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The popularity of intelligent devices provides straightforward access to the Internet and online social net-
works. However, the quick and easy data updates from networks also benefit the risk spreading, such as
rumor, malware, or computer viruses. To this end, this article studies the problem of source detection, which
is to infer the source node out of an aftermath of a cascade, that is, the observed infected graph Gy of the
network at some time. Prior arts have adopted various statistical quantities such as degree, distance, or infec-
tion size to reflect the structural centrality of the source. In this article, we propose a new metric that we call
the infected tree entropy (ITE), to utilize richer underlying structural features for source detection. Our idea
of ITE is inspired by the conception of structural entropy [21], which demonstrated that the minimization of
average bits to encode the network structures with different partitions is the principle for detecting the nat-
ural or true structures in real-world networks. Accordingly, our proposed ITE based estimator for the source
tries to minimize the coding of network partitions brought by the infected tree rooted at all the potential
sources, thus minimizing the structural deviation between the cascades from the potential sources and the
actual infection process included in Gyr. On polynomially growing geometric trees, with increasing tree het-
erogeneity, the ITE estimator remarkably yields more reliable detection under only moderate infection sizes,
and returns an asymptotically complete detection. In contrast, for regular expanding trees, we still observe
guaranteed detection probability of ITE estimator even with an infinite infection size, thanks to the degree
regularity property. We also algorithmically realize the ITE based detection that enjoys linear time complexity
via a message-passing scheme, and further extend it to general graphs. Extensive experiments on synthetic
and real datasets confirm the superiority of ITE to the baselines. For example, ITE returns an accuracy of 85%,
ranking the source among the top 10%, far exceeding 55% of the classic algorithm on scale-free networks.
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1 INTRODUCTION

The ubiquity of the Internet, online social networks, and many types of offline/physical networks
has fundamentally changed the landscapes of information spreading, nowadays. Unfortunately,
the same channels can be utilized to amplify isolated risks such as malicious rumors, computer
viruses, malware, or an isolated failure in a power grid network that cause pernicious effects on
the society. Therefore, inferring the initiator or the source of the malicious information is critical
whether for forensic use or insights to prevent future epidemics.

Because of the wide range of applications, the source detection problem has gained a lot of atten-
tion during the past decade. The seminal work belongs to Shah and Zaman [32], which studies the
problem under the natural epidemic model, that is, the susceptible-infected (SI) model. This was
followed by numerous efforts [11, 13, 16, 17, 24-26, 36, 38, 40, 41], which investigate the problem
in a common paradigm: given an observation O of the graph G at some time, the goal is to find
the node ¢ that maximizes the correct detection probability, given by P(O[9). Many of those prior
arts try to utilize network topological features, and accordingly adopt various statistical quantities
to describe the influence of nodes on propagation. Typical examples include (i) degree [11], where
it is simply believed that the source node is the one surrounded by the most infected neighbors,
(ii) distance [24, 25, 40, 41], that selects the potential source based on the minimum infection ec-
centricity, or (iii) infection size [13, 26, 32, 36, 38], where the estimators select the node that highly
balances the infection size of each neighboring subtree. Despite those significant efforts, we no-
tice that there may still remain some potential room of topology utilization for source detection. In
addition, the side information such as infection timestamps, propagation directions, or queries to
culprits [1, 7-9, 27, 35, 39] are often hard to obtain in reality due either to the privacy concern or to
the unreliability of the truth. Hence, it is a natural way to exploit the structural features available
inside the graph as much as possible to enhance the detection performance.

To this end, we present a new metric to seek for richer topological features mentioned above
for source detection. The same as in [24, 26, 32, 33, 36, 38], we also assume that the infection
spreading process follows an SI model, where a node that is infected with the information retains
it forever. Our design of the new metric is mainly inspired by the structural entropy [21], where
a principle for detecting the natural or true structures in real-world networks is proposed. The
key point of structural entropy is to partition a given graph into different modules, where an
exogenous process is launched to continuously collect the message delivery (named a call [22])
between nodes uniformly at random. In this manner, the structural entropy provably [21] captures
the average number of bits needed in two-dimensional code to encode the receivers of the calls
in a lossless way, which fully characterizes the corresponding structural information. (A more
detailed introduction can be referred to in Section 3.3.) Accordingly, in our problem, given a
snapshot of the graph G = (V, &), including the knowledge of the infected graph Gx = (V7, Ey)
and beyond, where V; is the infected nodes set, E; not only includes all the edges between infected
nodes but also those edges on the boundary between infected and uninfected nodes, the question
becomes how can our proposed metric, by virtue of structural entropy, leverage more available
topology to detect the true infection structure in Gy, thus inferring the source node more
accurately?
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To answer this question, we first note that on a tree network, for the infected tree rooted at any
potential source, the information will eventually spread to the adjacent branches of the root. This
provides an intrinsic structure of the infected tree, which is distinguished only by the location
of the potential source in the infected tree. Since the structural entropy provides the minimum
encoding principle to find the true structure inside a graph, analogously we partition the structure
of the infected tree into modules in terms of different propagation branches for any potential
source. Considering the message calls both between intra-module nodes and inter-module ones,
we encode this two-dimensional structure based on the probability distribution of all infected
nodes as the receivers of the calls, thus characterizing the extent to which the constructed struc-
ture deviates from the actual infection process. We name this proposed metric as Infected Tree
Entropy (ITE). As can be seen, our ITE based estimator for the source is indeed able to capture
more structural features in the following aspects. (i) The natural substructures in the infected
graph; we call them different modules. (ii) The mutual connections between the nodes inside a
module. (iii) The inter-connections between modules. (iv) The connections to uninfected nodes on
the boundary. These features integrally lead to the complete form of the spreading cascade, and,
as we will provably demonstrate in later sections (Sections 5 and 6), bring about improved source
detection performance. Then, we extend this framework in general graphs by a breadth-first
search (BFS) heuristic. To the best of our knowledge, we are the first to apply structural entropy in
this problem.

Our main contributions are highlighted as follows:

— We propose a new structural entropy based approach for source detection, called the ITE
estimator, which utilizes more underlying structural features. In a tree graph, the estimator
can be efficiently solved via a message-passing algorithm, whose complexity scales linearly
with the infection size. In general graphs, a BFS heuristic is incorporated to approximate the
ITE estimator.

— We derive the performance of the ITE estimator on different networks. For geometric trees,
with increasing heterogeneity of the subtrees, our estimator remarkably yields more reliable
detection under only moderate infection sizes, which effectively prevents the isolated risks
spreading to a wide range. Meanwhile, it returns an asymptotic detection probability of 1,
which is as good as the best estimator. In contrast, for regular expanding trees, the ITE
estimator can still guarantee a non-trivial detection even when the infection size goes to
infinity.

— Besides theoretical guarantees, our ITE estimator also exhibits favorable performance in
experiments. Specifically, we conduct extensive experiments on both synthetic networks
and real-world networks with different scales (the maximum order of magnitude is almost
millions) to evaluate the proposed algorithm. The results show that the ITE estimator not
only achieves much lower error distance, but also higher accuracy of ranking the source
than other source estimators.

Organization. The rest of this article is organized as follows. Section 2 presents the literature
review. We introduce the ITE estimator in Section 3. For tree-type networks, we propose an effi-
cient algorithm for its evaluation in Section 4. Section 5 summarizes the main theoretical results.
The simulation based performance evaluations will be presented in Section 6, and all the proofs
are provided in Section 7. Finally, we conclude the article in Section 8.

