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Abstract

ChatGPT and GPT-4 have raised debates regarding the progress of knowledge in large language models
18 The notion of "knowledge explosion" has been controversial in various variations since the 19th
century 8. Despite numerous indications to the contrary °'7, conclusive evidence on knowledge growth
is lacking '2. Here, we evaluated knowledge as a collective thinking structure within citation networks by
analyzing large-scale datasets containing 213 million publications (1800-2020) and 7.6 million patents
(1976-2020). We found that knowledge did not explode but grew linearly over time in naturally formed
citation networks that expanded exponentially. Our theoretical analysis established that the knowledge
never exceeds the size of the network, revealing the limitation of knowledge development. Moreover, our
results showed that the knowledge expansion rate shifted at certain inflection points, implying
quantitative-driven qualitative changes. Leaps near inflection points may instigate a "knowledge
explosion" delusion, allowing us to reconcile the spreading of the misconception. Inflection points in
knowledge growth exhibited similar characteristics to the emergent ability of artificial intelligence '3,
furnishing fresh insights into the singularities and emergence in complex systems. Overall, our findings
reveal a slow pace of knowledge compared to data, reacquainting us with the progress of knowledge over
time.

Main

Recently, ChatGPT, particularly GPT-4, has demonstrated remarkable capabilities 1 sparking a revival of
explosive growth. The widely held belief that knowledge is growing exponentially worldwide raises this
resonance, with rapid technological advancement and the proliferation of online information supporting
this belief 14718, The concept of "knowledge explosion" was first introduced into academic literature as
early as 1961, when the term was credited as having been coined 1. Since then, the "knowledge
explosion" has frequently surfaced in academic literature, enduring to the present day and spanning
diverse fields such as education '°, politics ¢, and scientific research 1718 Recent studies, however,
indicate that the view of exponential knowledge growth may be overly simplistic /~'". For instance, the
expansion of Wikipedia, which encompasses vast knowledge, has decelerated '°. As early as 1962, Nobel
laureate Fritz Albert Lippmann challenged this view and pointed out that despite claims of exponential
knowledge growth, human evolution as a species does not change significantly 4. Subsequently,
numerous studies indicated that the rate of critical scientific discoveries declines ®° and that extensive
literature may impede the creation of new knowledge ''. All these studies indicate the same conclusion:
knowledge may not be exploding as rapidly as previously believed.

Although the exact origin of the "knowledge explosion" is hard to trace from the literature, the concept of
"information explosion” emerged at almost the same time '°, possibly leading to confusion between
knowledge and information. "Information explosion" usually refers to the rapid increase in published
information or data due to technological advances, such as television and computers. Born in the same
era, "information explosion" and "knowledge explosion" describe similar and vague meanings, such that
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later studies have used the two terms indiscriminately 2227, Studies have shown that the so-called
"knowledge explosion” is just an "information explosion" °. Similarly, some studies have pointed to
limitations in the accessibility and quality of the information available online, suggesting that the
proliferation of information does not necessarily equate to increased knowledge 2223, Another related
concept of "intelligence explosion," also known as the singularity, was first proposed in the 1950s 24 and
gained popularity in the 1960s 2>2%. This idea suggests that technological advances will lead to artificial
intelligence surpassing human intelligence, resulting in a singularity where the future becomes
unpredictable. Though not entirely identical to "knowledge explosion,’ the close connection between
knowledge and technology allows for mutual inspiration in exploring both. Recent research suggests that
the exponential runaway technology trend favored by proponents of the singularity hypothesis has not
been observed so far 2728, which means that the "knowledge explosion" may not have occurred yet.

Is "knowledge explosion" occurring? This question has been raised, but no answer has been given due to
the difficulty of measuring knowledge '2. Some studies indicate that the network structure may
potentially balance information explosion and knowledge mining 2°. Developing such an idea, the
recently proposed knowledge quantification index (KQI) 3° provides a metric for knowledge by
conceptualizing knowledge as a network structure, which embodies the certainty of information the
structure brings. The intuition of KQl is that a well-structured network filled with knowledge should vastly
reduce uncertainty about the unknown. Regarding each publication as an indivisible knowledge point and
collective thinking structure constructed from citations as a knowledge network, KQI quantifies the
uncertainty reduced by the knowledge network compared to isolated knowledge points. In this manner,
KQI allows us to explore whether knowledge is exploding and how the knowledge grows.

