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Abstract

COVID-19 and deep learning have each marked pivotal milestones in the evolution of
modern science. Since the onset of the pandemic, researchers from diverse disciplines have
converged to address urgent, real-world challenges, while deep learning has catalyzed
methodological innovation across fields. These two phenomena exemplify distinct scientific
paradigms: spread-out science, which propagates novel ideas and methods, and merge-in
science, which synthesizes existing knowledge to solve complex problems. We introduce the
concept of sci-entropy, defined as the difference between the semantic entropy of a paper’s
citations and references. Positive sci-entropy reflects the diffusion of new ideas (spread-
out), whereas negative values indicate knowledge consolidation (merge-in). Our analysis,
spanning deep learning, COVID-19, and 19 additional disciplines, reveals that scientific
progress is governed by the dynamic interplay between these two forces. Excessively
high sci-entropy may fragment research, while overly low values can stifle innovation.
Our findings suggest that the balance between innovation and synthesis is fundamental
to the trajectory of scientific development, offering a new framework for understanding
interdisciplinary research and knowledge integration.

Keywords: deep learning; COVID-19; interdisciplinary research; science of science;
sci-entropy; knowledge diffusion; knowledge integration

1. Introduction

In recent years, global science and public health have been profoundly shaped by two
transformative events: the advent of large language models (LLMs) such as GPT [1-3],
and the outbreak of COVID-19 [4]. The emergence of GPT has revolutionized artificial
intelligence, redefining the boundaries of computational technology and catalyzing break-
throughs across multiple domains. In contrast, the COVID-19 pandemic has triggered an
unprecedented global response, mobilizing researchers in medicine, epidemiology, data sci-
ence, and public health to address urgent societal needs. Despite their apparent differences,
both events have galvanized the scientific community, driving substantial investment and
fostering interdisciplinary collaboration.
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Deep learning, rooted in neural network theory, has evolved from early models
in the 1950s and 1960s to become a cornerstone of modern science. Since the break-
throughs of 2015 [5], deep learning has achieved remarkable success in healthcare, e.g.,
medical image analysis, drug discovery [6], natural language processing [7], and beyond.
Its rapid expansion demonstrates the power of methodological innovation to advance
scientific frontiers.

Conversely, the COVID-19 crisis necessitated the rapid integration of knowledge from
diverse fields, leading to a surge in interdisciplinary research focused on understanding
viral transmission, developing vaccines, and optimizing treatment strategies. Unlike the
method-driven progress of deep learning, COVID-19 research exemplifies merge-in science,
a crisis-driven mode of interdisciplinary collaboration in which disciplinary boundaries
are temporarily softened to enable the rapid aggregation of expertise. This aligns with the
concept of Mode 2 knowledge production [8] and has been observed in bibliometric studies
of COVID-19 research [9,10].

While both deep learning and COVID-19 have generated extensive scientific output,
they represent fundamentally different modes of knowledge production. However, current
bibliometric indicators—such as citation counts, h-index, and impact factors—primarily
measure academic influence in terms of quantity and prestige, but fail to reflect the under-
lying epistemic roles of a publication. For example, a highly cited systematic review and
a pioneering methodological study may receive similar citation counts, despite playing
fundamentally different epistemic functions. This discrepancy highlights a serious limita-
tion of standard citation metrics: they capture scholarly attention but miss deeper semantic
contributions. Meng et al. [11] show that when findings become common knowledge,
“hidden citations” often replace formal references, leading to underestimation of scientific
impact. Similarly, Petrovich [12] demonstrates that in disciplines where citation norms
are disrupted, analyzing textual mentions, rather than formal citations, provides a more
accurate reflection of epistemic influence. Network-based methods such as co-citation and
bibliographic coupling [13,14] offer some insights into structural patterns, but lack semantic
granularity. Recent approaches using topic modeling and citation context analysis [15,16]
improve interpretability, yet still fall short in quantifying knowledge integration versus
diffusion across domains. These observations underscore the need for more nuanced
indicators that capture how a work contributes to knowledge integration or diffusion
across fields.

To address this gap, we propose sci-entropy, a novel metric grounded in semantic
entropy, to quantify whether a scientific work primarily contributes to the diffusion of
knowledge across fields or the integration of existing ideas. Drawing inspiration from Shan-
non entropy [17], sci-entropy measures the distributional uncertainty of semantic topics in
a work’s references. Unlike traditional citation-based or network-structure methods, which
offer limited insight into semantic function, sci-entropy directly captures how widely or
narrowly knowledge is semantically spread across disciplines. This theoretically princi-
pled framework provides a new lens to examine how scientific innovation and synthesis
manifest across research domains.

To further investigate these contrasting modes of scientific evolution, the remainder
of this paper is organized as follows. Section 2 introduces the construction of the sci-
entropy metric, including data collection, interdisciplinarity measurement, and entropy
computation. Section 3 presents empirical results, highlighting how deep learning and
COVID-19 illustrate two complementary pathways of knowledge development. Section 4
discusses the implications, limitations, and future directions of this study. Finally, Section 5
concludes the paper.
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2. Materials and Methods
2.1. Data Collection

We first retrieved research papers related to deep learning, COVID-19, and 19 other
disciplines from Acemap [18], an academic system that integrates metadata from major aca-
demic databases such as Science, Nature, Springer, and Elsevier, covering over 214 million
publications published between 1800 and 2021, along with 1.7 billion citation links. With
its structured semantic network, citation graph, and topic-level aggregation capabilities,
Acemap enables large-scale querying and semantic analysis across disciplines—making it
particularly suitable for studying knowledge diffusion and interdisciplinarity.