2 RELATED WORKS

In this section, we give a brief overview on related works in both source detection and graph
entropy fields.
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2.1 Source Detection in Networks

It is known that the source detection problem is highly challenging. In the seminal work [32],
Shah and Zaman studied the single source inference problem, and proposed rumor centrality, a
newly defined centrality quantity, which was proved to be the maximum likelihood estimator on
regular trees under the SI model. They claimed that the node with the maximum rumor centrality
is the rumor source, which is called the rumor center. They proved that rumor centrality is
equivalent to closeness centrality on tree networks, but performs better on general graphs.
This work was extended in [33] for general random trees, where the detection probability was
quantified.

Later, the rumor centrality method has been further studied by many other researchers, which
can identify rumor sources under different propagation models and assumptions. Luo et al. [26] ex-
tended the rumor centrality method in a single source scenario to multiple sources. Wang et al. [36]
analyzed the performance of rumor centrality for tree networks when there are multiple observa-
tions of both sequential and independent diffusion processes from the same source. Dong et al. [13]
further proposed a local rumor center method, and studied the detection probability under the as-
sumption that the prior knowledge of suspect nodes is available. Therefore, they reduced the scale
of the searching area. By considering the boundary effect in source detection, Yu et al. [38] ex-
tended the rumor centrality method to finite tree networks.

Besides the rumor centrality, several other algorithms based on a single snapshot of the net-
work have been proposed. Zhu and Ying [40] proposed a sample path based approach to detect the
single source under the susceptible-infected-recovered (SIR) model, while a message-passing
algorithm was proposed under the same scenario by Lokhov et al. [23]. In [19], Lappas et al. ana-
lyzed the detection problem under the independent cascade (IC) model [15] by minimizing the
distance between the expected states and the observed states of the nodes. Prakash et al. [28] pro-
posed a minimum description length based algorithm called NETSLEUTH, which used an eigen-
vector based metric to rank nodes under SI model. Similarly, Fioriti and Chinnici [14] utilized
the correlation between the eigenvalue and the age of a node, and introduced the dynamic age
algorithm for the single source detection. In addition, there exist several other algorithms that
utilized side information for the source detection problem, such as timestamps of the infected
nodes [1, 7, 27, 35, 39], or directions from which a node gets infected [8, 9]. All these methods are
unable to exploit the structural characteristics as much as possible.

2.2 Measures of Graph Entropy

As an important issue in graph analysis, graph entropy aims to measure the complexity of graphs,
which refers to the level of organization of the structural features such as the scaling behavior
of degree distribution, community structure, graph spectra, and so forth. In order to capture the
inherent structural complexity of graphs, there is a flurry of existing works that contribute to the
measures of graph entropy [2, 6, 10, 30, 31]. Most of them are specific forms of the Shannon en-
tropy [34] for different types of distributions extracted from graph structures. Braunstein et al. [6]
proposed the notion of von Neumann entropy, defined as the Shannon entropy of the spectrum
of the trace rescaled Laplacian matrix of a graph. Based on the network ensembles, Bianconi [4]
introduced the Gibbs entropy to determine the code of the network constructed by the ensemble.
Rashevsky [29] proposed the entropy measure based on the distribution of the number of topolog-
ically equivalent vertices. Following the similar idea, Bonchev and Trinajsti¢ [5] focused on the
distribution of the distances between any two vertices. Raychaudhury et al. [30] proposed the first
local measure of graph entropy, which is interpreted as a kind of vertex complexity. Dehmer [12]
defined an entropy measure based on several parametric information functions, which characterize
metrical properties of various graphs.
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Table 1. Notation and Definition

Notation Definition
v original source node
0 estimated source node

G(V,8E) |underlying network
GN(V1,Er) |infected graph

N the number of infected nodes
dy degree of node v
dy(inf)(dy(un)) |infected (uninfected) degree of node v
Y subtree rooted at node u and away from v
P a partition set of V, thatis, P = {X1,X,..., X1}
n; the number of nodes in module X;
V; the volume of module X; (the sum of degrees of nodes in X;)
gj the number of inter-edges (edges with exactly one endpoint in X;) of module X;

Hp(G) structural entropy of G by the partition
H(v,Gn) |infected tree entropy of node v in Gy
H(v,GN) |equivalent infected tree entropy of node v in Gy
Tgrs(v) the breadth-first-search tree rooted at node v
P, correct detection probability of ITE estimator

Recently, Li and Pan [21] proposed the first metric for structural information. They claimed that
the structure entropy provided the principle to detect the natural or true structure of a network.
To fully exploit the network structure, our proposed source detection metric is based on this idea.

3 INFORMATION SOURCE ESTIMATOR

In this section, we first introduce the information spreading model and formulate the source detec-
tion problem. Then, we formally describe structural entropy [21] to lead to the ITE based source
estimator in trees and general graphs, respectively. For convenience, we list the key parameters
that will be used later in Table 1.

3.1 Spreading Model

We model the network as an undirected graph G = (V, &), where V is the set of nodes, and & is
the set of edges of the form (i, j) for some i and j in V. In this article, we limit our attention to the
case where there is only one source node v*.

We use the SI epidemic model for the information spreading, where the infected nodes are not
allowed to recover. In the SI model, once a node i receives the information, it is called infected,
and it independently attempts to infect each of its susceptible neighbors j. The spreading times
associated with edges are independent random variables with identical exponential distribution
with rate 4. Without loss of generality, we take A = 1.

3.2 Source Detection Problem

Given the above spreading model, we observe the infected graph Gy = (V, Ej) at some time f,
where |V;| = N. We have no prior knowledge of the value of ¢ or the spreading time on each edge
e € Er. All that we can utilize is the structure of the infected graph Gy, including the infected nodes
Vi € V and edges Vi x V; N & between them, as well as those edges on the boundary between
infected and uninfected nodes, totally denoted by E;. Assuming a uniform prior probability of the
source node, the source detection problem can be formulated as the maximum likelihood (ML)
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estimation problem given by

0 € argmax P(Gn|v). (1)

veGN

3.3 Structural Information of a Network

Recall that we hope to make full use of structural features to infer the source. Also, as we have noted
earlier in Section 1, structural entropy [21] is a measure that could fully capture the topological
information of a network. Thus, we first briefly reproduce its main technical idea to facilitate our
later usage of it for the derivation of our proposed source estimator.

In practice, there exist rich natural substructures in a complex network G, such as various mod-
ules, components, or communities composed of different nodes and connections among them. They
usually correspond to important subsets of the networks and form a partition P of the vertices.
To characterize the structural information contained in G relative to P, structural entropy aims
to inquire the information content of the substructure # in G. Specifically, since messages or in-
formation can be delivered between nodes through edges, we refer to a flow of messages from a
sender m to a receiver n as a call, where {m,n} € &, and imagine an exogenous process continu-
ously collects such calls uniformly at random. Hence, at any moment, the probability that a node
v is the message receiver is d,,/2|E|, where d,, is the degree of v. Considering both single node and
substructures of the network as the receivers of calls, the authors [21] focused on the encoding
of the network based on this probability distribution, committed to distinguishing the order from
disorder in a noisy structure and identifying the true structure, which is defined as follows.