Here, we addressed these confusions on knowledge growth by analyzing 213 million publications (1800-
2020) in Microsoft Academic Graph (MAG) and 7.6 million patents (1976-2020) in the United States
Patent and Trademark Office's (USPTO) Patents View database (see Methods). The MAG data include a
field classification of the publications into 19 major disciplines and 292 secondary subjects. We
constructed yearly citation network snapshots using MAG data, Patents View data, and subject data
obtained by partitioning MAG. Subsequently, we joined the knowledge measure KQI 30 with analyses of
each snapshot to observe changes in knowledge over time (see Methods). To comprehensively
understand the findings, we also observed the changes in the duration of mathematical conjecture proofs
over the past six decades and the changes in knowledge on random graph models. Using these data, we

disclosed laws of knowledge growth and potential sources of the delusion of "knowledge explosion."

Results
Linear growth of knowledge

Although the concept of "knowledge explosion" has been popular for decades #1517, we found that the

later terminology referred more to "information explosion" than to "knowledge explosion," which may be a
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misunderstanding. The Google Scholar search results for "knowledge explosion" and "information
explosion" (see Methods) showed that, since 1977, the results of "information explosion" have outpaced
those of "knowledge explosion," and this gap has more than doubled since 1987 and more than tripled
since 2008 (Fig. 1a,d). In recent years, contrasted with the soaring results related to "information
explosion,’ the results related to "knowledge explosion" seemed to have stagnated. These statistics
suggested that academic communities were increasingly inclined to acknowledge "information explosion"
rather than "knowledge explosion."

We found similar phenomena in the growth of KQl in publication and patent data. The number of
publications has been increasing exponentially (Fig. 1e), in line with the idea of "information explosion."
When analyzing the amount of knowledge, however, we found that it was not increasing at the same rate.
Instead, the growth of KQI was almost linear (Fig. 1b), indicating that although there was a lot more
information, people were not necessarily acquiring more knowledge 2223 Unlike the explosive growth in
the number of publications, the number of patents was relatively slower (Fig. 1€). Remarkably, despite the
significant difference between the growth rate of the number of patents and publications, the KQI of
patents showed the same linear growth pattern (Fig. 1b). To verify this finding in more realistic scenarios,
we split the academic publications by disciplines and subjects. Although the rate of knowledge growth
varied across different fields, they all increased linearly starting from a certain year (Fig. 1c,f). The
increase in knowledge was wildly out of step with scientific productivity and was not entirely parallel to
the growth pattern of scientific productivity.

The linear growth pattern in knowledge is not limited to changes in KQI. As the foundation of natural
sciences, mathematics represents the cutting edge of human knowledge at the time 3732, The
formulation and proof of mathematical conjectures reflect the level of understanding and mastery of
knowledge. The duration from formulation to proof corresponds to the time for knowledge to move from
understanding to mastery. Over the past sixty years, no significant change occurred, indicating that
human knowledge has constantly increased (Fig. 2, see Methods).

Numerous random graph models have been designed to capture the essential characteristics of real-
world networks. Three commonly used models are the Erd6s—Rényi (ER) model 33, the Barabasi—Albert
(BA) model 34, and the Watts—Strogatz (WS) model 3°. We simulated the growth patterns of knowledge in
each of these models. The ER model is a simple random graph model where each node pair connects
with a probability p. The BA model is a preferential attachment model where new nodes are added to the
network one at a time and connected to existing nodes with a probability proportional to their degree. The
results showed that the knowledge in both the BA and ER models increased linearly with the exponential
growth of the number of nodes in the graph (Fig. 3a,b, see Methods). The WS model aimed to create
complex networks between regular and random graphs by adjusting the rewiring probability. The results
showed that knowledge growth in graphs that tend towards regularity was much faster than linear

(Fig. 3c, see Methods). This result indicates that the linear growth of KQI is not confined to the design of
KQI but rather a universal pattern embedded in real networks. KQI can grow at a striking speed in a highly

regular simulated graph, but a limitation exists. This limitation states an inviolable law that knowledge
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never grows beyond the size of the graph (see Methods). In other words, to keep the linear growth of
knowledge, the size of the knowledge network must keep increasing at least linearly. The pattern of
patent development closes to this boundary of simultaneous linear growth in both knowledge and graph
size (Fig. 1b,e).

