations and
shapes of trajectories, with the machine learning models trained
by the auxiliary information composed of an auxiliary trajectory
dataset and the corresponding embeddings obtained from the em-
bedding model. Here, we assume that the adversary is allowed to
query the embedding model on the trajectory level. Thus, in this
attack, the adversary can collect enough trajectory embeddings to
train their attack models to predict even more sensitive information
in the trajectory dataset.

All above, the three attack methods in our work are aimed at
three different attack goals. (1) The goal of the similarity-based
attack is to find an area through which the original trajectory passes.
(2) The goal of location inference attack is to predict whether a

trajectory passes some regions of interest (ROIs). (3) The goal of
embedding inversion attack is to invert trajectory embedding ®(T)
to obtain the original trajectory T.

4 PROPOSED ATTACK MODELS

In this section, we present the proposed attack models. Before get-
ting into the details of attack models, we first describe the way we
represent the space of trajectories with grid cells and data-driven
ROIs. In the attack models, since it is always hard, if not impossible,
to infer the exact coordinates of trajectory locations, it is reason-
able to define the success of an attack if the adversary can infer the
location within an acceptable range, such as grid cell region, near
the true location. Besides, in the learning-based attacks, it is more
convenient that the input and output of locations for the trained
adversarial models are tokenized into discrete labels, namely, re-
gions the locations belong to, instead of the real-valued coordinates,
analogous to the vocabulary in natural language processing tasks.
Therefore, it is necessary to divide the space trajectories cover into
regions for the attacks. In this work, we provide two ways to parti-
tion the trajectory location space. The first is uniform grid-cell par-
tition, which is adopted in similarity-based attack and embedding
inversion attack, where all cells form the cell set V = {Ci};=q.|v|-
The second is data-driven, clustering trajectory location points in
the auxiliary dataset to obtain the potential ROIs, which is used in
location inference attack.

4.1 Similarity-based Attack

The goal of the similarity-based attack is to find an area through
which the original trajectory passes, by computing the similarities
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between all areas’ embeddings and the trajectory embedding, which
corresponds to the scenario that the adversary can make location
queries on the embedding models and obtain the embeddings of
each area.

We show that with such limited auxiliary information, the ad-
versary can still infer the coarse-grained location information of
the trajectories. To implement such an attack, we break the whole
process down into three steps: (1) constructing the embeddings for
each grid cell; (2) searching for similar cells; (3) constructing dense
passing areas. The implementation process of the similarity-based
attack is shown in Algorithm 1.

Constructing Cell Embeddings. Without loss of generality,
the adversary can divide the space into uniform grid cells with ac-
ceptable resolution. A cell vocabulary V = {C;};-y.|| represents
all the cells. For each cell C;, the adversary obtains its embedding
®(C;) from the embedding model, by making location-level embed-
ding queries in the assumption. After traversing all cells in V, the
adversary forms the embedding matrix M, whose i;j, row is equal
to ®(Ci), M[i] = (C;) fori =1,2,...,|V|.

Searching for Similar Cells. When attacking an sensitive tra-
jectory embedding e, the adversary searches for k most similar cell
embeddings in M. The similarity can be calculated with cosine
similarity as follows:

ej-e
§j= —————
[leill - [lell

where e; = M[i] is the i;, row of M. Remark that other similarity
metrics, such as Euclidean distance, Pearson correlation coefficient
and Hamming distance, can also be used instead of cosine similarity.
After calculating all the similarity values, the adversary further finds
the k largest values to obtain the top k cells {Ctop,, Ctop,> ---» Ctop, }»
most closely related to the original trajectory.

Constructing Dense Areas. The next step is to cluster the top
k cells to obtain the areas that the original trajectory is most likely
to pass through. The density clustering algorithm, DBSCAN [12], is
adopted in this work. The k cells {Ctop,, Ctop,s ---» C“’Pk} are con-
verted back to two-dimensional coordinates {Prop, , Prop,s ---» Prop, }»
where Pyop, is the center of Cyop,. After that, the adversary uses
DBSCAN to divide these k points into density-based clusters and
chooses the largest cluster G as the dense set to construct the dense
area A, and uses Peenter = % Y. pec P as the center of this area.

fori=1,2,..[V| (1)