Definition 1 (Structural Information of a Network by a Partition). Given an undirected and con-
nected graph G = (V, &), suppose that P = {X;1, X5, ..., X1} is a partition of V; the structural
information of G by P is as follows:

L (J) ) L
Hp(G) = . 2 =L log, =
L V} nj d(]) d(l) L gj ‘/}
= Z Z_lgz ——log, —,
< 216 — 21E] 21&]
where V; is the volume of module X, which is the sum of degrees of nodes in Xj; similarly, 2|&] is
the Volume of G, nj is the number of nodes in X, dﬁj) is the degree of the i-th node in X, and g;

is the number of inter-edges, which are the edges with exactly one endpoint in module X;.

The structural information of a module X consists of two levels: (a) from a module level, the in-
formation of the entire X; as the receiver of messages, and (b) from a node level, the information of
each single node i € X as the receiver. The key is that we can omit the module level code when the
sender and receiver belong to the same module. Hence, for (a), the information of X as the receiver

s —log, % with probability % since we only need consider the deliveries whose senders are
]

J
not in Xj. For (b), the information for all nodes in X as receivers is H (%, ..., —) with probability
J

» Vo
2|8| , where H(-) is the entropy function, which is defined as H(ps, ..., pn) = — X1, pi log, p; for
a probability vector p = (p1,...,pn), with 37, p; = 1. Therefore, the structural entropy indeed
captures the average number of bits needed to encode the receivers of the calls in a lossless
way, which fully characterizes the structural information of a network with corresponding
partitions.
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V3=2,g3=2 @ Infected
rosron \ O Uninfected

\\\\ VZ = 9,g2 =5

R, . ¥ v
Ty,

Fig. 1. Anillustration of a partition of the infected tree. Node v is selected as the potential source for example,
and the three derived modules are in the dotted boxes, respectively.

3.4 ITE Based Source Estimator: Tree Networks

Since the structural entropy captures the structural information of a graph G with any partition
of the nodes, in this section, we introduce the structural entropy based source estimator for tree
networks, which we name as the infected tree entropy based source estimator (ITE estimator
in short).

Recall that our goal is to find the most likely source node given an observation of the infected tree
Gy at some time t. To this end, we try to minimize the structural deviation between the cascades
from all the potential sources v € Gy and the actual infection process. In this way, a natural and
reasonable partition of Gy is needed to characterize the structure of spreading from any potential
source. As mentioned earlier, there exists such an intrinsic structure of the infected tree, which
is specified as follows. Suppose the g neighbors of the node v € Vi are vy, vs, . .., vy, in which
dy(inf) nodes are infected. For the fact that there exist no cycles in tree networks, the information
starting from v will spread to dy,(i,r) disjoint subtrees, namely, dy(;nf) disjoint modules, which
form a spreading trajectory to construct Gy together with the node v itself. We call the trajectory
determined by any potential source node v € Gy a partition of the infected tree, which is defined
as follows.

Definition 2 (Partition of the Infected Tree by a Node). For any potential source v € Gy, the
partition of the infected tree Gy by the node v is that

Pv = (Z},T,Z)l, oo ’T;)dv(inf))’
which satisfies the following properties:

(1) given Gy, P, is determined only by the location of v; and
(2) the modules in P,, are disjoint from each other;

where Tfjj is the subtree rooted at the node v; and away from the potential source node v.

To illustrate this definition, a simple example is shown in Figure 1, where we consider the po-
tential source v. Since v has two infected neighbors, v; and v,, the infected nodes are partitioned
into three modules: the node v itself, the infected subtree rooted at v;, and the infected subtree
rooted at v, that is, P, = (v, T, Tz’jz)

Now that we have a partition of the infected nodes given a potential source node v, we can
derive the structural information of the infected tree rooted at v, which we define for simplicity

as the infected tree entropy of v as follows.

Definition 3 (Infected Tree Entropy). Considering that the information spreads in a tree network
G(V,E), we observe the infected tree Gy at some time. Then, the infected tree entropy of
any infected node v, H(v,Gy), is defined by the structural information of Gy relative to P,
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ALGORITHM 1: Equivalent ITE Message Passing Algorithm
Input: Infected graph Gy
Output: Equivalent ITE for each node u € Gy
1 Randomly choose a root node v* € Gy, and define f(x,y) = x2W=1),

2 for u in Gy do
3 if u is a leaf node then
4 i =1;
u—par(u) >
u
5 L puipar(u) deg(u)’
6 else if u is the root node v* then
7 Lo = Xvechitd(vr) lzfo_w* +1;
8 Pair = Zv'echzld(v ) Pt + deg(v”);
. | H@".Gn) = P 2lehild(©)] . Tyecchitace )f(py_w*, yiv );
10 else
1 lZipar(u) = Zyechild(u) lgl;iu +1;
12 pZipar(u) = Zyechild(u)p;[iu +deg(u);
— up .
13 lpar(u) =L — lu—»par(u)’
=P _ o up .
14 Ppar(u) all Pquar(u),
15 i H(u, Gy) = Pallz(\chzld(u)\+1) 'f(ppar(u)’lpar(u)) HyEChlld(u) f(py—m’ ol );

16 return H(u,Gy) foru € Gy

that is,

H(v,Gn) = Hp, (Gy) = ——1og2 - Z % 1og2

j=1 j=1 i=1 J

where d, is the degree of v in G; V is the volume of the infected tree Gy; g;, V;, and n; are the
number of inter-edges, the volume, and the size of j-th subtree of v, respectively; and d,(inf) is
the number of infected neighbors of the node v.

Take the node v in Figure 1 as an example. Since the two neighbors of v, v1, and v, are both
infected, we have dy(inf) = 2. As for the module T, there are two infected nodes with degree
3, then V; = 6. Meanwhile, as we can see, the number of inter-edges of T},’l is 4, hence, g; = 4.
Similarly, we obtain V, = 9,9, = 5; V3 = 2,¢3 = 2, and the volume of Gy is V =V, + V5 + V3 = 17.
Therefore, the infected tree entropy of v will be

5 9 2X3 3 3X3

3
log2 ~ 2.179 (bits).

H@Go) = —7lo8 17~ 7108 17~ 7 108 17~ 7~ ol g

As the structural entropy described in Section 3.3, the infected tree entropy ?{(v, GnN) captures
the average number of bits needed to encode the two-dimensional structure of Gx by the partition
P.; however, the code itself is beyond our concern in this work. Since $,, is only determined by the
location of node v, any potential source node v € Gy will determine a structural information of
the infected tree. The smaller value of the ITE H (v, Gy ), the lower extent to which the structure of
Gy constructed by #,, deviates from the actual infection process starting from the original source,
hence the probability that the node v is the original source of the information will be higher. As
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such, we denote the source of our estimator by 9, and the ITE estimator can be formulated as

0 € argmin H (v, GN) (3)

veGN

with ties broken uniformly at random.

3.5 ITE Based Source Estimator: General Graphs

For general graphs, owing to the lack of knowledge of the underlying spanning tree corresponding
to the first time that each node gets infected, we use the BFS heuristic to deduce a tree network
in the infected graph Gy. We assume that if the node v € Gy was the source, then the infection
process was along the BFS tree rooted at v, Tgrs(v). The intuition is that the BFS tree would
correspond to all the closest neighbors of v being infected as soon as possible. We should notice
that the removed edges by BFS will not be counted in the degree of both end nodes. With this
heuristic, we obtain the following source estimator for a general graph.

0 € argmin H (v, Tgrs (v)). (4)

veGN
As we will empirically show in Section 6, this estimator indeed outperforms the baselines on dif-

ferent networks.