Inflection points in knowledge growth

Our examination of 19 major disciplines and 292 secondary subjects showed that knowledge tended to
follow a linear growth pattern in most cases. However, there were significant inflection points between
different stages of linear growth (Fig. 4b-e, Supplementary Fig. 1). Before the inflection point, the number
of publications increased linearly at a specific rate and changed to another rate after the inflection point.
Interestingly, there was nothing unusual about the number of publications around the inflection point.
This phenomenon is similar to phase transition in complex networks. Understanding the regularity of
these phase transitions is helpful for policymakers and researchers. Coreness is a measure that identifies
tightly interlinked groups within a network 3¢, and we used mean coreness to characterize the overall
connectivity of the network by averaging the corenesses of all the nodes. We found that when the
network had a low mean coreness, meaning the academic network comprised numerous individual
viewpoints, the probability of inflection points occurring was high (Fig. 4a). Conversely, when the mean
coreness was high, meaning the academic network comprised tightly formed groups, the probability of
inflections points occurring decreased. This finding suggests that academic diversity lays the foundation
for knowledge innovation, necessitating tolerating heterodox viewpoints.

Diminishing returns of knowledge

The Pareto principle, also known as the 80/20 rule, describes the general imbalance of wealth distribution
among individuals. We found a similar but even more imbalanced knowledge distribution in academia,
where 9.27% of scientific productivity occupies 90.73% of knowledge; in comparison, 90.73% of scientific
productivity occupies 9.27% of knowledge (Fig. 5a). In other words, a minimal increase in marginal
returns of knowledge stems from an abundance of trivial literature as a backdrop, identifying with the
stagnation coming from ossification of canon caused by massive literature ''. This imbalance also
implies that an increase in marginal returns of knowledge begins to diminish after establishing a certain
level of background knowledge (Fig. 5b-€), consistent with the disruptiveness decline °. Similarly, the
concept of "complexity brake" & manifests when the build-up of literature translates into a plateauing of
knowledge gains. With each new area of knowledge augmentation becoming more complicated than the
last, progress reaches a level wherein every new addition becomes almost trivial compared to what was
there before. At this point, only nominal returns yield without a significant investment of time and
resources. Despite the disproportion between investments and outcomes, it is necessary to expand
scientific productivity for the little progress of knowledge if nothing can change the paradigm.

Discussion

Page 5/17



In this study, we present findings that clarify the patterns of knowledge growth and explain the origins of
"knowledge explosion" for the first time. Our results suggest that a linear model better describes
knowledge growth, which is replicable using random graph models. This linear trend in knowledge growth
has implications for predicting the emergence of new scientific breakthroughs, which may occur at more
predictable intervals than previously assumed. The faster growth rate in the number of publications than
knowledge growth implies that access to scientific research may become more widely available. However,
this also raises concerns about academic inflation and the quality of research. These findings contribute
to a deeper understanding of the dynamics of knowledge growth and its potential impact on the scientific
community.

Whether knowledge is experiencing an explosion has been questioned in previous studies 47612,

Quantifying knowledge, however, was intricate before introducing KQI as a metric 2. Our results
immaculately validate the previous skepticism that knowledge did not grow exponentially. Considering
that the concepts of "knowledge explosion" and "information explosion" emerged almost simultaneously,
it is likely that the former is a misunderstanding of the latter. Recent studies that suggest the decreasing
disruptiveness ° and the slowed canonical progress ' in scientific fields imply a slowdown in knowledge
growth, yet leave unanswered how much this slowdown occurs. Our findings, on the one hand, discard
earlier optimistic claims of "knowledge explosion" and, on the other hand, clarify recent pessimistic
claims of a scientific slowdown. Despite the slowdown of knowledge growth relative to the proliferation
of publications, overall knowledge remains steadily increasing. Our concern in slowing scientific activities
should be more on whether the expansion of science is sustainable and how to improve scientific
efficiency.

The concept of singularity comes from the idea that technological advancements will lead to an
exponential increase in knowledge, resulting in artificial intelligence surpassing human intelligence.
However, if knowledge is not growing exponentially, the pursuit of intelligent singularity must be
reevaluated because it may not be achievable soon. Inflection points in knowledge explain the singularity
theory and "knowledge explosion" phenomenon, i.e., the sudden disparity between pre- and post-transition
knowledge growth rates creates an illusion of exponential growth. These transition points suggest that
fundamental changes occur, like knowledge acquisition, as scientific research reaches a certain level of
expertise. Understanding this shift could provide valuable insights into the process of scientific discovery.
Based on our preliminary observation of the distribution pattern of inflection points, it is easier to observe
an inflection when the mean coreness is relatively small when many small research groups scattered
throughout the network exist. This finding explains the previous discoveries that small teams promote

