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Abstract Keywords

Traditional knowledge graph completion (KGC) methods rely solely
on structural information, struggling with the inherent sparsity
of knowledge graphs (KGs). By contrast, Large Language Models
(LLMs) encapsulate extensive world knowledge and exhibit pow-
erful context modeling capabilities, making them promising for
mitigating the limitations of traditional methods. However, direct
fine-tuning of LLMs for KGC, though effective, imposes substantial
computational and memory overheads, while utilizing non-fine-
tuned LLMs is efficient but yields suboptimal performance. In this
work, we propose a novel framework that synergizes the strengths
of LLMs with robust knowledge representation to enable effective
and efficient KGC. We extract the context-aware hidden states of
knowledge triples from the intermediate layers of LLMs, thereby
capturing rich semantic and relational nuances. These represen-
tations are then utilized to train a data-efficient classifier tailored
specifically for KGC tasks. To bridge the semantic gaps between
LLMs and KGs, we employ subgraph sampling on KGs to gen-
erate model-friendly entity descriptions. We further adopt sliced
mutual information (SMI) as a principled metric to quantify the
task-specific information encoded in these representations. Exten-
sive experiments on standard benchmarks validate the efficiency
and effectiveness of our approach. We achieve a 47% relative im-
provement over previous methods based on non-fine-tuned LLMs
and, to our knowledge, are the first to achieve classification per-
formance comparable to fine-tuned LLMs while enhancing GPU
memory efficiency by 188x and accelerating training and inference
by 26.11x.

CCS Concepts

- Computing methodologies — Reasoning about belief and
knowledge; Information extraction; Neural networks; Supervised
learning by classification.
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1 Introduction

Knowledge graph completion has become a crucial endeavor to
improve the application of knowledge graphs [5], which aims to
complete the knowledge graph and expand its scale by predicting
the potential relationship between existing entities and discovering
new relational facts [24]. Traditional knowledge graph embedding
methods only utilize structure information from the knowledge
graph [3, 28, 31], which is vulnerable to the sparseness of KGs [39].
Leveraging the powerful contextual modeling capabilities and the
implicit world knowledge encoded in LLMs, recent works have
demonstrated the potential to effectively mitigate these issues and
enhance KGC performance [34].

These approaches generally fall into two types: using non-fine-
tuned LLMs with prompting techniques and fine-tuned LLMs specif-
ically for KGC. The first type leverages LLMs with prompt tech-
niques, such as in-context learning. These techniques enable mod-
els to perform KGC directly through natural language outputs
[34, 38, 40], harnessing the pre-trained knowledge embedded within
these models without additional training. While this approach offers
computational efficiency, it may not fully capture the task-specific
nuances required for optimal KGC performance. In contrast, the lat-
ter type involves fine-tuning the LLMs using supervised techniques
to adapt models specifically for KGC tasks. This method involves
fine-tuning LLMs, such as LLaMA, through the use of training sam-
ples [40], which can lead to improved performance by aligning the
models more closely with the KGC objectives [40, 41]. However,
fine-tuning demands significant increases in time and resource ex-
penditure. This dichotomy between computational efficiency and
task-specific performance raises a fundamental question: How can
we harness LLMs for effective and efficient KGC without incurring
the high costs associated with fine-tuning?

Answering this question necessitates a deeper understanding
of why fine-tuned LLMs outperform their non-fine-tuned counter-
parts. Non-fine-tuned LLMs, while cost-effective, risk generating
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Figure 1: The overall architecture of our method for KGC involves categorizing triples based on the type of task, followed
by their verbalization. This is combined with entity descriptions, which are generated by the subgraph entity description
generator, to produce the stimulation prompt. Finally, the internal representation (hidden states) of the LLM obtained from the
stimulation prompt is used to train a classifier, thereby completing the KGC. The only component that needs training in the
entire architecture is the data-efficient classifier, making the method easy to train and cheap to deploy.

misleading outputs in the form of hallucinations [42] and underuti-
lizing their latent knowledge [33]. Moreover, the intricate relational
structures and semantic subtleties embedded in KGs compound
the challenge, since LLMs are not inherently designed to parse or
disambiguate complex entity linkages [15]. Crucially, fine-tuning
mitigates hallucinations [43] and aligns LLM representations with
KG semantics through supervised parameter updates.

Motivated by this insight, we propose a novel framework that rec-
onciles these competing demands by fully exploiting the knowledge
representation capabilities of LLMs without fine-tuning, as shown
in Figure 1. Our method strategically extracts intermediate hidden
states from LLMs to capture rich, context-aware representations
of knowledge triples, which are then used to train a lightweight,
data-efficient classifier specifically tailored for KGC. To better align
LLMs with KG semantics, we introduce a novel subgraph sam-
pling technique that generates model-friendly entity descriptions,
facilitating the interpretation and disambiguation of relational pat-
terns and thereby enhancing knowledge representation. Further-
more, we introduce Sliced Mutual Information (SMI) as a principled
information-theoretic measure to quantify the task-specific infor-
mation encoded within these representations. By systematically
integrating these techniques, our framework effectively reduces
hallucinations and semantic misalignment commonly observed in
frozen LLMs, achieving accuracy comparable to fine-tuned coun-
terparts while significantly reducing computational overhead.