4 ALGORITHM FOR TREES

In order to efficiently find the potential source node with the minimum ITE, we propose a message-
passing algorithm for tree networks. To do this, we first simplify the expression of H (v, Gy).

dv(inf) do(inf) nj (_])
d d d;
H(v,Gy) = —Vvlog2 Vv - Z = og2 Z Z
j=1
1

1
= V log2 - H, (’U, GN) . (5)

d
nv’eGN dv' '

Note that the first term in the real number of the logarithmic function is a constant for each node
v, so the value of H (v, Gy) is only determined by the second term H, (v, Gy), where

v(znf)
'u(znf)
Hy(0,Gy) = V2 ]_[ vV, (6)

Moreover, the following proposition states a structural property of the inter-edges in an infected
tree.

PRrROPOSITION 1. In an infected tree, for any two infected nodes vy and v,, we have

doy(inf) doy(inf)
gj(vl) - Z gj(UZ) = [dvl(inf) - dvl(un)] - [dvz(inf) - dvz(un)]s (7)
= =

where d,(,n) denotes the number of uninfected neighbors of the node v.

Proor. The intuition is that the difference of the sum of inter-edges between two nodes is only
determined by the respective number of infected and uninfected degrees. Denote the edges on the
boundary between infected and uninfected nodes by Epoundary- Then, for any infected node v; in
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Gn, based on the definition of inter-edges, we obtain that

o (inf)

gi(1) = g1+ G2+ + gd,, 1) = |Eboundaryl = doy(un) + do,(inf)- (®)
=

Similarly, for another infected node v,, we have

doy(inf)

Z gi(02) = g1+ G2+ + Gdy, 1) = |Eboundaryl = do,(un) + duy(inf)- %)
=

By Equations (8) and (9), we can derive

dvl(inf) dvz(inf)
gj(vl) - Z gj(UZ) = [dvl(inf) - dvl(un)] - [dvz(inf) - dvg(un)]-
j=1 =1
This completes the proof of Proposition 1. ]

Based on Proposition 1, we can further simplify H,(v, Gy) by omitting the constant term as

follows:
do(ing)
H(v,Gn) = V2do(ing) . l_[ V}-Z(nj_l). (10)
j=1

Therefore, the ITE estimator is transformed into finding the potential source node ¢ with the

minimum value of H(9, Gy) in Gy, which we call the equivalent ITE. To calculate the equivalent

ITE for each infected node u, we first traverse all infected nodes and record their degrees to obtain

the volume V of Gy for the preparation step with a complexity of O(N + |E;|). In the next step, we

select any node v* as the root and calculate the size n; and the volume V; of all of its subtrees. This

can be done by having each infected node u pass two messages to its parent node: the size of u’s

subtree l:ji and the corresponding volume pZ‘i par(u)’ The parent node adds those lZi par(u)
up

u—par(u
own subtree, respectively. These rl;les(sz)iges are then passed upward until the root node v* receives
all its children’s messages, by which it will calculate its equivalent ITE.

Meanwhile, combining all these two messages of its children and the messages of itself, the
root node can obtain two global values L,j; and P,j; that record the size N and the volume V of
Gn, respectively. With L,;, each infected node u will then obtain the size of its parent’s subtree

by lZi par () subtracted from Lg;;, which we call [,4,(,,), and similarly, the volume of its parent’s

par(u)’

messages together and those p messages together to obtain the size and the volume of its

subtree can be obtained by p,aru) = Pair —pZipar(u).
ITEs for any infected node u. The complexity of this step is O(N). Thus, the message-passing
algorithm is able to calculate the equivalent ITE for each node in Gy using only O(N + |E;|)
computations, which is still the same order as the infection size even in the graphs whose scale
grows exponentially with the diameter. The pseudocode for this message-passing algorithm is
included in Algorithm 1 by omitting the preparation step, where we define f(x,y) = x*@~V to

facilitate the delineation.

As a result, we can calculate the equivalent

5 MAIN RESULTS

In this section, we present the main theoretical results of the ITE estimator under different graph
structures.
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5.1 Trivial Detection on Line Graphs

We start from a trivial structure, which is a line. Defining P. as the correct detection probability
of the ITE estimator under the infection size N, we will establish the following result.

THEOREM 1. Suppose the information spreads on a line graph where the degree of each node is 2
as per the SI model. Then we have
1
P.=0(—]|.
()

We can see that the correct detection probability scales as N~'/ on the line graph, which is trivial
when N goes to infinity. The intuition for this result is that the structure of the line graph is so
trivial that the ITE estimator could provide very little structural information of the source. We
defer the proof of this theorem to Section 7.1.

1/2

5.2 Performance Guarantee on Regular Expanding Trees

We next consider the detection performance on regular expanding trees, where each node has
degree d > 3.In this case, the tree expands quickly with the increase of the depth, and the structure
is more complex than a line. We obtain the following result of our estimator.

THEOREM 2. Suppose the information spreads on a regular tree with degree d > 3 as per the SI
model. Then
0< lim P, < l
N—oo 2
Intuitively, for such an infinite scale of infected trees, the correct detection probability for one
randomly selecting an infected node tends to zero. However, due to the degree regularity and
enough structural complexity in the network, our estimator could capture the structural features
inside, and the left inequality in Theorem 2 indicates that ITE still performs the detection with a
strictly positive probability even when the infection size N goes to infinity. The above result also
says that the detection probability is bounded by 1/2. One can imagine that the source node has
infected one neighbor. Because of the memoryless property of the spreading model, we can treat
these two nodes as a new single enlarged source. Combined with the regularity of the tree, the
later spreading is symmetric about these two nodes, and even the best estimator will not be able
to distinguish between them, so the detection probability can never be greater than 1/2. Therefore,
the performance of the ITE estimator is guaranteed on regular trees with d > 3. This theorem is

proved in Section 7.2.

5.3 Asymptotically Complete Detection on Geometric Trees

Geometric trees are first introduced in [33], which grow polynomially in size with the diameter of
the tree. They are parameterized by constants a, b, and ¢, with @ > 0,0 < b < c. Let n’(r) denote
the number of nodes in the i-th subtree of the root node v* at distance exactly r from the subtree’s
root node, and the degree of v* is d,,+; then we require that for all 1 < i < d,»

br® < n'(r) < cr®. (11)

The condition of Equation (11) describes that each of the subtrees of the root node should satisfy
polynomial growth with parameter o > 0.

We consider the scenario where the information starts spreading from the root node of the
geometric tree, and obtain the following result.

THEOREM 3. Consider a geometric tree with a > 0, 0 < b < ¢, and the root node v* with degree
dy+ > 3 such that
b(dy: = 1) > c-log(y ,_yyc.
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Suppose the information starts spreading from v* as per the SI model. Then,
lim P, = 1.
N—-oco
We prove this result in Section 7.3. This theorem says that the ITE estimator has an asymptotic de-
tection probability of 1, which is as good as the best possible estimator on this more general and het-
erogeneous tree network. In the sequel, we further demonstrate a remarkable advantage, where our
estimator has more reliable detection performance compared to those centrality based algorithms.

5.4 Advantages with Heterogeneity of Geometric Trees

The parameter « characterizes the growth of the geometric trees, while the ratio ¢/b describes the
heterogeneity of the subtrees. When ¢/b = 1, the subtrees are somewhat regular, whereas for ¢/b
large enough, there is substantial heterogeneity in the subtrees. The following result demonstrates
a further advantage of our estimator with increasing tree heterogeneity.