The disciplines used in this study were selected based on the top-level field categoriza-
tion provided by the Acemap platform, which defines 19 major research domains spanning
the natural sciences, engineering, medicine, and the social sciences [19]. To better capture
the scientific dynamics of two rapidly emerging fields, deep learning and COVID-19, we
additionally included them as independent disciplines. As shown in Figure Al, both
areas have accumulated substantial bodies of literature in a short period of time, mak-
ing them suitable candidates for analyzing cross-disciplinary knowledge flow. Although
they may be viewed as subfields of computer science and medicine, respectively, we treat
them as standalone disciplines due to their distinctive development trajectories, including
specialized funding sources, dedicated publication venues, and self-sustained scholarly
communities [20]. Moreover, it is important to note that the disciplinary hierarchy does
not affect the computation of entropy: H.jt and H,.¢ are calculated based on sets of articles
and their citation relationships, regardless of whether the field is considered top-level or a
subfield. Therefore, treating deep learning and COVID-19 as independent fields enhances
analytical resolution without introducing bias into entropy computation.

Each paper in our corpus is assigned to a primary discipline using Acemap’s internal
classification system, which integrates metadata and semantic features for consistent field-
level labeling. This system employs embedding-based similarity matching and graph-based
label propagation over a large-scale paper—field co-occurrence network [19].

To ensure the reliability of classification, we first constructed a benchmark dataset
by manually selecting 1000 papers for each discipline that are exclusively assigned to
a single field, and verified that they contain no overlapping tags (see Section 5). These
curated samples were then used to extract discipline-specific keywords, which were in
turn applied to label the broader dataset in a consistent and reproducible manner. The
number of keywords for each discipline was determined as follows: each newly introduced
keyword affects two aspects—it increases the coverage rate within the discipline and also
increases the error rate across disciplines. When the gain in the former becomes smaller
than the increase in latter, no further keywords are added. The removal of non-specialized
keywords follows a similar principle: if a term appears too frequently in other disciplines
and leads to a high error rate, it is removed. The sampling process was performed randomly
from the Acemap database, which contains more than 200 million publications across all
fields, ensuring representativeness. The choice of one million articles was made to balance
computational feasibility with sufficient coverage of all disciplines.

2.2. Definition of Interdisciplinarity

We define the cross-coverage rate between two disciplines as the proportion of articles
in one discipline that are covered by keywords originating from another. A keyword is
considered to cover a paper if it appears in its title or abstract. This metric captures the
degree of conceptual overlap and serves as the basis for measuring interdisciplinarity.

This indicator effectively reflects the semantic-level association between different
disciplines. For example, if keywords from one field frequently appear in the literature
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of another, it suggests potential intersections in research topics or methodologies. Such
semantic overlap corresponds to real-world interdisciplinary phenomena, including cross-
disciplinary citations, collaborative research, and shared problem domains. Therefore, this
metric provides a content-based perspective on scientific convergence and can be used to
construct networks of interdisciplinary linkage.

We constructed a 21-by-21 cross-coverage matrix, where each cell represents the per-
centage of articles in the column discipline that are covered by keywords from the row
discipline (Figure 1). This matrix can be interpreted as a semantic similarity matrix, captur-
ing the degree of conceptual overlap between disciplines based on keyword occurrence.
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Figure 1. Interdisciplinary cross-coverage matrix and clustering structure among 21 disciplines.
Each cell indicates the percentage of articles in the column discipline that are covered by keywords
from the row discipline. The heatmap (right) is color-coded to reflect the strength of overlap, and
hierarchical clustering (left) groups disciplines into six major subject categories based on their
keyword distribution patterns.

Based on this matrix, we applied hierarchical clustering to group disciplines with
high mutual coverage, using standard agglomerative procedures [21]. Specifically, we
transformed the cross-coverage similarities into distances using 1 — similarity, a common
approach in clustering tasks involving precomputed affinity measures. This formulation
ensures that disciplines with high mutual semantic proximity are considered close in the
clustering space.

For the linkage strategy, we adopted the Ward method, which minimizes the total
within-cluster variance at each merging step. This choice yields compact and interpretable
clusters by discouraging premature aggregation of weakly related disciplines. The final six
major subject categories were obtained by cutting the dendrogram at a level that preserved
both clarity and domain interpretability, as shown in Figure 1.

Within this framework, we further define two semantic error rate metrics to character-
ize the conceptual roles of each discipline in terms of diffusion and integration. The out-Err
of a discipline measures the proportion of its keywords that cover papers in other, unrelated
disciplines. This reflects the outward semantic diffusion of the field, i.e., the extent to which
its terminology and concepts spread across disciplinary boundaries. A higher out-Err
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indicates stronger cross-domain influence, suggesting that the field’s methods, language,
or frameworks are broadly adopted.

In contrast, the in-Err quantifies the proportion of articles in a discipline that are
covered by keywords originating from other disciplines. This captures the semantic suscep-
tibility or receptiveness of the field to external conceptual input. A higher in-Err suggests
greater openness and integration with ideas beyond its traditional boundaries.