4.2 Learning-based Attack: Location Inference

When the adversary is allowed to query the embedding model with
enough auxiliary trajectories, learning-based attacks are possible
to conduct. It is reasonable to consider such an attack for three rea-
sons: (1) In reality, the adversary is likely to have access to querying
the embedding model, since the model is proposed to better handle
downstream tasks. So the adversary can easily obtain the embed-
ding set Eqyx for auxiliary trajectory dataset Dy (2) Usually it is
not difficult for the adversary to obtain auxiliary trajectory data as
prior knowledge. These data may be public trajectory datasets such
as Porto [18] and Geolife [36], or they may be generated by the ad-
versary himself, or they may even be artificial "fake" trajectories. (3)
In most instances, Dy, has almost the same distribution as Dsep,
if both datasets are large enough to reflect the common mobility
patterns in the whole area, so the label distribution of Dy can
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Algorithm 1 Similarity-based Attack

Input: Embedding model ®, vocabulary V, sensitive trajectory
embedding e, similar cell number k, DBSCAN distance thresh-
old e

: for C; in V do

M[i] = (Cy)

get s; based on Equation 1

: end for

: Searching for k largest values in {s;}:

topk({51}) = {St0p,St0pys - Stopy }

get coordinates of the top k mnearest cell centers

I I A LA

{Ptopl,Ptopz, e Ptopk}
8: Coordinates clustering:
9 G =DBSCANe ({Prop,. Prop, - Prop, })

Output: Center of the dense area: Peepter = % Yprec P

be considered to be a good approximation for that of Dge, within
limited error. Therefore, we propose two learning-based attacks
for the adversary to achieve fine-grained attack results with more
auxiliary data.

The first learning-based attack is the location inference attack,
whose goal is to predict whether a trajectory passes regions of
interest. In a spatial region, if some parts of it are frequently visited
by vehicles and pedestrians, it means that the parts are probably
with specific semantic information and certain functionality, such
as commercial area, entertainment zones, important crossings on
the road networks, tourist attractions, etc. Therefore, such regions
are regions of interest obtained from the real data, if no further
information is provided. If a trajectory passes through some of these
ROIs, the vehicle or the pedestrian is likely to have visited these
ROIs, where sensitive information of visiting such regions is easy
to reveal. With such information, the adversary can further infer
what the user may have done, leading to a potential privacy leakage
risk, given more related knowledge over the ROIs. For example, if
a trajectory starts or ends in a region where most visitors of the
region would go to a hospital, there is a good chance that the person
with the trajectory or the person’s family has recently fallen ill.
Such information, if obtained by an adversary, may further reveal
the user’s private information.

In the location inference attack, the adversary’s goal is to infer
the ROIs passed by the trajectory. To achieve this, the adversary
first needs to determine the ROIs to attack. One way is to take
data such as places of interest (POIs) from a publicly available
geographic dataset and use them to construct ROIs. The other way
is data-driven. The adversary can use the trajectory dataset he has
to obtain the regions that may be frequently visited and adopt them
as ROIs. In this work, we use the second method, considering that
the actual trajectories may better reflect how frequently each region
is visited and how popular it is.

Obtaining ROI Set and Training Labels. The first step in the
location inference attack is to obtain the ROI set R. The adversary
can use the auxiliary trajectory dataset to construct the location set
L = {Py, Py,...}. Using the density clustering algorithm DBSCAN,
these locations can be clustered into multiple clusters {G1, Gg, ...}.
Each cluster corresponds to an ROI, and the average coordinates of
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all points in the cluster are taken as the center of the cluster. Each
cluster is then given a radius r to frame the area covered by the ROL
To obtain the training labels, the adversary only needs to consider
which ROIs the trajectory has visited. The size of each label is
|R], and each element represents an ROL. When an element is 1, it
means that the corresponding ROI is visited. The implementation
of obtaining the ROI set is shown in Algorithm 2.

Algorithm 2 Obtaining ROI Set

Input: auxiliary dataset Dgqx, DBSCAN distance threshold €, DB-
SCAN min-samples k and ROI radius r
. L={}
2: for T = {P1, Py, ...} in Dgyy do
32 L—LUT
4: end for
5. G = {Gy, Gy, ...} =DBSCAN(L, €, k)
6
7
8
9

s R={}

: for Gin G do

Construct ROI R:
Get the ROI center: Peenter = %l Yprec P
Set the ROI radius: rg = r

11: R—R+R

12: end for

Output: ROI set R

-
<

Figure 3: An example of an ROI set obtained from auxil-
iary trajectory clustering. Each blue circle represents an ROL.
The adversary wants to find whether a trajectory passes
trough such ROIs in the location inference attacks.