knowledge innovation 37739,

Some studies have shown inequality in academia #°~43. Our reported inequality in knowledge
contributions further reveals that the continuously expanding citation network causes such inequality.
The accompanying diminishing returns of knowledge have similarities to the concept of the complexity

brake &, which postulates that the more we acquire knowledge, the more cognizant we become of the
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vastness of the unknown and the more necessary to reassess our earlier perceptions. This connection
implies that the growth of knowledge is subject to similar constraints as other complex systems. For
instance, the disparity between the increased number of parameters and the improvement in performance
while pursuing large-scale artificial intelligence models is consistent with the disparity between network
scale and knowledge growth '3. This relation inspires us to use knowledge to measure the capacity of
neural networks and apply the law of knowledge growth to improve model performance. Unlike natural
networks, neural networks are readily adjustable, providing an opportunity to approach the limit of
knowledge growth speed, as seen in the WS model (Fig. 3c). The recent small yet high-performing
models, such as LLaMA #4, corroborate this possibility. Notably, the inflection point in knowledge growth
reflects the emergence of the capabilities in large models such as ChatGPT and GPT-4 3. These
connections offer valuable insights for the further advancement of artificial intelligence.

The present study is not without limitations. The KQI is a novel metric for quantifying knowledge and has
yet to gain widespread acceptance within the scientific community. Further investigation into the
characteristics and value of KQI will contribute to its gradual recognition. Additionally, as books remain
the primary means of disseminating knowledge, our research focuses primarily on academic publications
and patents, limiting our analysis's scope. Future work involving various media types may deepen our
understanding of knowledge evolution. As knowledge network construction is complicated, particularly in
defining concepts and relationships, the present study utilized a citation network constructed using
publications or patents as nodes without consideration for semantics. In the future, incorporating more
diverse knowledge network types, such as knowledge graphs, may further enrich the results of analyzing
knowledge evolution patterns.

In conclusion, the results of this study have significant consequences for comprehending the growth of
knowledge. Using KQI as a metric for measuring knowledge growth provides a valuable tool. Moreover,
our findings support emergence theories arising from inflection points in knowledge growth and the
complexity brake. Further investigation is needed into the causes of the inflection points and the
constraints on knowledge growth to gain a deeper understanding of this complex phenomenon. It also
indicates that we should not be intimidated by the explosion of knowledge but rather cope with the
exhaustion of the explosion of information. Despite the explosion in scientific productivity, calm down; we
are only walking on the trail of exploring knowledge.

Methods

Publications data. Our data is derived from the MAG data, which archives publications from 1800 to
2021. The publications cover 292 secondary subjects in 19 major disciplines, including but not limited to
Economics, Biology, Computer science, and Physics. We excluded patents, datasets, and repositories,
utilizing the doctype field in the MAG data. We limited our focus to publications up to 2020 because
recent literature was probably not sufficiently collected. Although we used literature from as early as
1800, the KQI was only calculated from 1920 because the citations were too sparse to be interconnected
in the early years. We removed possible errors in the data, including self-citations, duplicate citations, and
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citations violating time order. After eliminating potentially incorrect publications and closing the data up
to 2020, the analytical sample consisted of 213,715,816 publications and 1,762,008,545 citations. The
subject data is split from the MAG data. While processing data from a particular subject, we only
preserved citation relationships that both article and reference are on the same subject, thus guaranteeing
that all nodes within the network are from the same subject.

Patents data. The Patents View data collect 8.1 million patents granted between 1976 and 2022 and their
corresponding 126 million citations. We limited our focus to citations made to U.S. granted patents by
U.S. patents up to 2020 because recent patents were probably not yet sufficiently collected. Although we
used patents from 1976, the KQI was only calculated from 2000 because the citations were too sparse to
be interconnected in the early years. We removed possible errors in the data, including self-citations,
duplicate citations, and citations violating time order. After eliminating potentially incorrect patents and
closing the data up to 2020, the analytical sample consisted of 7,627,229 patents and 101,148,606
citations.

KQlI calculation. KQI 30 is a metric that quantifies knowledge from the perspective of information
structurization. As described by the proposers of KQI, we constructed year-by-year publication citation
graphs or patent citation graphs, which are directed acyclic graphs. We calculated the KQI of each node in
a citation graph and added them up to obtain the KQI of the citation graph for each year, exploiting the
additivity of the KQI as pointed out by the proposers.

Search results in Google Scholar. The two terms, "knowledge explosion” and "information explosion," are
searched as phrases enclosed with quotation marks in Google Scholar (https://scholar.google.com) and
filtered by year ranges. We recorded the number of results returned manually.