Together, these two metrics capture keyword occurrence patterns across disciplines: out-
Err measures the extent to which a field’s keywords appear in articles from other disciplines,
while in-Err measures the extent to which a field’s articles contain keywords from other
disciplines. They provide insight into how different fields function in the broader structure of
science. For example, deep learning shows high out-Err and low in-Err, as its keywords are
widely used in other fields but it incorporates relatively few external concepts.

2.3. Definition and Computation of Sci-Entropy

To understand how a scientific paper contributes to knowledge evolution, we analyze
its role through a measure we call sci-entropy. This metric reflects whether a paper tends
to consolidate existing knowledge (merge-in) or to diversify and stimulate new directions
(spread-out).

Unlike traditional citation-based metrics that focus on influence or centrality in a
citation network, sci-entropy emphasizes the semantic structure of a paper’s connections
to prior work. For example, while indicators such as citation count [22] or betweenness
centrality [23] measure visibility or network bridging, they do not capture whether the cited
knowledge is being synthesized or extended into novel domains. Sci-entropy quantifies
the distributional diversity of the cited disciplines in a paper’s reference list, providing a
content-driven view of its epistemic function.

By measuring the entropy of the disciplinary composition of cited literature, sci-
entropy offers an indicator of knowledge recombination, from highly integrative works
that pull together tightly related ideas to highly exploratory works that span semantically
distant fields.

We compute sci-entropy based on the semantic diversity of a paper’s reference set and
citation set. The reference set includes papers cited by the target paper (i.e., its knowledge
source), and the citation set includes papers that cite the target (i.e., its downstream influence).

The reference set represents the upstream knowledge context the paper builds upon.
By analyzing the disciplinary distribution of these cited papers, we assess whether the
target paper draws upon a narrow or broad range of existing domains. A concentrated
reference profile suggests disciplinary depth, while a dispersed one indicates integrative or
interdisciplinary sourcing.

The citation set, in contrast, reflects the downstream diffusion of the paper’s ideas. It
captures the range of disciplines that subsequently adopt or build upon the work. A high
semantic diversity among citing papers implies that the paper has inspired cross-disciplinary
impact, whereas a low diversity suggests influence largely confined to its own domain.

By jointly evaluating both sets, sci-entropy characterizes a paper’s semantic role in
knowledge recombination—whether it primarily consolidates prior ideas within a focused
domain, acts as a conceptual bridge across domains, or radiates outward into diverse
scientific areas.

1.  Semantic Representation
We first extract the title and abstract of each paper and tokenize them into words.
Each word is embedded using the pretrained Global Vectors for Word Representation
(GloVe) [24], and the article’s semantic vector is computed by averaging all word
embeddings:
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where @; is the embedding of the ith word, and N is the number of words in
the article.

2. Reference and Citation Context Retrieval
For every target paper, we collect its reference set and citation set. Each paper in these
sets is also converted into a semantic vector using the same averaging approach.

3.  Estimating Semantic Distributions
We apply kernel density estimation (KDE) to the semantic vectors in both the reference
and citation sets. This results in two empirical distributions over the semantic space,
denoted as prf(¥) and pit(X).

4. Entropy Calculation
As the true analytical forms of these distributions are unknown, we approximate
entropy using a discrete form. Let {p;} denote the normalized KDE values over
sampled vectors. Then the entropy is approximated by

H~ —Y pilogp;
7

This yields two entropy values: H,s for the reference distribution and H; for the
citation distribution.
5. Final Computation of Sci-Entropy
Finally, we define sci-entropy as the difference between citation entropy and reference
entropy:
Hsei = Heit — Hyet

A positive value of Hg indicates that the paper is cited by semantically diverse
follow-up research, reflecting a spread-out science pattern. A negative value suggests
that the paper integrates semantically diverse prior knowledge, corresponding to
merge-in science.

This formulation assigns equal weight to all disciplinary citations when computing
entropy. We intentionally avoid incorporating additional weights based on disciplinary
distance, because Shannon entropy itself is designed to capture distributional diversity. Ci-
tations broadly distributed across semantically distant fields naturally yield higher entropy,
while concentrated patterns result in lower values. Introducing proximity-based weights
could increase sensitivity, but it would also add methodological complexity, introduce
subjective parameter choices (e.g., distance thresholds or normalization strategies), and
risk amplifying noise in cases of polysemy or overlapping terminology. Therefore, we
adopt a pure entropy-based approach to preserve theoretical clarity and reproducibility in
capturing interdisciplinary knowledge dynamics.

3. Results
3.1. Two Pathways of Scientific Evolution

Based on the sci-entropy metric described above, we analyzed large-scale publication
data across 21 disciplines to examine patterns of knowledge development. We observed
that scientific research exhibits distinct behavioral patterns depending on the underlying
research paradigms (see Appendix A Figure Al). To characterize these differences, we
categorized research activities into two types: spread-out science and merge-in science.

Spread-out science primarily involves the creation of methods, tools, or frameworks
that are applicable across disciplines. Such contributions quickly gain traction and fre-
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quently catalyze the development or transformation of entire research fields. A represen-
tative case is the deep learning framework introduced by LeCun, Bengio, and Hinton [5],
which rapidly spread into fields such as computer vision, natural language processing, and
biomedicine (Figure 2).

