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ABSTRACT
The maturing of mobile devices and systems provides an unprece-

dented opportunity to collect a large amount of real world human

motion data at all scales. While the rich knowledge contained in

these data sets is valuable in many fields, various types of personally

sensitive information can be easily learned from such trajectory

data. The ones that are of most concerns are frequent locations, fre-

quent co-locations and trajectory re-identification through spatio-

temporal data points. In this work we analyze privacy protection

and data utility when trajectory IDs are randomly mixed during co-

location events for data collection or publication. We demonstrate

through both analyses and simulations that the global geometric

shape of each individual trajectory is sufficiently altered such that

re-identification via frequent locations, co-location pairs or spatial

temporal data points is not possible with high probability. Mean-

while, a decent number of local geometric features of the trajectory

data set are still preserved, including the density distribution and

local traffic flow.
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1 INTRODUCTION
The past decade has witnessed the rapid development of techniques

for tracking human mobility. The rich knowledge contained in

human mobility data can have a huge impact in many fields ranging

from transportation to health care, from civil engineering to energy

management, from e-commerce to social networking, etc.

A crucial problem that remains to be addressed is the protection

of personally sensitive information. Human mobility trajectories

are surprisingly unique with strong personal traits. Releasing the

trajectory data to the public or third party, even after names or
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other identifiers are removed, can raise serious safety concerns. In

the following we discuss three aspects of sensitive data that can be

learned from motion trajectories.

Frequent locations. It has been discovered that human trajecto-

ries show a high degree of temporal and spatial regularity. Each

individual can be characterized by a time independent characteristic

travel distance and probabilities to return to a few highly frequent

locations [4], which results in high predictability of individual mo-

tion [7]. Locations that are frequently visited can be related to

personal identifiable information. With the knowledge of home

location and work location, it is easy to identify the user with the

help of an external database.

Social ties and frequent co-location patterns. A few studies

show that mobility patterns shape and impact social connections.

It is possible to infer 95% of social ties from the motion trajectory

data alone [3], since friends show distinctive temporal and spatial

features in their moving patterns. Social ties learned from mobility

data can increase the impact of the revelation of sensitive data –

once a single individual is identified, it is easy to identify his/her

friends by examining the frequent co-location events. Thus such

co-location patterns must be removed or confused sufficiently.

Unique signatures. Motion trajectories are fairly unique. In a

study [2] on a dataset of fifteen months of human mobility data for

one and a half million individuals, with only four spatio-temporal

points one can uniquely identify 95% of the individuals. As shown

in [5], an adversary, when equipped with a small amount of the

snapshot information, can infer an extended view of the where-

abouts of a victim in a mobility trace. Protecting the privacy of

individuals should also consider hiding or confusing these unique

signatures.

Our Approach
In this paper we focus on analyzing solutions that can be im-

plemented in a distributed manner on mobile devices such that

for trajectories collected from these devices, frequent locations,

frequent co-locations and unique signatures are removed almost

surely. Meanwhile the modified traces are still useful for applica-

tions that require faithful local geometric features such as local

traffic flow. To achieve that, we build upon a simple idea in the

literature named “mix-and-match”, similar to the idea of the "mix-

zones"[1], but without allocating static geographical regions. We

evaluate the algorithm in protecting user identity and utility both

analytically and with real data.

2 MODELS AND ALGORITHMS
2.1 Model
We assume that users participating in data collection would not

mind sharing their trajectories if the personally identifying infor-

mation can be removed. For that users follow a protocol that allows
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trajectories to be gathered while modifications are done. We as-

sume that users have short range communication and two users

that are co-located (at the same location at the same time) can

directly communicate with each other. The collected data will be

trajectory traces labeled by IDs.

Threat Model. We assume that the adversary knows the entire al-

gorithm but not the random bits. The adversary may also have back-

ground knowledge on certain participants and wish to re-identify

them in the collected/published trajectories. In particular, we con-

sider the following attacks similar to those introduced in [6]:

• Frequent Location Attack. The adversary knows the top h
popular locations Hi of each trajectory i in the input set. Af-

ter the sanitization we wish that the top h popular locations

of any sanitized trajectory does not match any Hi for all i .
Otherwise, we say trajectory i is revealed.