THEOREM 4. For a geometric tree with parameters a« > 0, 0 < b < ¢, and the root node v* with
degree d,» > 3. Let a, b, and d,» be fixed, then the performance of the ITE estimator is more robust
to the increase of the ratio c/b compared to those centrality based algorithms under only moderate
infection sizes.

Remark: A more robust performance on detection under moderate infection sizes means that our
estimator will be less affected by the increasing tree heterogeneity, and has a higher probability to
correctly detect the source before the infection spreads to a wide range, which is of importance in
reality. Intuitively, with the increasing heterogeneity in geometric trees, it is generally harder to
correctly detect the source for any algorithm due to the more complex structures of the infected
tree, where most centrality based algorithms [11, 32, 40] will probably be fooled to select the
nodes with large degrees. In contrast, as we will prove in Section 7.4, the ITE estimator will not
be completely dictated by the centrality of the potential source.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the ITE estimator on different networks.

6.1 Baseline Algorithms

For fairness, we aim to select the algorithms proposed under the same SI model, requiring a single
observation of the network and no side information, which are summarized as below.

— RUM: Find the node with maximum rumor centrality [32]. This classic algorithm is proved
to be the maximum likelihood estimator on regular trees under the SI model, and can be
applied to general graphs by BFS heuristic.

— DA: Find the node with maximum dynamic age [14]. Due to the high complexity in com-
puting the dynamic age even for a single node, generally O(N?), let alone in finding the
maximum one, this algorithm is not suitable for identifying sources in large-scale networks.

— NETSLEUTH: Find the node with maximum value in the smallest eigenvector of the sub-
matrix constructed by infected nodes in the graph Laplacian matrix. This is a spectral graph
theory based approach proposed in [28].

6.2 Evaluation Metrics

We evaluate the performance of the algorithms with the following metrics.

— Detection probability is the correct detection rate of the source estimator.
— Distance is the average number of hops from the estimated source to the original source,
which is an often used metric for the source detection problem.

ACM Transactions on Internet Technology, Vol. 23, No. 1, Article 17. Publication date: March 2023.



Finding the Source in Networks: An Approach Based on Structural Entropy 17:13

Regular trees . Regular trees(d=4) Regular trees(d=4) Regular trees(d=4)
——d=2 —— RUM — RUM 10
2o —— d=3 > —4— NETSLEUSH 3 —+— NETSLEUSH
= —— d=4 = —— DA 5 —— DA o
3 3
g —~g=s5| & —— ITE Ez —— ITE g
0 ° 2 Lo
5
& & s 2
c p ° —— g
g Gor g l——— | { ——r
° ° 2 o —— NETSLEUSH
a] - [ a 2 — DA
— a
i R — e
a0
50 100 150 200 250 300 ° 50 100 150 200 250 300 50 100 150 200 250 300 5 10 15
Infection Size Infection Size Infection Size Y
(a) d =2,3,4,5 (b) Detection probability (c) Distance to the source (d) y%-accuracy

Fig. 2. Performance on regular trees. (a) ITE detection probability on regular trees. (b)-(d) Comparison be-
tween ITE and three baselines on regular trees when d = 4.

— y% accuracy versus the rank percentage describes the probability that the original source is
ranked among the top y percent. Note that a source detection algorithm can not only provide
a source estimator, but also can be used to rank the infected nodes by their likelihood to be
the source. For example, RUM ranks the nodes in a descendant order according to their rumor
centrality, whereas I'TE ranks the nodes in an ascendant order of their infected tree entropy.
We wish that the original source lies in the top ranked nodes with a high probability.

6.3 Regular Trees

In this section, we evaluate the ITE estimators on regular trees. For each simulation, we select the
source node uniformly at random and synthesize the spreading as per the SI model. We conduct
500 simulation runs for each configuration on each network.

The detection probability of the ITE estimator versus the infection size on different regular trees
is shown in Figure 2(a). As can be seen, the detection rate scales as N~'/? as derived in Theorem 1
for line graphs, while for regular expanding trees with d > 3, the estimator has a non-trivial
detection probability, which is less than 1/2 and does not decay to 0 as predicted. For regular trees
with d = 4, we compare the performance of the ITE estimator with the other three baselines.
As shown in Figure 2(b), although rumor centrality [32] is proved to be the maximum likelihood
estimator on regular trees, we can see that ITE performs very similarly to RUM. Moreover, even
under some infection sizes, e.g., 50, 100, 150 and 250, ITE has a little higher detection probability
than RUM. Meanwhile, compared to the other two algorithms, the detection probability of ITE is
still higher. To make a further comparison, we also present the error distance and y% accuracy
of four algorithms in Figures 2(c) and (d), where the error distance curve of ITE almost coincides
with that of RUM, which two have the lowest error distance. In addition, compared to the other
two methods, ITE has a much closer ranking performance to RUM. Both results demonstrate that
ITE performs similarly to the MLE estimator on regular trees.

6.4 Geometric Trees

In this section, we compare the performance of the algorithms on geometric trees. The results are
averaged over 500 simulation runs. Figure 3 presents the results on geometric trees under different
settings of ¢/b. In Figures 3(a)-(c) we fix @ = 1, b = 5, and d» = 12, whereas ¢ = 1, b = 10, and
d,+ = 12 are fixed in Figures 3(d)—(f). We have the following three observations.

— Firstly, the detection probability of the ITE estimator is closer to 1 when the infection scale
becomes larger as predicted by Theorem 3.

— Secondly, by comparing these subgraphs, we can explicitly see that I'TE is less affected with
the increasing ratio of ¢/b, and the gap of detection probabilities between ITE and the other
three algorithms becomes wider under the same infection size.
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Fig. 3. Performance on geometric trees.

— Thirdly, comparing the figures in the respective three columns, we take Figures 3(c) and(f)
as an example. Under the same settings of @ = 1, d» = 12, and ¢/b = 15, the only difference
is the value of b. We observe that the gap mentioned in the second observation is even wider
when b = 10 than when b = 5. The reason is that although ¢/b is the same, a larger b brings
about more variance of the heterogeneity, which leads to more heterogeneity in each subtree
of the root node.

Thus, our estimator has more advantages when there exists more heterogeneity in geometric
trees, which is guaranteed by Theorem 4.

6.5 Graph Networks

We next perform experiments on both synthetic and the following six real-world networks to
demonstrate the efficacy of the ITE estimator on general graphs. Table 2 shows the statistics of the
networks.

— Power grid network is the power grid of the Western states of the U.S.

— LastFM is a social network of LastFM users that was collected in March 2020.

—IAS is an Autonomous Systems (AS) peering graph inferred from Oregon route-views on
March 31, 2001.

— Facebook is a page-page graph of verified Facebook sites collected in November 2017.

— Enron email network covers all the email communication within a dataset of around half
million emails, where nodes represent email addresses.

— Gowalla is a location based social network of friendships over the period of February 2009
to October 2010.

6.5.1 Synthetic Networks. We select two very popular models for networks: small-world net-
works [37] and scale-free networks [3]. For both topologies, the underlying graphs contain 5,000

nodes. The small-world network is generated by rewiring edges and contains 25,000 edges, while
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Table 2. Statistics of Networks

Networks Description V| |E] |E1/1V| Diameter
Small-world Synthetic 5,000 25,000 5.0 9
Scale-free Synthetic 5,000 9,996 2.0 9
Power grid Infrastructure 4,941 6,594 1.3 46
LastFM Online Social 7,624 27,806 3.6 15
IAS Autonomous System 10,670 22,002 2.1 9
Facebook Online Social 22,470 171,002 7.6 15
Enron Communication 36,692 183,831 5.0 11
Gowalla Friendship 196,591 950,327 4.8 14
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Fig. 4. Performance on the small-world network. Fig. 5. Performance on the scale-free network.

the scale-free network is generated by preferential attachment with 9,996 edges. We vary the in-
fection size from 100 to 400 and run each simulation 300 times independently. In each simulation,
the source node is chosen uniformly across node degrees to avoid the bias toward small degree
nodes.