Architecture for Image Segmentation

1950 1960 1970 1980 1990 2000 2010 2020
[ —— Atlas of protein sequence and.sizucluce I 1 Mastering the game of Go with deep neural networks
and tree search
Inception-va, Inception-ResNet and the Impact of
Residual Connections on Learning
Paraiel Distibuted Processing: Explorations in Improved techniques for training GANS
the Microstructure of Cognition: Volume 1: v
Foundations /"7 sSD: Single Shot MultiBox Detector
Leaming representations by back-propagating 4
ertors.
Deep leaming / Dermatologist-level classification of skin cancer
with deep neural networks
B - oy ‘ SegNet: A Deep Gonvolutional Encoder-Decoder

Semi-Supervised Classification with Graph
Convolutional Networks

Gaia Data Release 2. Summary of the contents and

Preface: Cerebral Cortex Has Gome of Age survey properties

First Case of 2019 Novel Coronavirus in the United
*_States

Figure 2. The evolutionary trajectory and interdisciplinary impact of deep learning. The left side
highlights key studies in neurodynamics and cognitive science. The width reflects their cumulative
impact before being cited in deep learning research, showing the depth of prior knowledge.The
right side illustrates the expansion of deep learning into various fields. The green arcs represent the
citations, with curvature indicating the academic impact. Each arc begins with the publication year of
the citation paper, reflecting that influence often appears after publication. This visualization captures
the historical momentum of deep learning and its role in driving interdisciplinary development.

Other notable examples include the Fourier transform [25], originally developed
for solving problems in heat conduction, which has become foundational in signal
processing, image analysis, medical imaging, and quantum physics. Similarly, Monte
Carlo methods [26], first introduced in statistical physics, are now widely used in com-
putational finance, Bayesian inference, reinforcement learning, and molecular modeling.
Another influential case is game theory [27], initially formalized in economics and math-
ematics, which has since shaped fields such as political science, evolutionary biology,
computer science, and artificial intelligence.

This outward diffusion is often accompanied by the emergence of new subfields and
the cross-pollination of ideas, demonstrating the transformative power of methodological
innovation. Spread-out science thus plays a pivotal role in facilitating interdisciplinary
integration and accelerating the evolution of scientific knowledge.

In contrast, merge-in science emerges in response to complex, real-world problems
and integrates knowledge from multiple disciplines. A representative case is the global
scientific response to the COVID-19 pandemic, which rapidly mobilized experts across
epidemiology, medicine, statistics, and computer science to address urgent public health
challenges. This convergence is exemplified by the nationwide study led by Guan et al,,
which analyzed the clinical characteristics of 1099 patients across 552 hospitals in China [28]
(Figure 3).

Similar interdisciplinary efforts occurred across other regions. In the United Kingdom,
the RECOVERY trial [29] brought together clinicians, statisticians, and pharmacologists to
launch the world’s largest clinical study of COVID-19 treatments within six weeks, deliver-
ing evidence that directly shaped international clinical guidelines. In the United States, the
NIH-led ACTIV program [30] coordinated efforts across government agencies, academia,
and the private sector to accelerate vaccine and therapeutic development, initiating multiple
adaptive phase IlI clinical trials across more than 100 sites. In Europe and Asia, Germany’s
Corona-Warn-App [31] integrated sensor technology, epidemiological modeling, and be-
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havioral economics to support data-driven public health decisions, with studies showing
measurable reductions in hospitalization and mortality. South Korea, meanwhile, adopted a
comprehensive digital tracing system combining GPS, financial transaction data, and mobile
networks—supplemented by behavioral science—to effectively contain early outbreaks [32].

1920 1940 1960 1980 2000 2020

The Phenomena of Rupture and Flow in Solids ™~ e
Quantitative clinical chemistry
Theory of elasticity.

Generalized Gradient Approximation Made Simple

‘The Nature of the Chemical Bond
AMETHOD FOR THE SOLUTION OF CERTAIN NON — LINEAR
PROBLEMS IN LEAST SQUARES
Theory of Games and Economic Behavior
Introduction to the Theory of Statistics.
‘The Mathematics of Diffusion
Probabilty, Random Variables, and Stochastic Clinical Characteristics of Coronavirus
Processes. Disease 2019 in China
Handbook of Mathematical Functions

Statistical Power Analysis for the Behavioral
Sciences
Time Series Analysis: Forecasting and Control
The Statistical Analysis of Failure Time Data
The Statistical Analysis of Failure Time Data
Molecular Evolutionary Genetics
Diagnostic and Statistical Manual of Mental
Disorders
Handbook of Optical Constants of Solids
Quantum Computation and Quantum Information
Very Dep Convolutional Networks for Large-Scale
Image Recognition

Figure 3. The multidisciplinary foundations and practical impact of COVID-19 research. The left
side shows the academic origins of COVID-19 studies, including fields like epidemiology, medicine,
bioinformatics, and data science. The width of each strand reflects prior citation volume before being
referenced by COVID-19 research. The right side presents how COVID-19 knowledge was applied in
areas such as public health, social behavior, and policy. Curved arcs indicate citation flows and the
time delay of influence. This visualization illustrates the integrative and outcome-oriented nature of
COVID-19 research.

Merge-in science is characterized by the synthesis of diverse expertise and the rapid
translation of research into practical solutions, highlighting the importance of interdis-
ciplinary collaboration in addressing societal crises. These examples illustrate that such
convergence is not only essential in medicine, but also in public policy, governance, and
technological infrastructure, often requiring coordination across disciplinary, institutional,
and national boundaries.