Location Inference. The attack model is trained to infer ROIs
visited by the trajectory T given its embedding ®(T), which is a
multi-label classification (MLC) problem, where a binary label is
assigned to each ROI to denote whether it is visited by T. The
objective is to minimize the following cross-entropy loss function
measuring the difference between the predicted visiting probability
and the true probability:

Lurc == ) Yrlog(Vr) + (1 - Yp)log(1-Jr)  (2)
ReR
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where R is the ROI set, yR = P(YR|®(T)) is the predicted probabil-
ity that the ROI R is visited by the trajectory, conditioned on ®(T),
and Yp, is the truth whether the ROI R is visited or not, Yg = 1if R
is visited by T and 0 otherwise.

4.3 Learning-based Attack: Embedding
Inversion

The second learning-based attack is embedding inversion attack,
whose goal is to further invert trajectory embedding ®(T) to obtain
the original trajectory T. It is reasonable to consider such attack
considering that the result of location inference attack demonstrates
the feasibility of learning-based approaches to attack embedding
models. As mentioned earlier, with access to querying the embed-
ding model with auxiliary dataset Dgyx, the adversary is able to
obtain enough auxiliary embeddings to train an inversion model.

The inversion attack is the most challenging in the three attacks.
As we have introduced the spatial tokenization method, here, we
focus on recovering the tokenized trajectory, i.e. the cell sequence,
instead of the GPS coordinate sequence, mainly considering that dis-
crete tokens are more conducive to the establishment and training
of deep learning models. The shapes of trajectories do not change
much if any sampling points in the middle of a line segment are not
recovered considering that trajectory sampling points are highly
spatially correlated. Therefore, in order to simplify the attack model,
we assume that the trajectory sequences are of constant length here.
From the geometry perspective, we would like to recover the exact
shape of the trajectories, and therefore, the geometric distances
between the recovered trajectory and the original are also used to
evaluate the performance of attacks in our experiments.

Embedding Inversion. Recurrent neural network (RNN) is
used for embedding inversion, considering that trajectory is a typ-
ical sequence data. The initial input of the RNN network is the
embedding of a trajectory. Dealing with the input through multi-
layers, the network outputs a cell label at each step. From the second
step, the output of the previous step is taken as input to guide the
prediction of subsequent cells. The conditional probability of the
RNN network is as follows:

1

P(TEo(Th)) = P(O}|o(T)) [ | P(O}104,_,, @(Th),  (3)
t=2

where h; is the hidden state and O;' is the output cell for the iz,
trajectory at step f, P(O£|O§:t_1,d>(Ti)) = ]P(Oﬂht) is the condi-
tional probability that the output is Oi. The hidden state is then
multiplied by a projection matrix W, to obtain the output cell label

of the current step. The final conditional probability is:

. . . exp(Wjht)

P(O; =Cj|O,_,O(T") = =—————
t JIM1it-1 Zk€|(V| exp(tht)

where W; and Wy is the j;, and k;j row of matrix W.
The goal of training is defined as maximizing the probability of
outputting the correct cell sequences:

max | [ P(TEI@(TY)) (5)
i=1
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Cross entropy loss is used to measure the difference between the
target sequence and the predicted sequence, as follows:

n |1

L==>"%"logP(O}lh) (6)

i=1 t=1

With the above training process, the adversary can train the inver-
sion model with auxiliary trajectory dataset and the corresponding
embeddings to revert the original embeddings of the sensitive tra-
jectory dataset back to trajectories.

All above, we present the potential attacks from the adversary
based on trajectory similarity and machine learning to infer the
sensitive information of users, including passing areas, ROIs, and
exact shape of trajectories. Thereafter, we conduct experiments to
demonstrate the performance of such attacks.

5 EXPERIMENTS AND RESULTS

We implement the above attack methods on three embedding mod-
els and obtain sensitive information from trajectory embeddings.
The attack results demonstrate the sensitive information leakage
risk in trajectory embedding models.

5.1 Embedding Models and Datasets

Embedding Models. Three representatives of trajectory embed-
ding models, t2vec [16], NEUTRAJ [30] and Toast [7], are selected
as our attack targets. t2vec is a Seq2Seq deep representation learn-
ing method. During training, the model takes cell sequences of
sub-trajectories as input of the encoder to get embedding vectors,
with the objective of maximizing the probability for the decoder
to recover the cell sequence of the original trajectory. NEUTRAJ is
an RNN-based embedding model, which combines metric learning
with deep representation of trajectory, and improves the RNN-
based model by adding a spatial attention memory module. Toast
is a Transformer-based embedding model. Toast utilizes Skip-gram
framework to conduct pre-training on the road network and obtain
the representations of road segments. After that, the trajectory is
mapped to the road segments, and the trajectory representation
model is trained under a Transformer-based framework.