Extensive experiments demonstrate that our framework not only
outperforms existing non-fine-tuned LLM-based methods by 47%
relative improvement but also achieves classification performance
comparable to fine-tuned LLMs. Our approach enhances GPU mem-
ory efficiency by a factor of 188 and accelerates both training and
inference processes by 26.11X. Our contributions can be summa-
rized as follows:

e We propose, to the best of our knowledge, the first frame-
work that directly leverages the intermediate representation
space of frozen LLMs for KGC tasks. To facilitate semantic
alignment between LLM representations and KG entities,

we introduce a novel subgraph-based entity description gen-
erator, providing LLMs with rich, model-friendly textual
contexts to effectively bridge the semantic gap.

e We provide an in-depth analysis to reveal the underlying
reasons behind the superior performance of fine-tuned LLMs.
We further employ SMI to quantify task-specific information
encoded in LLM representations. Guided by these insights,
we propose novel optimization strategies that, for the first
time, enable frozen LLMs to match the KGC performance of
their fine-tuned counterparts.

e We conduct comprehensive experiments across standard
KGC datasets to validate the effectiveness and efficiency of
our proposed method. These substantial improvements high-
light the scalability and practicality of our method, making
it a viable solution for large-scale KGC applications under
resource-constrained scenarios.

2 Method

Our method is proposed in face of the limitations of non-fine-tuned
LLMs on KGC. In Section 2.2, we present how to precisely extract
context-aware representation of knowledge from intermediate lay-
ers of LLMs. In Section 2.3 we tackle complex relationships in KGs,
by the generation of model-friendly entity descriptions through
subgraph sampling. Furthermore, in Section 2.4, we employ SMI
as a principled information-theoretic metric to quantify the task-
specific information encoded within the extracted representations,
providing deeper insights into their effectiveness.

2.1 Formulation and Notations

A knowledge graph, G, comprises a set of entities, E, and relations, R.
It can be represented as a set of triples G = {(h,r,t)}, where h € E
is the head entity, ¢ € E is the tail entity, we collectively refer to the
head entity and tail entity as e, and r € R represents the relation
between them. D is the set of long descriptions for each entity
and relation. We denote D(e), D(r) as the long textual description
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of each entity and each relation (hereafter simply referred to as
descriptions). Additionally, we define EN (e) as the entity name of
an entity e. For instance, given the entity ‘00952182’, its entity name
is EN(‘00952182’) = ‘voice’, and its description D(‘00952182’) can
be ‘utter with vibrating vocal chords’.

For triple classification, the task is to assess the plausibility of a
given knowledge triple, determining whether the triple is true or
not. As for relation prediction and entity prediction, they aim to
predict the missing relation and entity in a triple, respectively.

2.2 Extracting Knowledge Representations

/PTl: Is this true: Verbalize( {EN(h)} {EN(r)} {EN(t)})? \

PT,: Background: 1.{D(h)}2.{D(t)}\n
Question: Is this true: Verbalize({EN(h)} {EN(1)} {EN(t)})?

PT3: What is the relationship between {EN(h)} and {EN(t)}?
Please choose your answer from: {r1}|{r2}|...|{r_n}.

PT,: Background: 1.{D(h)}2.{D(t)}\n
Question: What is the relationship between {EN(h)} and

@(t)}? Please choose your answer from: {r1}|{r2}|...| {r_n}/

Figure 2: Prompt templates to stimulate the LLM.
Knowledge graphs comprise numerous triples encoding complex

relational and semantic information. However, directly prompt-
ing pre-trained, frozen LLMs, despite their extensive world knowl-
edge, frequently results in hallucinations or incorrect responses.
Although fine-tuning effectively mitigates this issue by optimizing
the model’s parameters to produce KG-consistent outputs, it incurs
significant computational overhead. Motivated by recent findings
[18, 44] that accurate relational knowledge is often internally en-
coded within LLMs yet not reliably reflected in their outputs, we
propose directly probing intermediate layer representations as a
principled alternative to fine-tuning. This approach leverages the
internal semantic encoding capabilities of frozen LLMs, thereby
mitigating the computational overhead and hallucination problems
associated with direct textual generation.

First, we construct specialized prompt templates designed to
stimulate the LLM to generate the necessary classification informa-
tion within its intermediate layers. For triple classification, where
the objective is to determine the plausibility of KG triples, we em-
ploy a prompt template PT; to construct positive and negative
sample pairs for training, as illustrated in Figure 2. Notably, the
prompt avoids explicitly describing the positivity or negativity of
triples.

Subsequently, we construct positive samples S* from existing
KG triples, and employ the negative sampling technique [39] to
generate negative samples S™. This process results in a training
dataset containing N samples. Each training sample is tokenized
and fed into the LLM to obtain representations from its intermediate
layers. Specifically, we capture plausibility information and extract
hidden states for positive samples s* € S* as follows:

Repl (s*) = {Myy (1) 11,0 <1< LO<j <N}, (1)
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where M represents the language model, M ; represents the first
I layers of the model, [ j] refers to the hidden state corresponding to
the jth token, L and N represent the number of layers in the model
and the number of tokens resulting from tokenizing s*, respectively.
Consistent with findings in [44], we utilize the representation of the
last token in each input text, as it is more conducive to information
extraction due to the autoregressive nature of causal language mod-
els. Negative samples are processed similarly to ensure consistency
in representation extraction.