Analysis of mathematical conjecture. We collected 61 mathematical conjectures proven to be correct
since 1960 (Supplementary Table 1). Conjectures proved wrong and those not yet proven are excluded.
We chose a possible intermediate year for conjectures without a specific formulation year or proof year.
Due to certain mathematical conjectures proved in the same year but with different durations and
difficulty in determining their temporal order, we took the average duration of proofs within the same year.
We used such a time series when conducting correlation analyses and hypothesis testing. Spearman and
Kendall #° rank correlation coefficients are non-parametric measures of the strength of monotonic
association between two variables and are calculated by measuring the rank correlation between two
variables. The range of these two coefficients is from - 1 to 1, with values closer to 0 indicating a weaker
relationship between the two variables. Cox-Stuart 4° and Mann-Kendall 4’ hypothesis tests assess
whether there is a monotonic increasing or decreasing trend over time in a time series data. The null
hypothesis for both hypothesis tests is the absence of a monotonic trend, so a p-value greater than 0.05
indicates the lack of a significant trend.

Random graph generated by Barabési-Albert model. The BA model 34 uses a preferential attachment
process to generate random graphs. We used the BA model under undirected graphs. After generating the
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graph, we oriented each edge chronologically, from the node joined earlier to the node joined later. This
method naturally resulted in directed acyclic graphs available for KQI calculation directly.

Random graph generated by Erdés-Rényi model. The ER model 33 generates a random graph with the
same probability of existence for each edge between two arbitrary nodes. We used the ER model under
undirected graphs and uniquely numbered each node. After generating the graph, we oriented each edge
in numbered order, from the smaller numbered node to the larger numbered node. This method naturally
resulted in directed acyclic graphs available for KQI calculation directly.

Random graph generated by Watts-Strogatz model. The WS model 3° generates graphs with small-world
properties and is adjustable between regular and random graphs. Following the WS model, we
constructed a regular ring lattice, rewired edges, and numbered each node incrementally and uniquely
along the ring. After generating the graph, we oriented each edge in numbered order, from the smaller
numbered node to the larger numbered node. This method naturally involved interpolating between a
regular ring lattice and a random graph.

Limitation of knowledge growth. We prove that the growth rate of KQI has an upper bound regarding the

graph size through a theoretical derivation from the KQI formula. We rewrite the formula of KQI:
Va
dgvﬂfva
log { 1+ Vla .Applying the Euler limit formula, it is simplified as

diVg—Va

diVy—V,
d\ W

Ka - Zﬂ—m

follows: Ky = 3= (Zﬁ_}a Vg — Va> , (0 < a < loge) .We sum KQl over all nodes and note that W is

the sum of the out-degrees of all nodes. The relation between K and W is thus derived:
dg,
K=3, Ka= W 2aa (Zﬂ—m Vs — Va) =ay., W Dy, < aF (Vo) < Wloge.

-1
W
Discovery of inflection points. We discover the inflection points using segmented regression models
developed by Vito M. R. Muggeo #8. The segmented regression was performed on the curve of KQI over
time, with the regression line breakpoint considered the inflection point. We started with the null
hypothesis of no breakpoint and performed a score test to determine if there was an additional
breakpoint #°. This process repeated until no additional breakpoint. The significance level was 0.01. To
counteract the multiple comparisons problem, we employed Bonferroni correction, requiring that the p-

values for each of the first k tests be smaller than 0.01/k. Once the number of breakpoints was
determined, we used the segmented method (33) to estimate their positions.

Estimation of inflection density. The inflection density is a quantity that characterizes the distribution of
the network state at its transition between two different regimes. The area under an inflection density
curve represents the average times finding the system in the inflection state. The main text investigates
the inflection density per unit mean coreness. Due to the estimation error of inflection points, we map the
probability densities of normal distributions centered around the inflection points to the mean coreness
using linear interpolation and summing in cases with multiple mapping values. The estimated standard
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deviation of the inflection point determines the standard deviation of the normal distribution. We
estimated the inflection density of a discipline by summing the probability densities with respect to mean
coreness during network evolution. The total inflection density is the mean of densities for all disciplines.
To estimate confidence intervals, 1000 bootstrap resamplings are employed.

Calculation of marginal KQI. The marginal KQl is calculated by subtracting the KQI for a given graph of
the previous year from the current year and dividing it by the number of nodes added in the current year.
We applied the LOWESS (locally weighted scatterplot smoothing) nonparametric regression method to
perform local regression of marginal KQI. To estimate the 95% confidence interval of the LOWESS fit, we
performed 1000 bootstrap resamplings. The fraction of data used when estimating was 2/3.