• Co-location Attack. The adversary analyses the co-location

events. If user i co-locates with j, it indicates a social tie

between i and j. Thereafter, the adversary can identify j as
long as he identifies i .

• Unique Signature Attack. The adversary can possibly have

ℓ spatio-temporal points Pi of each trajectory i in the input

data set. If there does not exist a unique trajectory that goes

through all points of Pi , we consider the trajectory i to be

un-identified, otherwise i is revealed.

2.2 Algorithm
Now we present the process of trajectory collection by “mix-and-

match” on a user set ofn individuals, {u1,u2, · · · ,un }. Initially, each
user ui carries ID i . For any ui ,uj , if ui co-locates with uj , they
swap the current IDs carried by them with probability p. The meet-

ing points separate their trajectories into incoming and outgoing

segments. After the swap, the outgoing segment of ui carries the
ID j while the outgoing segment of uj carries the ID i . See Figure 1
for an example.

p
s1

s2

s′2

s′1

s1

s2

s′2

s′1

Figure 1: The original trajectories of two users are colored red and blue on
the left. At the co-location point, they swap their IDs. The trajectories col-
lected by mix-and-match is on the right.

The randommixing neither changes any location data nor does it

introduce any dummy points. What is changed is how the segments

are glued to one another. To evaluate the effectiveness, we intro-

duce the combinatorial diversity to denote the complexity of the

mixing patterns of the original trajectories, and geometric diversity
to denote the amount of geometric changes of the generated traces

from the original ones.

2.3 Combinatorial Diversity
We denote an n × n matrix X (t) as the probability distribution of

the IDs that each user is carrying at time t . Xi j (t) is the probability
that ui is carrying ID j at time t . Initially, X (0) is a matrix with all

1s on the diagonal and 0 otherwise. Each co-location event of two

users changes the distribution matrix.

Combinatorial Diversity. LetX∗i (t) denote the ith column vector

of X (t). We define the combinatorial diversity of ID i as

∥X∗i (t) − X∗i (0)∥

∥X∗i (0)∥
, (1)

where ∥·∥ is the ℓ2 norm. It measures the difference between the

current and the initial probability distribution of users carrying ID

i . The more uniform the distribution is, the closer to

√
1 − 1

n the

combinatorial diversity converges to.

Theoretical Analysis. To analyze the combinatorial diversity, we

introduce a simplified mobility model below. Let M denotes the

co-location probability matrix derived from the mobility patterns,

whereMi j is the probability that ui co-locates with uj . We assume

that at the beginning of each discretized time slot t , there is a co-
location event; for each co-location event, we uniformly randomly

select a participant ui , and the second participant uj is selected
with probabilityMi j . Based on this model, we have the following

theorem.

Theorem 2.1. For any i , ∥X∗i (t )−X∗i (0) ∥
∥X∗i (0) ∥

≥

√
1 − 1

n − δ , for t ≥

log(ε−1)+2 log(δ−1)

log λ2(W 2)−1
, with probability 1−ε , whereW 2 = I −

2p(1−p)
n D +

2p(1−p)
n (M +MT ),M is the co-location pattern described above, D is

a diagonal matrix Dii =
∑n
j=1[Mi j +Mji ], n is the number of users.

The theorem shows that based on the mobility model, the prob-

ability distribution of IDs can be arbitrarily uniform with high

probability given sufficient time. This guarantees the performance

of the “mix-and-match” procedure.

2.4 Geometric Diversity
When the combinatorial diversity is high enough to ensure that the

IDs aremixedwell, we examine the geometric diversitymeasured by

the expectation of distance between the original and the generated

trajectories after ID swaps.