Together, these two research modes highlight complementary paths of knowledge
evolution: spread-out science promotes the wide diffusion of ideas and technological
advancement, while merge-in science fosters the integration of knowledge across dis-
ciplines to solve complex, real-world problems. The interplay between these modes is
essential for the healthy development of the scientific ecosystem, ensuring both innovation
and consolidation.

In practice, the two modes reinforce each other. Innovations from spread-out science,
such as deep learning and Bayesian inference, become key tools in merge-in research.
Conversely, real-world challenges addressed by merge-in science generate new technical
demands, stimulating further methodological development. For example, the global
response to COVID-19 not only accelerated the use of predictive models, but also advanced
work in data standards and privacy protection.

To capture the differences between spread-out and merge-in paradigms in a quan-
titative manner, we introduced the sci-entropy change metric, which reflects how each
publication both draws on prior knowledge and contributes to future research. A high
entropy change indicates broad interdisciplinary influence and the potential to inspire
new research directions, while a negative or stagnant change suggests limited diffusion
or early-stage development. This metric provides a nuanced view of how scientific ideas
propagate and consolidate within the academic landscape.

To implement this framework, we applied the GloVe [24,33] to extract word em-
beddings from scientific articles, allowing us to track how specific terms spread across
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disciplinary contexts over time. We further employed KDE to estimate the distribution of
sci-entropy across fields and time (Figure 4a).

As a representative of spread-out science, deep learning shows a clear pattern of
growth in both research volume and sci-entropy (Figure 4b). Following the proposal of the
support vector machine (SVM) algorithm in 1995 [34], interest in neural networks began
to wane, whereas the concurrent development of particle swarm optimization (PSO) [35]
introduced a novel research direction. In 2006, deep belief networks (DBNs) laid key
theoretical foundations for modern deep learning [36]. The field accelerated rapidly after
2012, driven by ImageNet achievements [37]. By 2015-2016, deep learning emerged as
a distinct research focus [5], marked by a sharp rise in sci-entropy. Since then, the field
has expanded across domains, supported by growing computing power, open-source
frameworks, and widespread applications.

COVID-19 research, on the other hand, shows a rapid early surge followed by entropy
decline, indicating a transition from rapid uptake to structural consolidation and standard-
ization (Figure 4b). This pattern reflects the urgent mobilization of the scientific community
in response to the pandemic, followed by the establishment of standardized knowledge
and best practices.

Since 1975, we observed an overall upward trend in sci-entropy, with a particularly
notable increase during the digital revolution (Figure 4c). However, this growth has
begun to plateau in certain domains since the 1990s. One possible explanation is the
continued rise in academic journal subscription costs, which may have increased barriers
to knowledge access. Between 1984 and 2002, subscription prices for scientific journals
rose by approximately 600% [38], significantly outpacing inflation. Another study found
that for every 1% increase in journal price, the five-year citation count of associated papers
decreases by about 0.77% [39]. These findings suggest that rising access costs may have
partially constrained the diffusion of knowledge, thereby slowing the growth of scientific
entropy in some fields.

b 1950 2020
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Glove IDeep’learning ' ) ' ' )
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I
_ ! L L L L il
a the on at dig 1950 2020
Spread-out Merge-in L 1950 2020
KDE —T— —
vV COVID-19
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Digital Revolution iSerials Crisis
. i r‘;r; PTTT SR TTTTITY ;;uu Tefrint
JLLLILLL bt sues il CRREH L ARERRLLELAS
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Figure 4. Framework and application of the sci-entropy change metric: (a) conceptual illustration
of spread-out and merge-in scientific structures, along with the estimation process of sci-entropy;
(b) case studies of deep learning and COVID-19; evolution of sci-entropy change and publication
volume for deep learning and COVID-19 from 1950 to 2020; (c) evolution of sci-entropy change and
publication volume for whole scientific community over time.

3.2. Roles in Interdisciplinary Research

In the contemporary scientific landscape, deep learning and COVID-19 research have
emerged as two defining centers of influence. One is rooted in methodological innovation
and diffusing outward across disciplines, the other is driven by a real-world crisis that
rapidly mobilized diverse fields toward a common goal.
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Deep learning catalyzed paradigm shifts across medicine, biology, engineering, and
other domains. It introduced transferable frameworks and computational tools, enabling
broad adoption and structural transformation across disciplines. This outward expansion
reflects the typical dynamics of spread-out science, where methodological advances serve
as bridges between previously disconnected fields.

In contrast, COVID-19 research followed a convergence-based trajectory. It drew to-
gether knowledge from epidemiology, statistics, policy, and information science to address
an urgent global challenge. Rather than producing new methodologies, it focused on
integrating existing knowledge and rapidly translating research findings into actionable
public health strategies.

Taken together, these two forces not only shaped scientific priorities in their respective
eras but also marked structural milestones in the evolution of modern science. Their
parallel rise invites deeper reflection: such breakthroughs reflect a shared mechanism by
which science responds to both internal innovation and external demand.