The extracted representations Repé (s*) and Repﬁ. (s7) serve as
input features to train a lightweight classifier. This classifier dis-
tinguishes plausible from implausible triples by learning a deci-
sion boundary that effectively separates positive and negative
samples in the representation space. Although the classifiers em-
ployed—such as multilayer perceptrons (MLPs) and logistic regres-
sion models—are inherently simple, their effectiveness is signifi-
cantly amplified by the quality and richness of the intermediate
layer representations, thereby enhancing the ability to make ac-
curate predictions without the computational overhead associated
with fine-tuning the entire LLM.

For relation prediction, we extend our binary classification frame-
work to a multi-class setting, where the classifier predicts the spe-
cific relationship types within the KG. Utilizing the PT3 shown in
Figure 2, we stimulate the LLM to generate hidden states that cap-
ture the characteristics of different relation types. This approach
ensures that the classifier can effectively learn to differentiate be-
tween multiple relationship categories from the model’s internal
processing, enhancing the accuracy of KGC.

User: The entity description is a description of
the entity name. Given the entity name: ‘{EN(e)}’;
at the same time, ‘{EN(e)}' satisfies the constra-
ints: {D_1(e)}. Please generate an entity descrip-
tion that satisfies the constraints for ‘{EN(e)}".
Assistants:

Figure 3: Prompt used for generating model-friendly entity
descriptions via LLM rephrasing. In-context examples omit-
ted for brevity.

2.3 Subgraph Entity Description Generator

Entities in a KG often exhibit semantic ambiguity, posing significant
challenges for frozen LLMs that rely solely on entity names. Fine-
tuning alleviates this ambiguity by aligning LLM entity representa-
tions with KG entities. However, for frozen LLMs, achieving such
semantic alignment without parameter updates remains challeng-
ing. To bridge this gap, we propose a principled subgraph-besed ap-
proach that generates rich, context-aware entity descriptions from
local subgraph contexts. These descriptions provide rich semantic
context, enabling frozen LLMs to achieve semantic alignment com-
parable to fine-tuned models, without costly parameter updates.
Specifically, we achieve this by extending the prompt template con-
structed in Section 2.2. We focus on aligning the language model’s
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internal entity understanding with those in the KG. Therefore, we
construct new prompts PT; and PTy, as shown in Figure 2.

Most KGs do not contain explicit entity descriptions that can
be directly used as D(e), or provide only limited and incomplete
descriptions. Therefore, we propose a method to generate com-
prehensive and informative entity descriptions D(e). Unlike the
approach in [38], which generates the entity description using only
a single triple, our method constructs a more comprehensive and
precise D(e) by incorporating richer subgraph contexts in two dis-
tinct ways. For the first approach, following [41], we construct
Dj (e) by concatenating the verbalized triples within the one-hop
subgraph around the entity e:

D (e) = CONCAT ({Verbalize(EN (h;), EN (r;), EN(t;)),
(hi,ri, t;) € Subgraph(e)}),

where Subgraph(-) is a function that automatically retrieves a
specified number of triples in the one-hop subgraph where the
entity resides; Verbalize(+) is a function that transform the triple
into its textual string, in this work, we use the linear verbalization
[1]; and CONCATY(-) joins each verbalized triple statement with a
separator.

However, presenting information explicitly as structured triples
may hinder effective knowledge retrieval by LLMs [2], since the
structure of these subgraph triples substantially deviates from the
textual data encountered during pre-training. Motivated by this
limitation, we propose a second, more model-friendly approach,
denoted as Dy(e), which employs a language model to rephrase
these verbalized triples into a narrative format that is more compre-
hensible to the LLM. Specifically, we employ an in-context learning
approach, where a small set of carefully selected examples are
prepended to the prompt to guide the LLM to generate high-quality,
narrative-like descriptions. For brevity, Figure 3 illustrates only the
core instruction of our prompt, omitting the in-context examples.
This approach produces more refined and model-friendly entity
descriptions, enabling the LLM to more effectively retrieve and
leverage knowledge during the KGC task.

By leveraging the subgraph entity description generator, we align
the LLM’s internal understanding of entities with their counter-
parts in the KG, similar to an entity linking process. This approach
addresses semantic ambiguity, achieving alignment comparable to
fine-tuning while significantly reducing computational overhead.

2.4 Representation Evaluation via Sliced Mutual
Information

To quantitatively assess the task-specific information encoded in
the frozen-LLM representations, we adopt sliced mutual informa-
tion (SMI), which scales more effectively to high-dimensional data
compared to mutual information [8, 35]. Let the random variable X
denote the representations extracted from the intermediate layers,
where x. = Repé (sk) € R4 corresponds to the representation of the
k-th sample si. Let the random variable Y denote the corresponding
discrete KGC labels. Since labels Y are discrete, the SMI is defined
as the expectation of mutual information between the labels Y and
one-dimensional random projections of X, where these projections
are sampled uniformly at random from the d-dimensional unit
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sphere (denoted S41). We estimate SMI via Monte-Carlo sampling
combined with a scalar MI estimator [14]:

m
SMI(X;Y) = % Z} [0y s} t,), 6i ~ Unif(897Y).
i=
Here n represents the number of samples, m represents the num-
ber of projections, and I(-; ) is the mutual information estimated
via the KSG estimator with k = 3 nearest neighbors. This metric
quantifies the task-specific information contained in our extracted
LLM representations for KGC prediction. We thus use SMI as a prin-
cipled measure to verify whether the frozen-LLM representations
retain a level of label-relevant information comparable to that of
fine-tuned counterparts.