Declarations

Data availability

Data from MAG and Patents View are publicly available. Data from MAG are requested from Acemap
(https://www.acemap.info/) at Shanghai Jiao Tong University and are available at
https://zenodo.org/record/7878551. Data from Patents View are available at https://patentsview.org/.
Other source data are provided with this paper.

Code availability
Open-source code for calculating KQl is available at https://github.com/Girafboy/KQl.
Acknowledgments

This work was supported by NSF China (No. 42050105, 62020106005, 62061146002, 61960206002),
Shanghai Pilot Program for Basic Research - Shanghai Jiao Tong University. Thanks to Yuang Ding for
collecting the mathematical conjecture data.

Author Contributions

H. K., X. W,, and L. F. collaboratively contributed to the conception and design of the study. X. W.
contributed to the acquisition of the data. H. K. created software used in the study and drafted the
manuscript. X. W, L.F,J.D,S. L., J. W, L. Z., and C. Z. collaboratively revised the manuscript.

Competing interests.
The authors declare no competing interests.
Supplementary information

Supplementary Information. Supplementary Tables 1-2 and Figure 1.

Page 10/17



References

1.
2.

Bubeck, S. et al. Sparks of Artificial General Intelligence: Early experiments with GPT-4. (2023).

lenca, M. Don't pause giant Al for the wrong reasons. Nature Machine Intelligence 5, 470-471,
doi:10.1038/s42256-023-00649-x (2023).

. Clarke, L. Call for Al pause highlights potential dangers. Science (New York, NY) 380, 120-121

(2023).

. Lipmann, F. Disproportions created by the exponential growth of knowledge. Perspectives in biology

and medicine 5, 324-326 (1962).

. Eleuterio, H. Macromolecular scientists: From pot-boilers to programmers. Journal of Chemical

Education 53, 352 (1976).

. Horgan, J. The End of Science: Facing the Limits of Knowledge in the Twilight of the Scientific Age.

(1996).

7. Walsh, T. The singularity may never be near. ai Magazine 38, 58-62 (2017).

8. Allen, P. & Greaves, M. The singularity isn't near. Technology review 12, 7-8 (2011).

10.

11.

12.
13.
14.
15.

16.

17.

18.

19.
20.

21.

. Park, M., Leahey, E. & Funk, R. J. Papers and patents are becoming less disruptive over time. Nature

613, 138—144, doi:10.1038/s41586-022-05543-x (2023).

Suh, B., Convertino, G., Chi, E. H. & Pirolli, P. The singularity is not near: slowing growth of Wikipedia.
Proceedings of the 5th international symposium on wikis and open collaboration, 1-10 (2009).

Chu, J. S. & Evans, J. A. Slowed canonical progress in large fields of science. Proceedings of the
National Academy of Sciences 118 (2021).

Ehrlich, P. R. et al. Knowledge and the environment. Ecological economics 30, 267-284 (1999).
Wei, J. et al. Emergent Abilities of Large Language Models. ArXiv abs/2206.07682 (2022).
Swift, E. H. Keeping the Curriculum Up to Date. Engineering and Science 25, 11-15 (1961).

Tachibana, T. Closing the knowledge gap between scientist and nonscientist. Science 281, 778-779
(1998).

Galas, D. J. & Riggs, H. Global Science and U.S. Security. Science 300, 1847-1847,
doi:doi:10.1126/science.300.5627.1847 (2003).

Adair, J. G. & Vohra, N. The explosion of knowledge, references, and citations: Psychology's unique
response to a crisis. American Psychologist 58, 15 (2003).

Prasad, M., Freitas, H., Fraenzle, S., Wuenschmann, S. & Markert, B. Knowledge explosion in
phytotechnologies for environmental solutions. Environmental Pollution 158, 18-23 (2010).

ZAND, D. E. The Information Explosion. Academy of Management Proceedings 1961, 44—46 (1961).

Mahajan, R., Gupta, P. & Singh, T. Massive open online courses: concept and implications. Indian
pediatrics 56, 489-495 (2019).

Zhang, X. On the Application of Computer Network Information Technology in Educational Reform.
(2020).

Page 11/17



22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Chen, Y. & Xu, D. Computational analyses of high-throughput protein-protein interaction data. Current
protein and peptide science 4, 159-180 (2003).

Weiss, P. A. Whither Life Science? What are the great unanswered questions that serve as beacons
for biological research? American Scientist 58, 156—163 (1970).