Figures 4 and 5 show the performance on the above two networks, respectively. For both the
plots of y% accuracy versus the rank percentage y, we pick the infection size 400. As can be seen,
the ITE estimator performs lower error distances to the original source compared to the other three
algorithms in almost all cases. The improvement is more obvious in a small-world network than in
scale-free network. For the small-world network used here, the average ratio of edges to nodes is
5, whereas for the scale-free network, the average ratio is 2. Thus, the small-world network is less
tree-like. This may explain why ITE outperforms more apparently than the other three algorithms.

As for the y% accuracy, ITE has similar or better performance on a small-world network, but
clearly outperforms the baseline algorithms on the scale-free network. For example, the 10% accu-
racy of ITE is 85%, which is significantly higher than that of other algorithms, e.g., 55% for RUM,
48% for DA, and 44% for NETSLEUTH. The reason behind this may be the existence of many large
degree hubs in the scale-free network, then the network has more heterogeneity compared to the
small-world network.

6.5.2 Real-World Networks. We conduct experiments on six real-world networks derived from
SNAP [20] and KONECT [18], as shown in Table 2. Among them, the Power grid (PG) and LastFM
networks are moderate size, and the remaining four networks are large scale. The source detection
algorithms are evaluated systematically on these datasets, as they not only cover a wide range of
categories, but also vary in size and the ratio of the number of edges to the number of nodes.

We adopt the similar settings as in Section 6.5.1 except for the infection size on the large-scale
networks. In these four networks, we set the infection size range from 200 to 1,000, and remove
the DA algorithm due to the rather high complexity as mentioned in Section 6.1.

Figures 6(a), 7(a), 8(a), 9(a), 10(a), and 11(a) show the distance versus the infection size. In gen-
eral, owing to the more complex structures, all the algorithms yield a farther node from the source
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when the infected graph grows larger. Nonetheless, similar to the performance on synthetic net-
works, the ITE estimator establishes lower distances to the original source in almost all the cases.
Moreover, as the infection size increases, we can see that ITE performs better and better than RUM.
This phenomena is more obvious on the less tree-like networks, such as the Facebook network and
the Enron network, where the average ratio of edges to nodes is 7.6 and 5, respectively.

In addition, the plots of y% accuracy versus y for 400 infection size are shown in
Figures 6(b), 7(b), 8(b), 9(b), 10(b), and 11(b), respectively, from which we have the follow-
ing observations. On one hand, we can see that ITE has a remarkable advantage of ranking nodes
over the baselines on almost all the networks. In PG networks, the 10% accuracy of ITE is 60%,
which is higher than that of other algorithms. However, as y increases, NETSLEUTH becomes
closer to ITE in terms of accuracy. The reason may be that the PG network has weak degree
heterogeneity, which is similar to small-world networks in Figure 4(b). On the other hand, ITE
improves accuracy for the LastFM network, and the 10% accuracy of ITE is close to 65%, far
exceeding that of baseline algorithms. For example, it is even more than twice that of the classic
RUM method. This is due to the fact that the LastFM network contains many hubs and has more
heterogeneous degree distributions, and the ITE estimator is capturing the significant heterogene-
ity, similar to the scale-free networks in Figure 5(b). In addition, the same significant advantages
can be seen on the IAS and the Gowalla networks. From this point of view, by leveraging more
structural features, ITE can better rank the infected nodes by their likelihood to be the source in
most cases.
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A further comparison on frequency of error distances across all the eight topologies is shown
in Figure 12, where we pick N = 400. Our results show that ITE mostly and consistently find the
actual source mostly within distance 2; besides, the probability of correct detection event (when
error distance is 0) is generally higher than all the baseline methods. For the PG network, source
detection becomes quite hard for all the methods. The reason for the same is the high sparsity of
the PG network. Even then, ITE finds the source within two hops form the actual source with a
probability around 45%.

6.5.3 Effects of Different BFS Trees. Since the ITE estimator on general graphs adopts BFS
heuristic, and the BFS tree is not unique, we design the following three BFS policies at the same
depth to demonstrate how different BFS trees affect the performance of ITE: (1) Random: traverse
in random order, which we adopt in the above experiments; (2) Small2Large: traverse in ascend-
ing order of node IDs; and (3) Large2Small: traverse in descending order of node IDs. We select
one synthetic network, scale-free network, and one real-world network, PG network, and other
settings are the same as before. Figures 13 and 14 show the comparison results. The observation is
that different BFS policies yield little variance on the performance of ITE, demonstrating that the
selection of BFS tree has little effect on the ITE estimator.

7 PROOFS

This section establishes the proofs of Theorems 1-4. All of them utilize the ITE estimator to obtain
the desired results.
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7.1 Proof of Theorem 1

Before giving the proof of the result on line graphs, we first simplify the equivalent ITE in
Equation (10) by the regularity of the trees. On a regular tree with degree d > 2, it is easy to see
that V. =d-Nand V; =d - nj, then
dv(inf) 2( 1)
— J2N=1) N2doing) nj=
H(v, Gy) = d*N-1 N2do(ing) [_[ ny Y, (12)
j=1
By omitting the constant term d*N =1, we denote the equivalent I'TE on regular trees by H, (v, Gy ).
That is,
do(ingf) -
s nj—
H,(v,Gy) = N*4etn) . ]_[ o (13)
j=1

Recall that our goal is to find under what conditions that the original source v* has the minimum
value of H,(v*, Gyn). On line graphs, for each infected node v, we have d(inr) = 2 except for
two leaf nodes at the endpoints, so that we can omit the first term N 2du(inf) for all non-leaf nodes.
On the other hand, N?@(n/ only increases with the power of dy(inf), while the second term of
H, (v, Gn) grows exponentially, denoted by

dv(inf)

* 2(n;-1)
H* (v, Gy) = ﬂ ny Y, (14)
j=1
To begin with, we state the following lemma that characterizes the general form of the function
in Equation (14) for further analysis. We present its proof later in this section.
LEMMA 1. For the function g(x) = 1—15;1 x;%%172, object to Z;’zl xj = c(a constant), and x; > 0,
foranyj=1,2,...,b, then we have the following results:

(1) g(x) is strictly convex.
(2) g(x) has the minimum value asx; = x; = - -+ = xp = .

As such, when the infection size N goes to infinity, the equivalent ITE of two leaf nodes will
be much larger than that of non-leaf nodes. So we can only focus on the second term of all the

non-leaf nodes, that is,
* 2n;—2 2ny—2
Hr(U,GN) =n ! s Ny 2 >

subjectton; +n, = N -1, ny,ny € Z*.

Based on Lemma 1, H} (v, Gn) is strictly convex; then the intersection of the surface H} (v, Gn)
with the plane ny+n, = N—1, denoted by [, is a strictly convex curve. As can be seen that H (v, Gx)
is symmetric with the plane n; = ny, so is the curve [. Therefore, considering the restriction that
ny and n; are both positive integers, we conclude that Hj (v, Gy) has the minimum value under
the following condition:

ny = no, N —1is even.
ni=ng+lorny;=n;+1, N —1isodd.