3 Experiments

In the experiments, our objective is to answer the following research
questions (RQs):
e RQ1: Can LLMs with our method effectively achieve perfor-
mance on par with their fine-tuned counterparts?
e RQ2: How does our method perform across different lan-
guage models and classification models?
e RQ3: What are the data efficiency and computation effi-
ciency of our proposed method for KGC?

3.1 Datasets

Dataset ‘ |E| |IR|  #Train # Valid # Test

FB13 75,043 13 316,232 5,908 23,733
WNI11 38,696 11 112,581 2,609 10,544
FB15K-237N | 13,104 93 87,282 14,082 16,452
WN18RR 40,943 11 86,835 6,068 6,268
UMLS 135 46 5,216 1,304 1,322
YAGO3-10 | 123,182 37 1,079,040 5,000 5,000

Table 1: Statistical information of datasets.

In our experiments, we employ five widely-used KG datasets
for triple classification: FB13 [27], WN11 [27], FB15K-237N [17],
WN18RR [6], and UMLS [39]. For relation prediction, we adopt the
YAGO3-10 dataset [6], and for entity prediction, we use WN18RR.
Specifically, WN11 and WN18RR are subsets of WordNet, while
FB13 and FB15K-237 [30] are subsets of Freebase. The FB15K-237N
dataset is a modified version of FB15K-237. Additionally, UMLS is
a medical semantic network comprising semantic types (entities)
and semantic relations.

To address incomplete or low-quality entity descriptions in some
KGs, we propose two systematic approaches to generate entity de-
scriptions from local subgraph structures, as detailed in Section 2.3
(hereafter referred to as generated entity descriptions). Specifically,
for the first approach in Section 2.3, we construct entity descriptions
by concatenating ten randomly sampled triples from each entity’s
one-hop subgraph, employing linear verbalization [1]; we denote
these as generated descriptions (Tri). For the second approach, we
further utilize GPT-3.5-turbo to rephrase these concatenated triples
into coherent, model-friendly descriptions via in-context learning;
we denote these as generated descriptions (GPT).
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To assess the quality and effectiveness of our generated entity
descriptions, we also utilize existing entity descriptions (provided
by the original datasets or external authoritative sources) as refer-
ence baselines, hereafter referred to as non-generated descriptions.
Specifically, for FB13, entity descriptions are obtained from corre-
sponding Wikipedia; for FB15K-237N, we adopt the descriptions
provided by [36]; for WN18RR, we utilize synset definitions from
[39]; and for UMLS, we employ the entity descriptions included in
the original dataset.

3.2 Experimental Settings

Following the experimental settings in [41], we compare our method
with four widely-used structure information-based methods: TransE
[3], DistMult [37], ComplEx [31] and RotatE [28]. Additionally, we
compare against seven additional information-based methods: KG-
LLAMA [40], KG-BERT [39], KG-T5 [22], LLaMA-7B, Alpaca-7B,
LLaMA-7B-ICL and Alpaca-7B-ICL [41]. KG-LLAMA, KG-BERT
and KG-T5 fine-tune the language models on the full training
set. LLaMA-7B and Alpaca-7B use frozen LLMs directly for pre-
dictions. LLaMA-7B-ICL and Alpaca-7B-ICL perform predictions
via in-context learning [41]. Since our method aims to fully exploit
the capabilities of LLMs alone, we do not compare against hybrid
methods such as KoPA [41], which fine-tunes LLMs and addition-
ally incorporates external structural methods (e.g., TransE). Such
hybrid approaches incorporate additional structural information,
and thus fall outside the scope of our current investigation. We give
priority to using the results reported in the official baseline paper.
For structure information-based methods, we reproduce the results
with OpenKE [9]. For additional information-based methods, we
reproduce results using official implementations. Please refer to
Section 4.1 for detailed introductions of these baseline methods.

Since existing KGs typically contain only positive triples, we
follow standard practice [39] and generate negative samples by
corrupting head or tail entities within positive triples for training.
All training sets used in subsequent experiments thus contain equal
number of positive and negative triples. For evaluation, we generate
negative test triples equal in number to positive test triples on
WN18RR, and UMLS datasets, while directly utilizing the original
test splits containing balanced positive and negative triples for
WN11, FB13 and FB15K-237N. For the intermediate layer selection,
we determine the optimal layer via validation set performance.

For the MLP classifier, we adopt a two-layer perceptron structure
with PReLU activation and a softmax output layer. Specifically,
we set the batch size to 64 and employ the AdamW optimizer
with a learning rate of 3e-5. For the SVM classifier, we set the
regularization parameter C = 0.5 with a squared L2 penalty term
and adopt the radial basis function (RBF) kernel. For the logistic
regression classifier, we also set the regularization parameter C =
0.5 and employ an L2 penalty term.

3.3 Main Results (For RQ1)

As shown in Table 2, LLAMA-MLP-DES (NG) and LLAMA-MLP-
DES (GPT), using only a limited subset (3k/10k) of the training sam-
ples, achieve comparable performance to KG-LLAMA-7B, which
requires fine-tuning on the entire training set. Moreover, under
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equal-sized training subsets, LLAMA-MLP-DES (NG) and LLAMA-
MLP-DES (GPT) significantly outperform KG-LLAMA-SAMPLED,
the existing state-of-the-art approach that relies exclusively on
LLaMA for KGC, with an average improvement of 17.15% and
18.16%.