Building on the confusion matrix analysis (Figure 1, see Section 2), we assessed the
academic influence, scope, and output of deep learning and COVID-19 research. During
the COVID-19 pandemic, research related to deep learning experienced a notable shift in
academic influence. As shown in Figure 5a, both one-year and two-year citation counts be-
gan to increase in 2020 and peaked in 2021. At the same time, deep learning studies became
increasingly connected to biomedical fields (Figure 5d), reflecting the field’s expanding role
in responding to public health challenges.

a b
I Citation 1Y 6.1 BN Citation 1Y 133
[ Citation 2Y p<0.1
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B Citation 2Y B Citation
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d e f
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Figure 5. The role of deep learning (DL) and COVID-19 (COV) in shaping interdisciplinary scientific
progress: (a) one-year and two-year citation trends for deep learning papers during 2012-2021;
(b) comparison of citation metrics between COVID-19 research associated with deep learning and
that associated with computer science; (c) citation impact and knowledge quality across studies
with different levels of interdisciplinarity; (d) proportion of deep learning papers engaging with
biomedical domains; (e) comparison of cross-disciplinary engagement between COVID-19 research
associated with deep learning and that associated with traditional computer science; (f) distribution
of research publications by number of disciplines involved. * indicates statistical significance at the
0.05 level; *** indicates significance at the 0.001 level.

A comparison between deep learning-based and traditional computer science-based
COVID-19 research (Figure 5b,e) reveals that the former achieved significantly higher
citation performance and interdisciplinary reach. This finding emphasizes the superior
bridging capacity of deep learning in fostering impactful interdisciplinary collaboration.

We also examined how interdisciplinary breadth relates to research impact and quality
(Figure 5c). Papers that span two disciplines tend to receive more citations and exhibit
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stronger knowledge integration. These studies already account for about 7.7% of the dataset
(Figure 5f), suggesting meaningful progress in interdisciplinary collaboration, with room
for further expansion.

Together, these findings underscore the complementary dynamics of spread-out sci-
ence and merge-in science—two modes of knowledge development that have shaped the
course of modern research. Both deep learning and COVID-19 have played milestone
roles in accelerating interdisciplinary innovation and redefining the structure of scientific
progress. The synergy between these modes is likely to become increasingly important as
science continues to address complex, global challenges.

3.3. Patterns of Scientific Evolution

Building on our earlier analysis of deep learning and COVID-19, we expanded our
investigation to include 19 additional disciplines, forming a comprehensive set of 21 fields.
This allowed us to examine the broader patterns of sci-entropy across diverse domains and
uncover generalizable trends in knowledge development.

We found that scientific research has exhibited sustained growth at the macro level,
yet disciplinary differences in knowledge development strategies have become increas-
ingly pronounced. As shown in Figure 6, between 1950 and 2020, some fields—such as
mathematics, physics, and deep learning—displayed consistent expansion and outward
citation flow across domains, aligning with the dynamics of spread-out science. In contrast,
others maintained a more stable structure, focusing on the consolidation and refinement of
internal knowledge, as seen in merge-in science.
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Figure 6. Disciplinary trajectories of sci-entropy and publication growth over seven decades. Each
subplot represents a specific discipline, with the x-axis indicating the year. The left y-axis (logarithmic
scale) denotes the number of publications, while the right y-axis tracks the variation in the sci-entropy
index. The red curves represent disciplines classified as spread-out science, reflecting continuous
knowledge diffusion and expansion. The green curves indicate merge-in science, referring to fields
focused on knowledge integration. Disciplines shown in gray exhibit no significant tendency toward
either knowledge diffusion or integration.
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To further interpret the structural differences between disciplines, we decomposed the
overall sci-entropy into three components: reference, origin, and citation. These compo-
nents quantify how scientific knowledge is sourced, positioned, and propagated within the
citation network.

By comparing these components across disciplines, we identify distinct patterns.
Some fields exhibit strong outward flows in referencing and citation patterns, reflecting
broader cross-disciplinary influence and knowledge diffusion. Others tend to concentrate
their activity within internal networks, emphasizing conceptual consistency and depth of
development. A more detailed view of the temporal evolution of sci-entropy components
across all 21 disciplines can be found in Appendix A Figure A2.

Based on the sci-entropy metric, we constructed a two-dimensional space defined by
the axes of building on existing knowledge and driving future innovation (Figure 7). This
framework categorizes scientific fields into four quadrants, providing a comprehensive
map of disciplinary evolution.

0.5
Building on Past Knowledge

Geography o A
and Driving Future Innovation

Mathematics

Spread-out

Deep learning
Physics
COVID-19
Biology

Economics . .
Driving Future Innovation

Psychology Without Building on Past Knowledge
Philosophy
History

-1.0 0.5

Neither Building on Past Knowledge CO}H:M 9 Merge-in

Nor Driving Future Innovation

Building on Past Knowledge
Without Driving Future Innovation

Figure 7. Quantitative mapping of research fields building on past knowledge and future innovation.
This figure presents the temporal trajectories of 21 disciplines in a two-dimensional space defined by
merge-in = Hyef — Horigin (X-axis) and spread-out = Hjt — Horigin (y-axis). These composite indicators
capture how each field exports conceptual influence to others and draws upon external knowledge,
respectively, spread-out and merge-in across years. To reduce sampling variability, each point reflects
the average result of multiple resampling iterations, with horizontal and vertical bars indicating
the corresponding standard deviations. The thickness of each line segment increases with time,
highlighting more recent developments. Disciplines are categorized into four quadrants based on
their orientation toward historical knowledge and driving future forward innovation. The lower-right
quadrant indicates knowledge-inheriting fields lacking forward innovation, also prone to stagnation.
The upper-left quadrant reflects disciplines characterized by continuous expansion and sustainable
development. The lower-left quadrant includes fields with limited knowledge integration and
innovation, often isolated from broader scientific progress.