Denote by r the time parameter for the trajectories and denote

by di j (r ) the distance between the original ui ’s trajectory and uj ’s
trajectory at time r . The geometric diversity of ui ’s trajectory at

time r is defined as the expected distance between the generated

trajectory with ID i and the original ui ’s trajectory at time r :

n∑
j=1

di j (r )Xi j (r ) (2)

2.5 Protection from Re-identification
Now we design experiments to show how the “mix-and-match”

procedure protects user privacy on sensitive information attacks.

Frequent locations.We first find out the number of frequent loca-

tions h needed to identify an individual in the original trajectories.

We estimate the chance of defeating the attack, i.e., the adversary

cannot find a trajectory after “mix-and-match” with the h frequent

locations matching that of any user’s original trajectory.

Frequent co-location patterns. We first analyse the distribution

of cumulative time all pairs of individuals co-locate in the original

trajectories and choose the threshold above which the co-location

time can indicate a social tie. A graph can be constructed from

the trajectories where there is an edge between two individuals if
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they co-locate longer than the threshold. We compare the degree

distribution and the max clique size between the graph of the origi-

nal trajectories and the one of the generated trajectories after the

“mix-and-match” procedure.

Unique signatures. On the last measure, we first examine the

number of random spatio-temporal data points ℓ needed to identify

an individual in the original trajectory set. Then, using ℓ random

spatio-temporal locations of a user, we check the chance that the

adversary can find any matching trajectory in the generated trajec-

tories.

2.6 Utility
The “mix-and-match” process preserves all the location information

and most localized linkages between the adjacent data points of the

same trajectory. Therefore any data mining algorithm that focus on

the local geometric patterns will be able to retrieve high quality data

from the anonymized trajectories. We look at two utility measures

evaluated in the experiment section.

Segment Time Durations. In the “mix-and-match” procedure,

the trajectories are divided into segments at the co-location events.

We analyze the time durations of these segments. A longer time

duration can keep more information of the original trajectory.

Traffic Flow Estimation. Using the generated trajectories, we

can estimate the traffic flow, as well as mining sequential patterns.

To be specific, we can estimate the amount of traffic visiting a

sequence of k locations consecutively.

3 EXPERIMENTS
We analyze the “mix-and-match” procedure with real human mobil-

ity data in one week. In the data set, we collect trajectories of 3, 629

students with the WiFi Access Points on campus for one week. The

radius of the campus is 1 km, and WiFi Access Points are deployed

in 106 buildings of the campus. The connections between mobile

devices and WiFi Access Points are recorded to form the trajec-

tories. The traces are in the resolution of buildings and sampled

every 5 minutes. The trajectory of each individual is in the form of

[(t1,Loc1), (t2,Loc2), · · · , (ti ,Loci ), · · · ], where ti is time and Loci
is the building visited at time ti . For each individual, the number

of spatio-temporal sample points ranges from 605 to 2, 028 for the

week. The maximum number of buildings one individual visits dur-

ing the week is 29. At most 192 people appear simultaneously in

the same building and on average 26 individuals co-locate at each

time slot.

Our major results of the “mix-and-match” process with the swap-

ping probability p = 0.02 are summarized as follows:

• Defeat Adversary Attacks.With our mixing ID approach,

the chance that the adversary failed the frequent location

attack, co-location attack, and unique signature attack is

higher than 99%.

• High Utility. In the generated mixing ID approach data set,

the estimation of the number of people in the building and

the traffic flow between buildings are 100% accurate.

3.1 Combinatorial Diversity
We choose the exchange probabilities p = 0.005, 0.01, 0.02, 0.03. In

Figure 2(a), the higher the swapping probability p is, the faster the

combinatorial diversity converges. During the first 14 hours, all

the average combinatorial diversities for the different swapping

probability p converge to the theoretical lower bound, approximate

1, meaning that the IDs are mixed up uniformly.
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Figure 2: The combinatorial diversity, and the geometric diversity distribu-
tion among all trajectories during 14 hours.

3.2 Geometric Diversity
In Figure 2(b), the value of geometric diversity goes up with the

increase of p; the average geometric diversities increase sharply in

the first 2 hours, then continue to increase slightly; after the 6th

hour, the geometry diversities concentrate around 0.6km, which is

more than half of the radius of the campus, indicating an expected

large shift between the generated and the original trajectories.