The experimental results presented in Table 2 also validate the
effectiveness of the approaches proposed in Section 2.2 and Sec-
tion 2.3. Specifically, LLAMA-MLP-DES (NG) and LLAMA-MLP-
DES (GPT) outperform LLAMA-MLP, demonstrating the effective-
ness of using subgraph entity description generator to improve
the LLM’s understanding of entities in the KG, as proposed in Sec-
tion 2.3. Furthermore, LLAMA-MLP demonstrates superior perfor-
mance compared to LLAMA-7B and LLAMA-7B-ICL, affirming the
effectiveness of stimulation method proposed in Section 2.2. Thus,
the experimental results substantiate the effectiveness of our pro-
posed methodology. Additionally, our results clearly demonstrate
that non-fine-tuned LLMs can achieve comparable KGC perfor-
mance to their fine-tuned counterparts.

B W/O Description
0.0351 XA W/ Description
E=. SFT

0.030

0.025

0.020

SMI

0.015

0.010

0.005

0.000
WN18RR FB13

Figure 4: SMI Values of Intermediate Layer Represen-
tations in the LLaMA Model Across Different Methods.
W/O Description uses LLAMA-7B with PT; for stimulus gen-
eration; W/ Description uses LLAMA-7B with PT; for stimu-
lus generation; SFT uses KG-LLAMA with PT; for supervised
fine-tuning.

Notably, the performance on the UMLS dataset exhibits a dis-
tinct pattern, where generated entity descriptions negatively impact
classification accuracy, and non-generated descriptions yield worse
results than not using descriptions as well. We hypothesize that this
discrepancy arises from the highly specialized and domain-specific
nature of entity names in the UMLS dataset, which are often precise
medical terms with limited room for multiple interpretations. The
entities in the knowledge graph have well-aligned with the internal
entities of the LLM. Meanwhile, using entity descriptions may be
affected by noisy description text, and descriptions generated by
GPT-3.5-turbo may be influenced by hallucination, thereby affect-
ing the classification effectiveness of the induced hidden states.
Meanwhile, our method shows slightly lower performance (3.8%
and 2.2% lower, respectively) on the WN11 and FB15K237N datasets
compared to KG-LLAMA, which was fine-tuned on the full training
set. This discrepancy may stem from the fact that the pretrained
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Method | Pred | Samples | FB13 ~ WN11 15K237N WN18RR UMLS
TransE S-F ALL 0.815 0.759 0.697 0.884 0.845
DistMult S-F ALL 0.862 0.871 0.587 0.851 0.864
ComplEx S-F ALL 0.857 0.862 0.657 0.841 0.871
RotatE S-F ALL 0.819 0.847 0.685 0882 0.877
KG-BERT L-MLP ALL 0.899  0.935 0.560 0.916 0.773

KGT5 N-L ALL 0.663 0.728 - - -
LLAMA-7B N-L 0 0.699 0.661 0.573 0.458 0.658
LLAMA-7B-ICL N-L 2 0.501 0.500 0.578 0.502 0.538
KG-LLAMA-7B N-L ALL 0.892 0955 0748 0921 0858
KG-LLAMA-SAMPLED N-L 3k/10k | 0.727 0.682 0.614 0.574 0.834
LLAMA-MLP H-MLP | 3k/10k | 0.855 0.872 0.674 0.858  0.882
LLAMA-MLP-DES (NG) H-MLP | 3k/10k | 0.901 - 0738 0934 0862
LLAMA-MLP-DES (Tri) H-MLP | 3k/10k | 0.842 0.755 0.671 0.779 0.782
LLAMA-MLP-DES (GPT) | H-MLP | 3k/10k | 0912  0.917 0.726 0.924 0.860
LLAMA-MLP-DES (NG) H-MLP ALL 0.920 - 0753 0943 0863

Table 2: The main experiment results (accuracy) of triple classification. In the ‘Pred’ column, S-F uses score function, L-MLP
uses MLP on last layer hidden states, N-L uses natural language, and H-MLP uses MLP on intermediate layer hidden states to
predict. ‘Samples’ indicates training sample counts, with 3k/10k indicating 10k samples for the UMLS dataset and 3k for others.
LLAMA-MLP uses LLaMA-7B with MLP for hidden state classification and PT; for stimulus generation; LLAMA-MLP-DES
(NG) combines non-generated descriptions with PT, for stimulus generation; LLAMA-MLP-DES (Tri)/(GPT) uses generated
descriptions (Tri)/(GPT) with PT, for stimulus generation. Top three results per dataset are bolded.

LLM did not acquire knowledge of certain triples in the KG during
its pretraining phase, resulting in incorrect predictions even when
probing is conducted.

Method Pred Samples YAGO3-10
KG-BERT L-MLP ALL 0.6816
KGT5 N-L ALL 0.5714
ChatGLM-6B N-L 0 0.0658
KG-ChatGLM-6B N-L ALL 0.5662
LLaMA-7B N-L 0 0.0348
LLaMA-13B N-L 0 0.0040
KG-LLaMA-7B N-L ALL 0.7028
LLAMA-MLP-7B H-MLP 6996 0.5968
LLAMA-MLP-DES (GPT) H-MLP 6996 0.6824
LLAMA-MLP-DES (GPT) H-MLP ALL 0.7015

Table 3: The experiment results (Hits@1) of relation predic-
tion.