Deep learning, for instance, lies in the upper-right quadrant, both extending estab-
lished work and opening new avenues of application. However, its rapid expansion also
raises concerns about structural convergence and diminishing innovation, suggesting the
need for continuous methodological renewal. COVID-19 research, in contrast, is in the
lower-right quadrant. While it effectively integrates existing knowledge in the short term,
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it shows limited momentum for long-term advancement, highlighting the challenges of
sustaining innovation in crisis-driven research.

Mathematically grounded fields exhibit steady outward expansion without strong
historical dependence, suggesting a self-sustaining dynamic. Disciplines such as his-
tory, however, remain largely inward-looking, with limited cross-field diffusion and
innovation activity.

Our mapping revealed four distinct modes of disciplinary evolution. This perspective
provides a new pathway for identifying sustainable modes of scientific progress. It suggests
that long-term vitality lies in continuously expanding, driven by innovation that opens new
directions for knowledge development. The balance between building on past knowledge
and fostering future innovation is crucial for the resilience and adaptability of scientific fields.

These findings are consistent with previous studies that examined the structure of
knowledge flows across disciplines. Yan [40] showed that knowledge transfer often ex-
hibits directional asymmetry. Fields such as computer science and engineering tend to
export methods, while the humanities and social sciences emphasize internal consolidation.
Omodei et al. [41] found that interdisciplinary connections are often driven by methodolog-
ical openness and applicability. This observation aligns with the high sci-entropy patterns
we identified in spread-out sciences like deep learning and applied physics.

In contrast to these earlier studies, we proposed a dynamic entropy-based framework.
This model captured both the direction of knowledge flows and the structural evolution of
disciplines over time. Unlike static methods such as main path analysis [42], which identify
fixed citation routes, the sci-entropy approach revealed the balance between diffusion and
integration. It offered a finer-grained view of how fields sustain innovation or consolidate
knowledge structurally.

COVID-19 research exemplified a merge-in science paradigm. It rapidly integrated
knowledge from epidemiology, clinical medicine, statistical modeling, and artificial intelli-
gence to address a global health emergency. Although its long-term development remains
uncertain, its structure showed a high degree of consolidation. Together with deep learning
as a diffusion-driven case, these two examples represent complementary trajectories of
contemporary scientific evolution.

4. Discussion

The science of science has sparked an increasingly widespread interest in the scientific
community [43,44]. However, research on deep learning and COVID-19 has not received
extensive attention in this area.

Deep learning has undoubtedly been one of the most popular fields in recent years.
Especially since the advent of ChatGPT [2], public attention has once again focused on
deep learning. Compared to traditional machine learning methods, deep learning is a
huge leap forward and solves a great number of artificial intelligence problems [5]. It has
been applied to a wide range of fields such as computer vision [45] and natural language
processing [46], as well as other disciplines such as agriculture, biomedicine [47], ecology,
and materials science [48]. Similarly, the coronavirus disease 2019 (COVID-19) has also
been a hot research topic in recent years. Since the outbreak of COVID-19, scientists around
the world have been studying the transmission [49], treatment, vaccines, sequelae [50], and
different variants [51] of COVID-19. Emerging at nearly the same time, both fields caused a
stir in the scientific community.

Deep learning and COVID-19 have many aspects in common, which arouses interest
in studying their associations. Both fields have seen a surge in the number of publications
in a short period of time. For example, in 2018, deep learning accounted for 2.6% of articles
in the “Technology” category and also held a share in some other categories, at the same
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time presenting remarkable growth rate in these domains [52]; in 2020, there were more
than 100,000 articles published on the coronavirus pandemic [4]. Additionally, many inter-
disciplinary studies have been stimulated by deep learning [47,48] and COVID-19 [53-57],
which might have also facilitated collaboration between researchers with different back-
grounds [58]. Furthermore, deep learning and COVID-19 are both research areas that
require extensive data analysis [5,59,60]. The strong similarity between these two events
stimulates our interest in studying them.

In fact, their role in contributing to the advancement of other disciplines and science
appears to be quite different. Interdisciplinary research has recently attracted interest [61].
Okamura [62] and Shi et al. [63] have both observed a greater impact of interdisciplinary
research. However, there is controversy over the funding available for interdisciplinary
research [64]. These interesting findings prompted us to further explore the differences in
their roles in interdisciplinary research.

Despite some skepticism in its early development [5], deep learning, which has been
evolving rapidly in the recent decade, has advanced many other disciplines and even
science itself. LeCun et al. [5] argue that deep learning’s ability to discover complex struc-
tures in high-dimensional data allows it to be applied to many scientific fields. Cockburn
et al. [65] believe that, as a result of innovation, deep learning may have a fundamental
impact on innovation itself. Bianchini et al. [52] suggest that deep learning may serve as a
powerful and versatile research tool within all sciences. Unlike deep learning serving as
an instrument for other scientific disciplines, COVID-19 attracts researchers from various
disciplines to conduct research on the pandemic [53-55]. An astonishing number of labo-
ratories and investigators have turned to COVID-19-related research. The redirection of
research to COVID-19 has also been accompanied by the reallocation of research funds and
other resources, although it may cause a significant drop in studies unrelated to COVID-19,
such as life sciences [66].