The reasons for choosing these three models are two-fold. First,
these models cover three typical representative approaches for pro-
cessing sequence data, namely Seq2Seq, RNN, and Transformer.
Second, they treat the trajectory data in different forms, namely,
grid cell sequences, real-valued coordinates, and walks on road net-
works. For t2vec, its input is spatially tokenized trajectory grid cell
sequences, while NEUTRAJ’s input is real-valued GPS sequences.
Different from the previous two models, Toast maps the trajectory
to the road network and represents the trajectory using road seg-
ment ids. Therefore, taking these three models as our attack targets
can cover different underlying methods for processing trajectory
sequences, and also cover different trajectory processing methods.
The attack performance on these three models can be generalized
to other models falling into these categories of trajectory data pro-
cessing and representation.

Datasets. Our experiments are based on an open-sourced dataset
of taxi GPS trajectories in Porto [18]. For the learning-based attack
methods, we randomly selected 180,000 trajectories as training
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Table 1: Similarity-based Attack Results.

Embedding k=30, e=0.6 km )
Model SR@0.5 SR@1 SR@2 d.(m)
t2vec-128 77.54% 85.98% 90.95%  734.30
NEUTRAJ-128 4.48% 11.49% 38.99% 2581.98
t2vec-256 93.64% 96.53% 98.01%  259.63
NEUTRAJ-256 9.76% 19.03% 42.63% 2485.38

Embedding k =20, € =0.5km

Model SR@0.5 SR@1 SR@2 d.(m)
t2vec-128 76.31% 84.36% 89.55%  859.45
NEUTRAJ-128 4.48% 11.40% 38.84% 2588.91
t2vec-256 93.65% 96.36% 97.76%  272.29

NEUTRAJ-256  9.60%  18.94% 42.59% 2494.26

data and 10,000 trajectories as validation data. Besides, 10,000 test
trajectories are randomly selected for all the experiments.

5.2 Similarity-based Attack

Experiment Settings. We use cosine similarity as the similarity
metric and apply DBSCAN to cluster the most similar locations.
There are two metrics to evaluate the performance of the similarity-
based attack: (1) The first metric is the attack success rate SR@r,
which is the ratio that the original trajectory actually passes through
the inferred dense area A, a circle centered at the inferred center
Peenter with radius r km. (2) The second metric is d¢, the minimum
distance between the inferred area center Pcepzer and the original
trajectory.

Note that here we do not include attacking Toast model in this
experiment, since in the similarity-based attack, the embedding of
a single cell, i.e. a point level embedding is required, while Toast
uses FastMapMatching[28] algorithm to map the trajectory into a
sequence composed of road segment ids in the resolution of lines,
when embedding the trajectory, and FastMapMatching are not
suitable to match road segments for such a single point or a grid
cell.

Experiment Results. An example of the attack is demonstrated
in Figure 1(a). The original trajectory is plotted in blue and the cells
in dense set G are plotted in red. It can be observed that these areas
are close to the original trajectory. Table 1 illustrates the evaluation
results. The results on different parameters of similar cell number k
and distance range threshold € for the clustering are shown. If k, €
are increased, more locations and larger areas will be contained in
G, which increases the success rate of the attacks. Generally, the
similarity-based attack on t2vec achieves better performance than
that on NEUTRAJ, which means t2vec is more vulnerable under
this attack. The average distance d. between the area center and
the trajectory on t2vec is less than 1 km, while the value is above
2km for NEUTRAJ. The success rate of passing area with the radius
of 0.5km is already above 75% for t2vec, while the value is below
5% for NEUTRA]J and even when the radius is increased to 2km, the
value is below 40%. The performance difference between attacks
on 128-dimensional embeddings and 256-dimensional embeddings
suggests that the embeddings of higher dimensions can capture
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Table 2: Learning-based Attack Results.