Method Pred Samples WN18RR
KG-BERT L-MLP ALL 0.1102
StAR L-MLP ALL 0.2430
KGT5 N-L ALL 0.1011
KG-ChatGLM-6B N-L ALL 0.1613
LLaMA-7B N-L 0 0.0849
LLaMA-13B N-L 0 0.0991
KG-LLaMA-7B N-L ALL 0.2415
LLAMA-MLP-7B H-MLP 10k 0.2108
LLAMA-MLP-DES (GPT) H-MLP 10k 0.2433
LLAMA-MLP-DES (GPT) H-MLP ALL 0.2495

Table 4: The experiment results (Hits@ 1) of entity prediction.

In addition to the triple classification, we also validate the effec-
tiveness of the proposed probing method on the relation predic-
tion task as shown in Table 3. The experimental results similarly
demonstrate that the probing method can achieve the nearly same
performance as full training set fine-tuning, even when using only
0.6% of the training data. For entity prediction, we obtain the plausi-
bility confidence scores of the triples through the classifier and rank
them accordingly. Table 4 also displays similar results, showing
that after using model-friendly descriptions, the LLAMA-MLP-DES
(GPT) method improves the performance of LLAMA-MLP-7B and
surpasses its fine-tuned counterparts.

We further investigate the effectiveness of our method by evaluat-
ing the SMI values of representations extracted from intermediate
layers, as illustrated in Figure 4. Notably, incorporating model-
friendly entity descriptions (W/ Description) leads to substantial
improvements in the SMI values compared to representations ob-
tained without entity descriptions (W/O Description), yielding an
average relative increase of 34.1% across the two datasets. This
improvement substantiates that our subgraph entity description
generator effectively aligns the LLM’s internal semantic comprehen-
sion with KGs’ entities, thereby yielding more precise intermediate
representations that better predict triple plausibility. Moreover, rep-
resentations enhanced by entity descriptions achieve SMI values
comparable to those obtained from supervised fine-tuned (SFT)
LLMs. This observation suggests that fine-tuning primarily aligns
the LLM’s internal entity understanding with KG entities, rather
than substantially augmenting the model’s intrinsic knowledge
from the training set. These findings further underscore the feasi-
bility and effectiveness of leveraging frozen LLMs for efficient and
accurate KGC. These results further demonstrate the feasibility and
effectiveness of leveraging frozen LLMs’ representations, combined
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with our proposed subgraph-based entity description generator,
to achieve efficient and accurate KGC performance comparable to
fine-tuned models.

3.4 Ablation Study (For RQ2)

Through the analysis depicted in the left portion of Figure 5, it is ob-
served that with an increase in the index of the intermediate layer,
the efficacy of hidden states for triple classification demonstrates
an initial incline followed by a subsequent decline. Intermediate
layers closer to natural language text output generally exhibit better
prediction performance compared to the lowest layers. This observa-
tion aligns with the findings of [7], suggesting that language models
encode knowledge differentially across Transformer layers, where
higher layers integrate information from lower layers. During pre-
training, the lower layers may not have stored certain knowledge,
thus failing to produce hidden states informative for triple clas-
sification. Furthermore, the prediction performance of the layers
closer to the natural language text output is generally worse than
those in the middle layers. This phenomenon may be attributed to
the fact that intermediate layers appear to strike a balance between
retaining sufficient information (avoiding overcompression) and
discarding low-level noise, thus effectively preserving task-specific
features while filtering out irrelevant details [12, 44]. Similar trends
can be observed on the right side of Figure 5 for the Mistral model,
which employs an architecture distinct from LLaMA. Our empirical
results are consistent with recent studies [12, 18, 25, 26], highlight-
ing the general advantage of intermediate layers over the final
layers for downstream tasks. Meanwhile, as observed in Table 6,
our method demonstrates strong versatility across different back-
bone models, achieving performance comparable to full dataset
fine-tuning.

We further compare different classifiers, including MLP, SVM,
and Logistic Regression, with results summarized in Table 5. Re-
sults indicate that MLP consistently outperforms the other two
classifiers across all three datasets, while Logistic Regression also
exhibits results close to MLP. This underscores the efficacy of our
stimulus methodology, whereby the model inherently encodes dis-
criminative features for KGC tasks, making hidden states easily
distinguishable in high-dimensional space and allowing straight-
forward classification boundaries to emerge without the need for
complex, nonlinear decision functions.

Method | FB13 WN11  FB15K-237N
LLAMA-SVM 0.821 0.866 0.594
LLAMA-LR | 0839  0.860 0.662
LLAMA-MLP 0.855 0.872 0.674

Table 5: The variation in KGC prediction performance across
different datasets using SVM, Logistic Regression, MLP as
classification models. All these methods use LLaMA-7B as
the base model, and generate stimuli using PT;.