Then, the correct detection probability P, on the line graph is given by
1
PC=P(n1=n2)+5(P(n1=n2+1)+P(n2=n1+1)). (15)

The same condition in Equation (15) has been proved by Shah and Zaman [32] that P, scales as
O(1/+t), where t is the observation time when the infection size is N. We note that the information
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spreading on a line graph is divided into two independent Poisson processes starting from the
original source and spreading in opposite directions with rate 1. Based on the property of the
Poisson process, we will then conclude that

P, = o(i) (16)
c — W 9

which completes the proof of Theorem 1.

Proor oF LEMMA 1. Firstly, we transform the expression of g(x) as follows.

b
g(X) — nxz'xj_z — e(2x1—2)1nx1+(2x2—2)lnxz+---+(2xb—2)lnxb
i .

j=1
Denoting
h(x) = (2x; = 2)Inx; + (2x2 = 2) Inxy + - + (2x5 — 2) Inxp,

then we can obtain the Hessian matrix of h(x):

% 0 e 0
0 2’;2;2 . 0
A=| | . . . (17)
2xp+2
Since x; > 0,for j = 1,2,...,b, the matrix A is positive-definite, and we derive that h(x) is strictly

convex. Considering the convexity of e, we obtain that g(x) = e"® is strictly convex, which
completes the first part of the proof.

Due to the monotonicity of e*, g(x) has the minimum value when h(x) does. Based on the
Lagrange Multipliers, we first define the Lagrange function as follows:

2(x) 2 h(x) + A(c— X1 — Xy — - — xp).
Then we obtain
0z 2
— =2lnx+2-—-1=0,
axl X1
EZZIHXZ-}-Z—E_A:O’
ﬁxz X
(18)
0z

2
=2lnxy +2-——-1=0,
Bxb Xp

X1 +XxX9+ -+ Xp =C.

Denote p(x) = 2lnx + 2 — %, then p’(x) = 22‘:{2 > 0, so p(x) is strictly increasing. As such,

we observe the first b equations in Equation (18). Since the parameter A remains the same, it can
be concluded that p(x;) = p(xz) = -+ = p(xp). Then the solution to the equations, that is, the
condition when g(x) has the minimum value, becomes

c
X1 =X =+""=Xp = E’
which completes the second part of the proof. O
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7.2 Proof of Theorem 2

To establish that on regular trees with d > 3, the probability of correct detection of the source
using the ITE estimator is strictly positive and upper bounded by 1/2, irrespective of N, we need
to find out under what conditions the source node v* has the minimum H, (v*, Gy ). Denote the
d neighbors of v* by vy, v,,...,vy, and let the random variable T;(t) be the number of infected
nodes in the i-th subtree of v* at time ¢. To find the lower bound, we first define a special case
Sn(t), under which the source node v* is proved to be correctly detected. After that, we state that
Sn(t) is lower bounded by a strictly positive constant.

Define S,,(t) as the event when all the d subtrees of the source have between n and (d — 1)n
infected nodes. That is,

d
Sa(t) = ﬂ{n < Ti(t) < (d - 1)n}, forn > 0. (19)

i=1

We shall make sure that H, (v*, Gy) is the minimum among all the infected nodes under this event.
Considering that as t goes to infinity, n will be large enough, and the first term N?%Gnn) only
increases with the power of dy,(inf), Where 1 < dy,(inr) < d. In this case, the value of the equivalent
ITE of each infected node v is mainly determined by the exponential term H (v, Gn).

Next, we note that under the event S, (t), we have T; = n+ ¢; (t is omitted for simplicity) where

0<c¢; <(d-2)n,for1<i<d. Suppose wlo.g. that c; = max(cy,cy, .. ., cq). Therefore,
d-1
ij=(d—1)n+zc,~+1>(d—1)n2Td. (20)

i=1

Then the remaining d — 1 subtrees of v; have n+c;—1 infected nodes in all. Since 0 < ¢; < (d—2)n,
we have
n+cg—1 1
d-1 ~"Tad-1°
Based on the Lemma 2 stated below, to ensure the value of H(vy, Gy) is as small as possible,
the sizes of remaining d — 1 branches should satisfy the nearest integer point from the minimum

n. (21)

. n+cg—1 n+cg—1 n+cqg—1 . . . .
point ( , Yo ) as presented in Lemma 1. Considering Equation (21),
d-1 d—-1 d-1
d-1
the sizes of v;’s subtrees will be (n — aj,n —az,...,n — aq_1, Tgf), where ay,ay, . ..,aq-1 are all

non-negative integers.

LeEMMA 2. For the function g(x) = ;’:1 x;%972, object to Z;’:l x;j = ¢ (a constant), and x; € N7,
foranyj=1,2,...,b. Then g(x) has the minimum value when (x1,x, . .., Xp) reaches the nearest
integer point from the minimum point Qy(c/b,c/b, ..., c/b).

—_—
b

Different from Lemma 1, the variables x; in Lemma 2 are all positive integers, and we present its
proof later in this section. Further, the following Lemma 3 states a property of the positive, strictly
convex, and monotonically increasing function that can be easily derived.

LemMa 3. If f(x) is positive, strictly convex, and monotonically increasing, then we have that

fCe) - fle) - flxr) < fxr=b1) - oz =b2) - f(Xk1 = br-1) - fxk + B),

wherex; < xp <--- < x¢, b; >0, and Zf:_ll b; = B.
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Combining Equations (20) and (21) and Lemma 3, we obtain that H)(v*,Gn) < H)(vg, GN).
Next, in the same way, for other neighboring nodes of v*, it can be proved that, as N — oo,

H} (vi, GN) > H;(vq,GN) > Hy(v",GN), for 1 <i<d-1.

From the later proof of Lemma 2, we can see that for an infected node v, with the infection size
of each subtree as an integer coordinate (xy, X3, . . ., x4), denoted by C(v), its Euclidean distance to
Qo is a critical factor of H} (v, Gn), which is also the variance of C(v). In other words, H} (v, Gn)
will be smaller with high probability when C(v) has lower variance. Though we cannot derive a
complete conclusion due to the asymmetry property of g(x), this is an obvious trend because of
the convexity of g(x). Therefore, for other non-neighboring nodes v’, as N goes to infinity, the
variance of C(v’) will be much greater than that of the actual source v*, hence we conclude that,
as N — oo,

H; (v*,Gn) < Hy (v, Gn).
To sum up, we obtain that under S,(t), the ITE estimator correctly detects the source when N
goes to infinity. Moreover, the probability of the event S,(t) was proved in Theorem 2 in [32]
that is lower bounded by a strictly positive constant. As for the upper bound 1/2, we can easily

derive from the regularity of the tree and the symmetry between the source and the first infected
neighboring node. This completes the proof of Theorem 2.

Proor oF LEmMa 2. (1) If ¢/b is an integer, the conclusion is directly obtained from Lemma 1.
(2)If¢/b € (a,a + 1), where a is an integer, we assume that the nearest integer point from the
minimum point Qy(c/b,c/b, . ..,c/b) stated in Lemma 1 is Q;(a,a,...,a,a+1,--- ,a+ 1), which
Sererertentemn eteertersentene’ S S — e’

b n b—n
satisfies

na+((b-n)a+1)=c.
Bringing the coordinate of the point Q; into g(x), we have

9o, (X) — aZn(a—l) . (a + l)Za(b—n).