3.3 Frequent Location Attack
We first analyze the number of frequent locations h we need to

uniquely identify one trajectory in the original data. In Figure 3(a),

we show that if fewer than 3 most frequent locations are revealed

to the attacker, the identification rate is lower than 60%, while for

h ≥ 4, the attacker’s identification rate is higher than 80%. As

shown in Figure 3(b), even the adversary knows the top 4 frequent

locations, he/she only has 7% chance to recover the correct identity,

and the chance goes even lower with larger number of frequent

locations revealed. The identities are well protected from frequent

location attack.
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(a) The identification rate with top h fre-

quent locations provided from the origi-

nal data set.
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Figure 3: Frequent location attack.

3.4 Co-location Attack
We study the distribution of the total co-location time lengths

between two individuals in the original trajectories during the

week, shown in Figure 4(a). Here, over 80% of co-locations are

within 3 hours and only 3.89% are above 12 hours. We assume

that the co-location length of 12 hours is enough to indicate a

relationship.
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When constructing the co-location graph, every identity is de-

noted as a node, and there is an edge between node i and j if the total
co-location time length between user i and j is above the threshold
of 12 hours. We compare the co-location graph with the original

trajectories and the generated. Notice that the results for different p
are similar in the experiment, therefore, we only show the statistics

for p = 0.02. We denote the original graph as G1, the graph with

generated data as G2. The number of edges in G1 is 177, 195, while

the number ofG2 is only 67, 407, 63% less. The degree distributions

of nodes inG1 andG2 are shown in Figure 4(b). The degrees of 90%

nodes inG2 are below 80, while that inG1 have a longer “tail”: over

27% nodes in G1 have degrees over 160. We further examine the

size of the maximum clique for the two graphs. The value for G1 is

146, while the one for G2 is much smaller, 35. G2 is dissimilar with

G1. In summary, the co-location attack can be well defended.
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Figure 4: Co-location attack.

3.5 Unique Signature Attack
We demonstrate the fraction of individuals that can be uniquely

identified with ℓ random spatio-temporal points in the original data

set, shown in Figure 5(a). With ℓ ≥ 10, the identification rate is

over 80%. Assume the adversary collects ℓ spatio-temporal points

on the original trajectory i . If the adversary finds a match in the

generated data set, we define that the trajectory i is identified. The
identification rate is plotted in Figure 5(b). The highest identification

rate 10% appears when ℓ = 10,p = 0.005. Even in that case, the

generated trajectory identified by the adversary as trajectory i only
share 14% spatio-temporal points with the original trajectory i . If
we choose p ≥ 0.02, the identification rate is smaller than 0.5% for

ℓ ≥ 15. The unique signature attack is defeated.
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Figure 5: Unique signature attack.

3.6 Utility Analysis
Segment time durations. We analyze the time durations of the

segments, in Figure 6(a). For p = 0.03, 62% of the segment time

durations are within 1 hour, while for p = 0.005, only 27% are

within 1 hour, and over 53% are greater than 3 hours. The smaller

the swapping probability is, the longer the time durations of the

segments are. We can carefully choose p to get a trade off between

the privacy and utility.
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Figure 6: Utility.

Traffic flow estimation. With the “mix-and-match” algorithm,

the queries of the number of individuals in each building and the

traffic between two buildings reach 100% accuracy . The accuracy

of the traffic estimation of k sequential locations is demonstrated

in Figure 6(b). When k = 3, we can still have an accuracy over 55%

for all p. As k increases, the estimation accuracy decreases sharply

for p ≥ 0.005. In the case of p = 0.001, even for k = 5, the accuracy

is still above 80%. The utility for sequential pattern mining is high.

4 CONCLUSION
This paper studies the mixing ID approach for removing identifying

features from a trajectory set, with theoretical analyses and perfor-

mance demonstrated in real human mobility data sets. We show

that the generated trajectories defeat the attacks from the adversary

and still have good performances for local traffic analysis.
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