Attack Metric t2vec-128 NEUTRAJ-128 Toast-128 t2vec-256 NEUTRAJ-256 Toast-256
Location Precision 81.82% 66.78% 89.17% 86.28% 70.56% 89.72%
Inference Recall 77.23% 62.96% 87.77% 82.16% 71.41% 87.00%

Precision 92.98% 77.90% 91.40% 94.75% 78.64% 92.47%

Recall 65.85% 46.81% 51.25% 68.13% 47.54% 52.30%

Frechet (m) 839.56 961.76 1345.44 771.33 941.42 1265.77

Embedding Hausdorff (m) 790.91 919.39 1179.57 723.25 903.49 1133.02
Inversion F_SE 0.1973 0.2641 0.3600 0.19 0.2602 0.3461
H_SE 0.1827 0.2476 0.3069 0.1752 0.2447 0.3024

F D 0.1678 0.2326 0.3124 0.1599 0.2296 0.2994

H D 0.1587 0.2209 0.2759 0.151 0.2186 0.2697

more information of the original trajectory and are more vulnerable
to the similarity-based attack.

5.3 Learning-based Attack

Experiment Settings. We train a 3-layer MLP to implement loca-
tion inference attack, and early stopping and dynamic learning rate
are applied to avoid over-fitting and improve the training perfor-
mance. For embedding inversion attack, we build a 3-layer GRU
model with the hidden layer dimension to be 256 and set dropout
rate to be 0.2. The number of layers is determined based on the
model complexity, training speed and attack performance. As for
the hidden layer dimension and dropout rate, we refer to the settings
in relevant trajectory embedding models like t2vec [16] and adjust
the parameters based on the characteristics of our attack models.
Cross entropy loss is adopted to calculate the loss of each step, and
the Adam optimizer with a learning rate of 0.0001 is selected to
optimize the model.

Two types of metrics are used to evaluate the performance of
learning-based attack. (1) The first metric, including Precision and
Recall, are used to measure the accuracy of location inference and
embedding inversion. For location inference attack, Precision in-
dicates how much of the predicted ROIs are correct, while Recall
represents how much of the ROIs the trajectory actually passes
through have been correctly predicted. Note that in embedding
inversion attack, we allow for the inversion error of a trajectory
with its nearest neighbors and the Precision and Recall here both
take into account the surrounding neighbors of the trajectory cell
sequence. Equation 7 and 8 are the Precision and Recall for embed-
ding inversion attack, where N7 and N, are the sets composed
of 10-nearest neighbours of each cell on the original trajectory Te
and the recovered trajectory T. (2) The second type of metrics take
geometric distances into account to measure the shape difference
between the original trajectory and the inversion one. The shape of
the recovered trajectory T is obtained by connecting all the center
points of the recovered trajectory cell sequence. Fréchet distance
and Hausdorff distance, denoted as Frechet and Hausdor f f in Ta-
ble 2, are used to measure the distance between T and T. We also
notice that the absolute distance for a trajectory staying within
a small region and for a trajectory travelling far-away should be
different. Therefore, we normalize the distances with the distance

between the start and the end of a trajectory, SE, and the diameter
of the minimum covering circle for a trajectory, D, which are in-
dicators for the range of the trajectory activity. F_SE is the ratio
between Fréchet distance and Start-End distance SE as shown in
Equation 9. Similarly, we define H_SE, F_D and H_D, F and H
for Fréchet and Hausdorff distance, _SE and _D for the distance
normalized by SE and D.

Te NN,
Precision = —’ < = TC| (7)
e
‘TC al Nf |
Recall = ———<! 8
7] ®
FSE= Frechet(T, T) ©)

-7 SE(T)

Remark that for the first metrics of ratios, the bigger the value
is, the better the attack performance, while on the contrary, for the
second metrics of distances, the smaller value means better attack
performance. With the above metrics, we evalute the performance
of the embedding models under attacks.

Experiment Results. An example of learning-based attack is
shown in Figure 1(b) and Figure 1(c). In Figure 1(b), the red cells are
the inferred ROIs. In Figure 1(c), the red trajectory is the recovered
trajectory. These two figures indicate that the ROIs or trajectory
obtained by learning-based attack is mostly consistent with the
original trajectory. All learning-based attacks’ evaluation results
are illustrated in Table 2. The Precision and Recall of learning-
based attack achieve better performance on t2vec and Toast than
on NEUTRA]J, in general.

Among all the three embedding models, the location inference
attack performance on Toast is the best, followed by that on t2vec,
while the performance on NEUTRA]J is the worst. The Recall for
NEUTRA] is much lower than that of t2vec and Toast, indicating
that the adversary can obtain the least sensitive information about
ROIs from NEUTRA]J embeddings. Meanwhile, both Precision and
Recall of location inference attack on Toast reach more than 85%,
suggesting that Toast is the most vulnerable to such attack.