Suppose Qz(a,a,...,a,a+1,...,a+1,a+ 2). Denote the distance between two points Q; and Q;
———— N ——

n+1 b—-n-2

by dg,o,- Then it is easy to see that dg,o, > dg,0,, and

90, (X) — aZ(nJrl)(a—l) . (a + 1)2a(b—n72) X (a + 2)2(a+1)'
Then we have
90, (X) az(a—l)(a + 2)2(a+1) )
= > 1.
9o, (%) (a+1)ta
Hence, g9, (x) > go, (x).
Similarly, for a-1,a,...,a,a+1,a+1,...,a+1), we have d, > d and X) >
Y; Os( ) Q003 Q01 ng( )
n-2 b—n+1
90, (%).
The same conclusion can be obtained for
Q4(a,...,a,a=1,a+1,...,a+1,a+3)and Qs(a - 2,a,...,a,a+2,a+1,...,a+1).
———— | — ——— —_—
n b-n-2 n-2 b-n
By induction, we conclude that go, (x) is the minimum value of g(x), which completes the proof.

O
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7.3 Proof of Theorem 3

The main idea is generally similar to that of Theorem 2, but is more challenging. As N goes to
infinity, we wish to establish the effectiveness of the ITE estimator in the most extreme case, thus
the performance is guaranteed in all cases.

For the reason that the volume of the j-th subtree, V}, is uncertain for each potential source node,
it is hard to directly analyze the equivalent ITE H(v, Gy) in Equation (10). To this end, we first
focus on V; in geometric trees. According to the definition of geometric trees, the average number
of nodes in the r-th level is that E[n(r)] = (b + ¢)r*/2. Denote the average degree of the nodes in
the r-th level as d(r). Then we have

d(r) =

2. (22)

E[n(r+ 1)] _ r+1 a r—00
E[n()] “‘( ) 1

As aresult, with the increase of the level r, different branches of the geometric tree will grow some-
what like a line. In such a way, for the observation time ¢ large enough, V; can be approximated
by 2n;; hence, let Hy (v, G ) be the exponential term of the equivalent ITE on geometric trees; we
obtain that

r

H (v, Gn) == H} (v, Gv). (23)

Next we will guarantee the performance in an extreme scenario. Let T;(¢) denote the size of the
infected subtree rooted at the i-th neighbor of v* at time ¢. As derived in Theorem 4 in [33], for all
1 <i < d,, and a small enough € > 0,

c

(t(1—e) = 2)“" < T;(t) <

H1+ €))%,
1+« 1+a(( ))

In the most extreme case, do,» — 1 of these subtrees have minimal infection size T,;,(t) and the
remaining one has maximal size T,,4x (%), rooted at vy, w.l.o.g., where

b
Trin(t) = m(t(l —€)—2)**,

Tax(t) = To—(t(1 + )™,

Based on Lemma 2, to ensure that H (v1, Gy ) is as small as possible, the infection coordinate C(v)
should satisfy

Co1) = |y = D) Tpin(t) + 1, T’"“c"(t), . T’"“c)‘(t)

Defining € = 77 + 6 for any small 0 < § < 1, we have

H;(U*,GN) : Tmin(t)(ZTmin(t)fz)(dv*fl) . Tmax(t)ZTmax(t)*z

H: (v, GN) e 1)Ton; (D) 2Tmax (D)=2¢
g(vl N) [(dv*—l)Tmin(t)'*‘l]Z(d” 1)Tmm(t)(T c(t))

a+l
(b phed _ gy (2 (=130 —2)(dye-1)
—(t—1t27% =2
1+a

2(d,«—1)b l,s . @t
[(d'u*—l)b (t _ t%+5 _ 2)a+1 + 1][T(t_tz -2) ]

1+a
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1
[2S (¢42270)at1 2]
[p (¢ + ¢id)yery T

. 1
(225 (422 *0)a+1 2]

g (¢ + £2+0)1]

T+a
2(d, +—1)b l,s ot
ot (r—1270 -2 ;
_ [ 1 ][ lT+a ( ) ] ) c[]iix(t+t%+b)a+l] . @(Z‘m)
dy — 1+ B2 (L jar
t-12%-2
. @(taﬂ)
) c* m
- Lo T ydoob] 101
< 1, (24)

for t large enough, where m = 2(c — d,+)(a + 1) is a finite constant. Since by assumption ¢¢ <
(dps — 1)(dv*_1)b, ast — oo, then N tends to infinity, the first term in the right-hand side of the
equation (j) will be far less than 1, and its exponential growth rate is much greater than that of the
second term. As a result, we obtain that Hy (v*, Gn) < Hy(v1, Gn) for ¢ large enough. In a similar
way to Theorem 2, we conclude that H; (v*,GN) is the minimum among all the infected nodes.
Therefore, if the performance of the ITE estimator is guaranteed in the most extreme scenario,
then it will correctly find the source in all scenarios as N goes to infinity, such that
lim P, = 1.

N—ooo

This completes the proof of Theorem 3.

7.4 Proof of Theorem 4

We assume that the source node v* first infects its neighbor v; (1 < i < d,+) with degree d,,,.
For the memoryless property of exponential distribution, the spreading is then divided into two
processes: (a) 71: starting from v* and away from v; with rate (d,- — 1)A, and (b) 7,: starting from
v; away from v* with rate (d,, — 1)A. Based on the definition of geometric trees, we obtain the
expectation of the degree of v; as follows.

(b+c¢)

2
From Equation (25), we can see that if we fix the parameter b, then E(d,,,) « c. This indicates that
the spreading rate of 7, will be higher with the increase of ¢, hence the information will be inclined
to spread to the neighbors of v;. As a result, v; will have a larger infected degree.

Recall that the first term in Equation (10), V2doing) | grows with the power of d,(inr), while the
second term grows exponentially. Unlike the limiting case when the infection size goes to infinity
in Theorem 3, when the infection size is only moderate, however, we cannot overlook the difference
of V?4wnf) for any v € Gy. Furthermore, for ¢/b large enough, then w.h.p. we have that

E(dy,) = +1. (25)

V2do(inf) « V2do;(ing) (26)

In addition, as mentioned in Section 7.2, the second term is highly related to the variance of each
subtree’s size, hence it characterizes the structural centrality of the potential source in a way. In
this case, the source v*, which, second to the node v;, will have more balanced sizes of subtrees
compared to those of other remaining infected nodes due to the spreading property.

Combining the above two factors, as the ratio of ¢/b increases, we will obtain that H(v", Gy) <
H(v;, Gn) with higher probability and the source v* will have the minimum ITE in Gy.

On the other hand, owing to the large infected degree of v;, most centrality based estimators will
probably be fooled to choose v; as the source. By contrast, the ITE estimator will not be completely
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dictated by the centrality of each potential source as mentioned, and will correctly find the source
with higher probability. This derives a more reliable detection.

8 CONCLUSION

In this article, we propose a structural entropy based approach named ITE estimator for source
detection under the SI model. Theoretically, we prove that on geometric trees, the ITE estimator
not only has an asymptotically complete detection, but also remarkably yields more reliable detec-
tion under moderate infection sizes with the increasing tree heterogeneity, which has important
practical significance. In addition, a non-trivial detection is guaranteed as the network grows to
infinity on regular expanding trees. To improve the efficiency, we propose a message-passing al-
gorithm with a complexity of O(N + |E;|), faster than most prior arts. By incorporating the BFS
strategy on general graphs, extensive experiments with different metrics show that the ITE esti-
mator outperforms other baselines on both synthetic and real-world networks.
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