Ulam, S. Tribute to John von Neumann. Bulletin of the American mathematical society 64, 1-49
(1958).

Good, I. J. Speculations concerning the first ultraintelligent machine. Vol. 6 (Elsevier, 1966).

Vinge, V. Technological singularity. VISION-27 Symposium sponsored by NASA Lewis Research
Center and the Ohio Aerospace Institute, 30—31 (1993).

Eden, A., Moor, J., Sgraker, J. & Steinhart, E. Singularity Hypotheses: A Scientific and Philosophical
Assessment. (Springer, 2013).

Modis, T. Links between entropy, complexity, and the technological singularity. Technological
Forecasting and Social Change 176, 121457 (2022).

Krishna, A. Web 2.0 and the ever elusive balance between information explosion and data mining.
Nature Precedings, doi:10.1038/npre.2008.1959.1 (2008).

Wang, X. et al. Quantifying knowledge from the perspective of information structurization. Plos One
18, 0279314, doi:10.1371/journal.pone.0279314 (2023).

Wigner, E. P. The unreasonable effectiveness of mathematics in the natural sciences. Richard courant
lecture in mathematical sciences delivered at New York University, May 11, 1959. Communications
on Pure and Applied Mathematics 13, 1-14, doi:https://doi.org/10.1002/cpa.3160130102 (1960).
Wigner, E. P. in Mathematics and science 291-306 (World Scientific, 1990).

Erdds, P. & Rényi, A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5, 17-60
(1960).

Barabasi, A.-L. & Albert, R. Emergence of Scaling in Random Networks. Science 286, 509-512,
doi:doi:10.1126/science.286.5439.509 (1999).

Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440-442,
doi:10.1038/30918 (1998).

Seidman, S. B. Network structure and minimum degree. Social Networks 5, 269-287,
doi:https://doi.org/10.1016/0378-8733(83)90028-X (1983).

Wuy, L., Wang, D. & Evans, J. A. Large teams develop and small teams disrupt science and technology.
Nature 566, 378-382 (2019).

Xu, F, Wu, L. & Evans, J. Flat teams drive scientific innovation. Proceedings of the National Academy
of Sciences 119, €2200927119, doi:doi:10.1073/pnas.2200927119 (2022).

Zeng, A, Fan, Y, Di, Z.,, Wang, Y. & Havlin, S. Fresh teams are associated with original and
multidisciplinary research. Nature Human Behaviour 5, 1314-1322, doi:10.1038/s41562-021-01084-
x (2021).

Page 12/17



40.

41

42.

43.

44.

45.
46.
47.

48.

49.

Wapman, K. H., Zhang, S., Clauset, A. & Larremore, D. B. Quantifying hierarchy and dynamics in US
faculty hiring and retention. Nature 610, 120-127, doi:10.1038/s41586-022-05222-x (2022).

. Liu, F,, Holme, P, Chiesa, M., AlShebli, B. & Rahwan, T. Gender inequality and self-publication are

common among academic editors. Nature Human Behaviour 7, 353-364, doi:10.1038/s41562-022-
01498-1 (2023).

Li, W, Zhang, S., Zheng, Z., Cranmer, S. J. & Clauset, A. Untangling the network effects of productivity
and prominence among scientists. Nature Communications 13, 4907, doi:10.1038/s41467-022-
32604-6 (2022).

Gomez, C. J., Herman, A. C. & Parigi, P. Leading countries in global science increasingly receive more
citations than other countries doing similar research. Nature Human Behaviour 6, 919-929,
doi:10.1038/s41562-022-01351-5 (2022).

Touvron, H. et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971 (2023).

Kendall, M. G. A new measure of rank correlation. Biometrika 30, 81-93 (1938).
Some quick sign tests for trend in location and dispersion. Biometrika 42, 80—95 (1955).

Mann, H. B. Nonparametric tests against trend. Econometrica: Journal of the econometric society,
245-259 (1945).

Muggeo, V. M. Segmented: an R package to fit regression models with broken-line relationships. R
news 8, 20—25 (2008).

Muggeo, V. M. Testing with a nuisance parameter present only under the alternative: a score-based
approach with application to segmented modelling. Journal of Statistical Computation and
Simulation 86, 3059-3067 (2016).