3.5 Efficiency Study (For RQ3)

As illustrated in Figure 6, our method outperforms both KG-LLAMA
and KG-BERT on the FB13 when trained with only 100 samples, as
opposed to the 3000 samples used by the latter methods. For the
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Model | Method FB13 WN11
KG-LLAMA-7B 0.892  0.955

LLAMA-MLP 0.855  0.872

LLaMA ||| AMA-MLP-DES (NG) 0901 -
LLAMA-MLP-DES (GPT) 0912  0.917
KG-MISTRAL-7B 0.891  0.962

Mistral MISTRAL-MLP 0.846  0.901
MISTRAL-MLP-DES (NG) ~ 0.880 -
MISTRAL-MLP-DES (GPT) 0.893  0.925
KG-GEMMA-7B 0.897  0.944

Gemma GEMMA-MLP 0.806  0.893
GEMMA-MLP-DES (NG) ~ 0.891 -
GEMMA-MLP-DES (GPT)  0.867  0.917
KG-Qwen-7B 0913 0.961

Qwen-MLP 0.864  0.908

Qwen25 | yen-MLP-DES (NG) 0904 -
Qwen-MLP-DES (GPT)  0.916  0.935

Table 6: The variation in KGC prediction performance across
different datasets using LLaMA, Mistral [11], Gemma [29]
and Qwen2.5 [19] as base models (which have different back-
bones).

UMLS, the performance of KG-LLAMA and KG-BERT with 3000
training samples is comparable to that of LLAMA-MLP-DES (NG)
trained with only 500 samples. Additionally, combining the results
from Table 2, for the FB13 dataset, our method attains 97.2% of the
performance achievable with the full training set, utilizing only
500 samples, which constitutes a mere 0.079% of the total training
samples. In contrast, KG-LLAMA and KG-BERT achieve only 78.7%
and 63.1% of the maximum performance, respectively. For the UMLS,
with 9.58% of the training set, our method reaches 90.6% of the full
training set performance. These results validate the capability of
our method to effectively leverage the language model’s internal
representations, highlighting its potential for data-efficient KGC
scenarios.

In addition to data efficiency, we investigate the computational
efficiency of our method. Table 7 presents a detailed comparison
between our approach with parameter-efficient fine-tuning, demon-
strating substantial improvements in resource utilization. Specifi-
cally, GPU memory usage is measured using ‘torch.cuda.memory-
allocated’ to record peak memory consumption per step. For a fair
comparison, the KG-LLAMA baseline utilizes LoRA combined with
8-bit quantization techniques during supervised fine-tuning. As
shown in Table 7, the time labeled as ‘Probing’ refers to the to-
tal inference duration required to extract representations for both
training and test samples. Since this step involves only forward
passes without gradient computations, we categorize it under the
inference procedure. Compared to the fine-tuned 7B LLM base-
line, our method improves GPU memory efficiency by 188X during
training and achieves an overall speedup of 26.11x. Notably, the
training overhead of our method lies solely in the classifier, which
is independent of the LLM size. Therefore, when scaling LLMs
to larger sizes, such as 70B, the substantial overhead associated
with backpropagation in fine-tuning becomes increasingly burden-
some. In these scenarios, the advantages of our method in terms
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of the LLAMA-MLP-DES (GPT) [left] and Mistral-MLP-DES

(GPT) [right]. The horizontal axis represents the position of the intermediate layers in LLaMA or Mistral, and the vertical axis

represents the dataset.

Method ‘ Procedure GPU Memory Time
Training 14.68G 83h
KG-LLAMA (LLM:1 epoch) (LLM Parameters+LoRA+Gradient etc) (Forward+Backward)
Inference 12.94G 2h50min
(LLM:Generation) (LLM Parameters+LoRA) (Forward)
Training 0.078G 33min
LLAMA-MLP (MLP:10 epoch) (MLP Parameters+Gradient etc) (Forward+Backward)
Inference 12.82G+0.018G 2h44min+15s
(LLM:Probing+MLP) (LLM Parameters+MLP Parameters) (Probing+MLP Forward)

Table 7: Efficiency Comparsion between KG-LLAMA-7B and LLAMA-MLP on the WN11 full dataset. The ‘Procedure’ column

represents several key steps of these methods.

FB13 UMLS
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Figure 6: The prediction performance of KG-LLAMA, KG-
BERT, and LLAMA-MLP-DES (NG) on triple classification
varies with the size of the training dataset. The horizontal
axis represents the number of training samples used, with
an equal number of positive and negative samples.

of GPU memory usage and time consumption become even more
pronounced.
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Figure 7: Performance of LLAMA-MLP-DES (GPT) versus the
number of sampled triplets.