While both deep learning and COVID-19 triggered rapid increases in scientific output,
they represent two fundamentally different epistemic roles in the evolution of science.
Deep learning acts as a methodological exporter: it spreads tools and techniques outward
into many disciplines, enabling progress across diverse fields such as medicine, materials
science, and agriculture. In contrast, COVID-19 acts as a thematic integrator: it draws
researchers from various domains into a shared urgent problem, leading to the convergence
of disciplinary knowledge. This contrast highlights two complementary pathways of
scientific development: one driven by the diffusion of method (spread-out), the other by
the aggregation around a societal challenge (merge-in). Recognizing these patterns has
implications that go beyond the two case studies examined here. Fields acting primarily as
methodological exporters can serve as catalysts for innovation across domains, whereas
thematic integrators can mobilize diverse expertise to address urgent societal or scientific
problems. Both roles are essential to a balanced research ecosystem. Understanding which
role a field plays can inform strategic decisions in funding allocation, research evaluation,
and capacity building—ensuring that resources support not only the creation of new tools,
but also the convergence of knowledge around pressing challenges.

These distinctions have broader implications for how science evolves and how research
policy might respond. Interdisciplinary research, despite its potential for high societal and
scientific value, can face structural challenges in securing resources [67]. Building on this,
our results suggest that policy frameworks could explicitly consider a field’s role in either
integrating or diffusing cross-disciplinary ideas when allocating funding. Recognizing both
“spread-out” and “merge-in” contributions could support a more balanced ecosystem of
scientific innovation.
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Finally, citation-based metrics remain limited in capturing the epistemic role of re-
search, as they primarily quantify scholarly attention rather than the nature of that contribu-
tion. Shifting evaluation toward measures that distinguish integration from diffusion could
provide a deeper understanding of how knowledge moves between fields, and ultimately
guide more effective support for interdisciplinary science. As highlighted in previous
studies, focusing less on citation counts and more on the role of a publication in integrating
or diffusing ideas can provide deeper insight into the mechanisms driving the evolution of
cross-disciplinary knowledge.

5. Conclusions

In this study, we systematically compared the scientific evolution pathways of deep
learning and COVID-19 research, introducing the sci-entropy metric to distinguish between
spread-out science (knowledge diffusion) and merge-in science (knowledge integration). By
analyzing one million papers across 21 disciplines, we identified six major subject clusters
and revealed that deep learning follows a diffusion-oriented trajectory, while COVID-19
research aggregates knowledge in response to crisis-driven needs. Our framework uncovers
the dynamic interplay between innovation and synthesis, highlighting the importance of
balancing these forces for sustainable scientific progress. These findings provide a new
perspective for understanding interdisciplinary research and offer practical guidance for
fostering knowledge integration and innovation in the scientific community.
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KDE  Kernel Density Estimation


https://www.acemap.info

Appl. Sci. 2025, 15, 8912 16 of 21

Appendix A

nsuli ene Gene
. Insulin g molecular
s protein

bacleﬂophag Alzheimer _ 231

18 . 225 % gEschencma
o @% T, 0.0 S80S
Wilcoxon @

- Multilayer
diode B ® 4

2 feedforward
6. & 2% 25 . b 1. 3. network

6 & MicroRNAs
¢ 9 3 . @i g 5" us
- : - o
] 69 s57 Coronavirus
188 255
ol
Apoptosis ,, 6 .150 147 4 . . .
5 224 -
[ B ™ s - Statistical
2 42 learning
6. o 0. ;
3 L
; 68
DNA ."92 177 [oth . . 3 L
5 -

162

165 44 - 66 ,
‘8 ° 167 455 ° 6 .% quaniim
13
2 163 @
RN? - . &z o
45 .

®
fuzzy X ¥ . .

set o 46 a1 = ImageNet
‘ 133 50 125 3 107 143

diabetes g = 150 152

2 179 51 14z cortex

1
105 106
orotein é
rotein o 5 . o 108 o
23 .. o4 i 24 resonator

18 15
19
169 o

cancer 55 75 3%

. . b
189 57
communication 131 114 . Molecules

"g 146
e s

- 161 1
Superconductivity 155 & .ET 122 130 175 g
242 SOCIAL 157 58 &3 . "3 99 )
‘ 135 141 nucleic
181 144 « 89 120 12 R acid
a0 156 128 152 Fit
. 139 142 134
. 127
aC'E‘ 151 ) 140 158
amino 81

1018
s 8 lliness 472

:}in@;
Convergent . s . % Phosphorus

discriminant

validation
245 [ I " |
e 1800 1850 1900 1950 2000
crystal

Figure A1. Global scientific landscape: the explosive growth of deep learning and COVID-19 research.
The figure is derived from the Acemap open-source academic knowledge graph, visualizing the
development of global scientific research based on over 200 million publications across 19 major
disciplines since 1800. Node size indicates academic impact. The dense cluster on the upper right
highlights COVID-19 research, with 417,857 publications, while the right side marks deep learning,
totaling 172,547 publications.
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Figure A2. Sci -entropy and publication growth from 1950 to 2020 for ten of the selected dis-
ciplines.The figure presents the development of publications in different fields, categorized into
references (green), origins (black), and citations (red). The left y-axis (logarithmic scale) denotes the
number of publications. The right y-axis depicts the relative entropy levels of these components,
expressed as deviations from the sci-entropy (H) across all fields. Here, H denotes entropy, measured
for the reference (Hyef), origin (Horigin), and citation (Hy;t) sets.
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