Figures

Page 13/17



b 40

a . c )
2,000 F Knowledge Explosion 100 F Exponential Growth / ~—— Mathematics
30 Psychology
——— Computer science
a ~—— Biology
4
1977- 1986 2008-2020 o Is|
g —— Patent g
0
2000 2020
30
2
: i
E 0 0 L L T L 1
d % 0 e 1920 1940 1960 1980 2000 2020 f 1920 1940 1960 1980 2000 2020
w 0 0 1 1 1 1 i
@ N =
= 10,000,000
3
Q
3
= § \
1960- 1976 1987- 2007 Q k= _§ )
s % 5 ~——— Mathematics
= . . Psychology
—— Patent ——— Computer science
10,000,000 ~—— Biology
2,000 | ; " Exponential Growth
“Information Explosion” 200,000,000 |
~ 20,000,000
Figure 1

Linear growth of knowledge. a and d, The number of results obtained by searching for "knowledge
explosion” (@)and "information explosion" (d) in Google Scholar year by year from 1960 to 2020. From
1960 to 1976, "information explosion" results are roughly the same as "knowledge explosion® results.
From 1977 onwards, "information explosion" results are more than "knowledge explosion" results; this gap
has been more than twice since 1987 and more than tripled since 2008. b and e, Growth of KQI (b)and the
number of publications or patents (€) in MAG (main plot) and Patents View (inset plot). The black curves
provide referents for linear and exponential growth trends. ¢ and f, Growth of KQl (¢) and number of
publications (f) in the disciplines of mathematics (green), psychology (orange), computer science (red),
and biology (blue). Straight lines exhibit trends approaching linearity starting from certain years.
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Figure 2

Duration of mathematical conjecture proving. The green scatter shows the duration (from the formulation
to the proof completion, in years) of mathematical conjectures proved since 1960, with several notable
examples highlighted. The solid black line is the least square linear regression, and the blue shaded band
represents the 95% confidence interval. Spearman and Kendall rank correlation coefficients indicate a
weak relationship between the duration of conjecture proving and the priority year of proof. The Cox-
Stuart and Mann-Kendall hypothesis tests show that the duration of the mathematical conjectures'
proofs has not changed significantly.
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Figure 3

Knowledge growth on random graph models. a, Simulated KQI on graphs generated from the BA model.
Each newly arrived node connects to d previous nodes in the BA model. Shaded bands mark the standard
deviation. b, Simulated KQl on graphs generated from the ER model. Each node has, on average, d out-
edges and din-edges randomly connected to the other n-1 nodes. Shaded bands mark the standard
deviation. ¢, Simulated KQI on graphs generated from the WS model. In a ring of n nodes connected to its
2d nearest neighbors, each edge is reconnected with probability p to another node uniformly at random.
The vertical axis is truncated into two parts with different scales to show the details of the significantly
different results. Shaded bands mark the standard deviation.
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Figure 4

Inflection points in KQI evolution. a, Distribution of inflection points with mean coreness. Each green line
represents evolving network of a discipline, and its extent on the x-axis corresponds to the range of mean
coreness for the evolving network. The red point indicates the occurrence of an inflection point at this
location of the evolving network. The inflection density (see Methods) is plotted as a black line, while a
blue-shaded band indicates the 95% confidence interval. The y-axis is scaled using symlog, producing a
linear plot within the specified range of values near zero (<1). Three regions of interest in the density
curve are highlighted using different colored shaded regions. During the evolution of the network, on
average, one inflection point occurs as the mean coreness increases from 0 to 0.03. Thereis a 95%
probability of experiencing at least one inflection as the mean coreness increases from 0 to 0.30. During
the increase in the mean coreness from 0 to 1, an average of 3.27 inflection points occur. b-e, Inflection
points in distinct disciplines. The green circles represent the KQIls computed for the entire network at
different years. The green lines are the segmented linear regression results. The red lines denote the
estimated inflection points, and the red shaded bands represent the standard deviations. The mean
corenesses of the network at inflection points are also marked.
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Pareto principle and diminishing returns in KQI. a, Cumulative KQI distribution after sorting publications
by descending KQI order. The grey bar represents a histogram of the publications sorted in descending
order according to KQI with KQI as its weight, expressing the contribution of the respective range of
publications on KQI. The green and red lines are the cumulative curves of the KQI distribution; at their
critical point, the ratio of publications in the vital few equals the ratio of trivial many to the total KQl
contribution. The main plot displays statistics for publications in MAG, while the inset plot displays
statistics for patents in Patents View. b, Demo illustrating the law of diminishing returns. c-€, Marginal
KQI (see Methods) increment per publication (or patent) over time. The circle markers represent the
average incremental KQI from each publication (or patent) in that year. The solid curves show the local
regression, and the shaded bands indicate the 95% confidence interval.
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