A similar trend is observed in the embedding inversion attack.
The performance of this attack on NEUTRA] is also the worst. But
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slightly different from the location inference attack, the perfor-
mance of the inversion attack on t2vec is a little better than that on
Toast considering Precision and Recall. In terms of shape distance
for embedding inversion, however, the attack performance on Toast
is the worst, probably because Toast is better at retaining semantic
information about trajectories than shape features. In general, all
the average distances between the recovered trajectories and the
original trajectories are less than or close to 1km. In addition, it can
be seen from the metrics F_SE, H SE, F D and H_D that the dis-
tance between the original trajectory and the recovered trajectory
is small compared with the length and coverage area of the original
trajectory.

All these results demonstrate that learning-based attack can
be effectively applied to attack trajectory embedding model and
achieve meaningful attack performance, regardless of whether the
embedding model is based on Seq2Seq, RNN or Transformer, and
whether the trajectory data is processed into cell grids, real values,
or road segments.

5.4 Analyzing Embedding Models

In both similarity-based and learning-based attacks, the attack per-
formance on t2vec is better than that on NEUTRAJ, which means
that t2vec is more vulnerable. Since Toast is not included in the
similarity-based attack, we just focus on comparing t2vec and NEU-
TRA]J. We also notice that in the learning-based attack, the attack
performance on NEUTRA] achieves almost similar results with that
of t2vec on Precision and shape distance, and a lot worse on Recall.
It indicates that NEUTRA] can be better at preserving the shape
of a trajectory than keeping the exact locations. Our explanation
is that NEUTRA]J, providing embedding for all the coordinates of
the points on the trajectory instead of only embedding the cell
tokens in the other models, could suffer from the complexity of
such embedding function where there could be of high variance
and unstable on embedding nearby points, and therefore, the attack
performance on a single point or passing region is not as good as
that of a long trajectory.

We further conduct experiments to prove this. First, we calculate
two kinds of similarity: the similarity between the embedding of
izp, cell on the trajectory and the embedding of the whole trajectory,
denoted as S. , and the average similarity between the embeddings
of all off-trajectory cells and that of the trajectory, denoted as S, ff
The ratio of S, over S,  is shown in Figure 4(a). The value is
designed by the assumption that the embedding of a cell on the
trajectory should be more similar to the embedding of the trajectory
than the embeddings of cells off the trajectory. However, in Figure
4(a), it demonstrates that for NEUTRA]J, Sfm is almost equal to
So ff for all the on-trajectory cells, while the ratios are larger in
t2vec. Second, we compress the trajectories with Douglas Peucker
algorithm to reduce the location points while preserving the shapes
of trajectories, and compare the embeddings of the compressed
trajectories with those of the original by checking the ratio that
the top 100 most similar trajectories found by the embeddings of
the original trajectories are within top 100 most similar found by
the embeddings of the compressed trajectories. The result is shown
in Figure 4(b). With the increase of the compression ratio, more
locations are deleted, but the embedding similarity between the
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compressed trajectories and the original on NEUTRA]J is higher
than that on t2vec. This result validates that NEUTRAJ is better
at preserving the shape of a trajectory than the exact locations.
The above experiments also explain the reason why t2vec is more
vulnerable under attacks.
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Figure 4: (a) Ratio of S , over S, f£-(b) Similarity of trajectory
embeddings under different compression ratio.

6 CONCLUSION

To the best of our knowledge, we conducted the first study on tra-
jectory embedding attack. At present, most trajectory embedding
models are RNN-based or Transformer-based, and lack of protec-
tion for trajectory sensitive information in the training process,
which makes trajectory embedding vulnerable under attacks and
limit the potential of widely-adoption of trajectory embeddings
between different mining and learning tasks or different parties
owning the data or models. We propose two kinds of attack meth-
ods: similarity-based attack and learning-based attack, which can
also be viewed as a thorough interpretation of the features pre-
served in the trajectory embedding models. Empirically, both of
them can unveil users’ sensitive information in different trajec-
tory embedding models including the mainstream approaches of
processing and embedding trajectory data, and demonstrate the
vulnerability of such embedding models, which we should take
special care of. In future work, we will further study the potential
attacks and protection of trajectory embedding to achieve a best
trade-off between accuracy and privacy.
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