3.6 Additional Analysis

We investigate how varying the number of sampled triples affects
the performance of LLAMA-MLP-DES (GPT). As shown in Figure
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7, increasing the number of sampled triples consistently improves
accuracy. For example, on WN18RR, the accuracy increases from
86.6% t0 92.4% as the number of triples grows from 1 to 20. This im-
provement highlights that richer subgraph information facilitates
more precise entity descriptions, thus better aligning the LLM’s
internal entity understanding with the KG semantics. Nonetheless,
we also observe diminishing returns with increasing triples, indicat-
ing that additional subgraph information only marginally improves
semantic alignment once sufficient context is captured. Meanwhile,
as shown in Table 2, LLAMA-MLP-DES (Tri) consistently under-
performs LLAMA-MLP-DES (GPT), exhibiting an average accu-
racy decrease of 10.5% across all evaluated datasets. Surprisingly,
LLAMA-MLP-DES (Tri) even falls short of LLAMA-MLP, which
does not incorporate any form of entity description, resulting in an
average accuracy decline of 6.24%. This suggests that naively con-
catenating verbalized triples with separators as entity descriptions
does not facilitate—and may even impair—the LLM’s reasoning
capabilities for KGC. A plausible explanation is that the structure
of verbalized triples deviate significantly from the natural language
distributions encountered by LLMs during pre-training, thereby
introducing ambiguous stimulation information. In contrast, trans-
forming these triples into a more natural, narrative-style format
substantially alleviates this issue. Specifically, as demonstrated in
Table 2, LLAMA-MLP-DES (GPT) achieves an average accuracy
improvement of 3.96% compared to LLAMA-MLP. This improve-
ment underscores the effectiveness of generating model-friendly
entity descriptions, enabling LLMs to retrieve and leverage relevant
knowledge more precisely for KGC tasks.

Additionally, to investigate the generalization capabilities of our
approach, we conduct cross-dataset evaluation experiments where
classifiers trained on one knowledge graph are tested on others. As
shown in Figure 8, the classifier demonstrates strong generaliza-
tion capabilities, particularly between datasets from similar knowl-
edge sources. For instance, a classifier trained on FB13 achieves
an accuracy of 0.75 when tested on FB15K237N, matching its in-
domain performance. This substantial transfer performance can be
attributed to the fact that both FB13 and FB15K237N are subsets of
Freebase, sharing similar entity and relation structures. Classifiers
trained on semantically distinct datasets, such as WN18RR (de-
rived from WordNet) and UMLS, exhibit relatively weaker transfer
performance when evaluated on Freebase-derived datasets. Nev-
ertheless, these classifiers still achieve respectable performance,
underscoring that representations probed from intermediate layers
of LLMs encode generalizable and task-agnostic relational knowl-
edge, enabling effective transfer across diverse knowledge graph
contexts.

4 Related Work
4.1 Knowledge Graph Completion

Knowledge graphs are inherently incomplete, necessitating effec-
tive approaches for knowledge graph completion [10]. Prevailing
KGC methodologies generally fall into two categories: structure
information-based methods and additional information-based meth-
ods [24]. Structure information-based methods leverage the inher-
ent structural patterns of knowledge graphs. Representative meth-
ods such as TransE [3], DistMult [37], COMPGCN [32], ConvE
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Figure 8: Generalization across Datasets, LLAMA-MLP-DES
(NG). The horizontal axis represents the training set, and the
vertical axis represents the test set.

[6] and RotatE [28] primarily use scoring functions defined in a
latent embedding space to infer missing information. Additional
information-based methods incorporate a variety of supplemen-
tary data to enrich the knowledge graphs. Representative methods
include KG-BERT [39] and LASS [23], which represent entities,
relations, and triples as textual sequences, reformulating KGC as
a sequence classification problem solvable via encoder-only lan-
guage models. Meanwhile, KG-S2S [4] and KGT5 [22] leverage
encoder-decoder language models to perform KGC in a genera-
tive manner. Recently, decoder-only large language models have
shown great promise in KGC tasks. KoPA [41] integrates structural
embeddings with LLMs to jointly leverage the structural informa-
tion of KGs and their powerful contextual modeling capabilities.
More recently, KG-LLAMA [40] frames KGC as an instruction-based
question-answering task, applying parameter-efficient fine-tuning
techniques to LLMs. Unlike hybrid approaches that combine LLMs
with external structural embeddings, KG-LLAMA solely relies on
the intrinsic capabilities of LLaMA, aligning closely with the core
motivation of our proposed framework.

4.2 Large Language Models

Several studies have explored the mechanisms through which Large
Language Models process, interpret, and generate factual knowl-
edge. As demonstrated by [21], LLMs serve as implicit knowledge
bases, encoding extensive world knowledge within their parame-
ters. This intrinsic capability positions LLMs as promising tools for
knowledge-intensive tasks such as knowledge graph completion,
by effectively leveraging their embedded factual representations.
To examine the extent and quality of factual knowledge encoded in
LLMs, recent works have employed probing methods. For instance,
[20] conducted evaluations across multiple LLMs to assess their
knowledge of world geography using probing. Similarly, [13] an-
alyzed the conceptual abstraction capabilities of different model
layers, revealing hierarchical encoding patterns within the interme-
diate representations. Furthermore, [16] investigated the potential
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existence of a universal truthfulness hyperplane in LLMs via prob-
ing. Notably, recent probing analyses [25, 26] have indicated that
intermediate layers often yield more informative representations
for downstream tasks than the final layers. These findings align
closely with our approach of leveraging intermediate representa-
tions from LLMs to achieve effective and efficient KGC.

5 Conclusion

This paper proposes a novel framework that leverages the latent
representation space of LLMs to improve KGC. By integrating
subgraph-based entity descriptions, our approach bridges the se-
mantic gap between LLMs and KGs, enabling LLMs to achieve
performance on par with their fine-tuned counterparts. Simultane-
ously, our method enhances data efficiency and saves a significant
amount of GPU memory and time compared to parameter-efficient
fine-tuning. This work explores the potential of LLMs in KGC tasks
with both efficacy and efficiency. Compared to fine-tuning, we hit
the core of KGC problem in a better way.
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