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ABSTRACT
With the recent development of localization and tracking systems
for both indoor and outdoor settings, we consider the problem of
analyzing and representing the huge amount of natural trajectories
from human movements that we expect to gather in the near future.
In this paper we argue the topological representation, which records
how a target moves around the natural obstacles in the underlying
environment, can be sufficiently descriptive for many applications
and efficient enough for both storing, comparing and classifying
these natural human trajectories. Technically, the representation
uses the homotopy type of the trajectory. By using harmonic one-
forms and Hodge decomposition, we pre-process the sensor net-
work with a purely decentralized algorithm such that the homology
class of a trajectory can be obtained by a simple integration along
the trajectory. This supports real-time classification of trajectories
up to the homology accuracy with minimum communication cost.
We test the effectiveness of our approach by showing how to clas-
sify randomly generated trajectories in a multi-level arts museum
layout as well as how to distinguish real world taxi trajectories in a
large city.
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1. INTRODUCTION
Powered by recent technology advancements, real-time target

tracking is becoming a reality for both outdoor and indoor scenar-
ios. For example, we can track visitor’s trajectories in a museum
by RFID enhanced entrance ticket, or track vehicles traveling in
large metropolitan areas and tracked by roadside units. In all cases,
human movement patterns are never random and driven by social
needs. Thus, any new discoveries of these real world mobilities are
going to be fundamentally interesting and practically useful.

The focus of this paper is to develop efficient schemes for col-
lecting, processing and analyzing such tracking data in real time
within the network of sensors performing the tracking tasks. Tra-
jectory data is a unique type of sensing data: they are sequential
(temporal), and typically bulky. The straightforward representa-
tion of a target visiting the vicinity of k sensors uses a sequence
of the IDs of these sensors or their geographical locations, gener-
ating data size of O(k). Even with simplification techniques, the
data size cannot be reduced much especially for trajectories that are
geometrically complicated. Most of existing algorithms handle tra-
jectory data with limitations. In one approach, the target detection
events are separately stored at individual sensors. This minimizes
the amount of communication between sensors during processing.
However, the global knowledge of a trajectory is not present and
retrieving this information involves a non-trivial query in the net-
work touching all sensors on the path. In another approach, one can
possibly construct the trajectory explicitly and propagate this infor-
mation to the other sensor nodes, facilitating the query for such
information. However the data size of a trajectory grows with its
length. Thus to pass around a trajectory explicitly, the processing
cost, in particular the communication cost, can be prohibitive.

The contribution of this paper is to provide a framework to pro-
cess and analyze the trajectory data in-network with low commu-
nication cost, and also supports queries, comparisons and classifi-
cations of trajectories. One of the crucial ideas is to replace the
geometric representation of a trajectory by the topological repre-
sentation of a trajectory. In a geometric representation of a trajec-
tory, we consider it as a curve in the plane, or possibly a curve in
space (when the height data is non-trivial). In a topological repre-
sentation, we represent a trajectory by how it moves around other
specified obstacles in the same domain. These obstacles are often
real obstacles (buildings, lakes, or furnitures, walls), but can also
be artificially labeled by users to adapt to particular application
scenarios or to increase resolution. It is true that this topological
information is not sufficient to pin down the exact geometry of the
specific path, e.g., we cannot tell which lane the vehicle has taken
or how many inches the visitor was to each art pieces. But a fair
amount of high-level geometric information is well preserved, such
as the sequence of roads followed by the vehicles or the sequence



of paintings the visitor toured. This is enough for many applica-
tions that only care about the coarse grained geometry. In fact, the
problem of trajectory clustering is precisely to filter out the unnec-
essarily fine geometric details and keep only the most prominent
features of the trajectories such that one can define movement pat-
terns and behaviors including flocking, convoys, herds, leadership,
commuting, and various others.

When the topological representation of a trajectory is sufficient
and preferred, the benefit of this representation is huge. As we will
show later, one can succinctly encode the topological types of a
trajectory into a compact way: with only a triple (s, t, h), where
s, t are the starting and ending positions and h is a vector of nu-
merical values indicating the topological type. Here the dimension
of h is the number of obstacles in the domain. Further, we can
pre-process the network such that identifying the topological type
of a real time trajectory, i.e., the decoding part, can be done with
minimum communication requirements – by simply integrating the
weights defined on the sensor network edges crossed of the target
trajectory. This allows us to quickly perform clustering and trajec-
tory comparison in real time, and with a little help from a backend
server, reconstruct the given path up to topological accuracy.

In the following we briefly review the main technique developed
in this paper as well as previous work. We then report our algorithm
and evaluation on real data sets.

2. OVERVIEW
Path topology: homotopy v.s. homology. There are various def-
initions of the topological structures of paths. The most used ones
are homotopy and homology types. Both count “holes” in a surface
(or more general topological space) by drawing loops on the sur-
face and checking whether the loop encloses a hole. But intuitively
homology considers loops as closed curves without orientation, ho-
motopy sees loops as oriented parametric curves, and in that case it
matters how the holes are ordered.

The homotopy equivalence relation naturally partitions a group
of paths into equivalent classes, providing well defined clusters [1,
13]. In theory the number of homotopy types is infinite, since one
can loop around a hole infinitely many times. But in practice only
a finite number of homotopy types are of interest.

All paths of the same homotopy types belong to the same class
by homology. Thus homology is a weaker classification. The ben-
efit of using homology is that it is much easier to compute in many
cases. In our case we will use homology as the framework we
develop will also work for a sensor network deployed on a gen-
eral surface (closed or with boundaries) with high-order topologi-
cal features such as handles. Consider a donut surface. There are
two cycles, α and β, that surround the handle in different ways.
These two cycles are clearly non-homotopic as they cannot be de-
formed to one another. Handles can possibly show up as we live in
a three-dimensional space. Consider highways that can go above
one another; sensors deployed in a multi-floor building with stair-
cases connecting different floors; tunnels and overhead bridges in a
downtown area. In these cases a sensor network can be considered
as a sampling of a general surface in 3D which may have handles
and/or boundaries.

The problem of testing whether two paths that with the same
starting and end positions on a 2D domain are homotopy equiva-
lent has been studied in the centralized setting. Suppose the obsta-
cles are represented by polygons of total size n and the paths are
given as polygonal curves. An Θ(n logn) running time algorithm
is available for simple paths and an O(n3/2 logn) time algorithm
is known for self-intersecting paths [2]. For paths defined on a
general surface, the homotopy test boils down to testing whether

the cycle connecting the two paths is contractible (i.e., shrink to
a point). This problem can be solved in a centralized setting in
linear running time [5] when the surface and the paths are both
available. However, this algorithm cannot be directly applied to the
distributed setting of sensor networks, in which a detected target
trajectory is locally stored on the sensors near the trajectory and no
one sensor has the information about the entire path, not to say the
information of the other paths.

For a distributed solution a number of schemes could be possi-
ble. For example, in a 2D setting we can connect each obstacle i
by a path λi to the outer boundary. For each trajectory we record
the sequence of intersection with λi, together with the direction of
crossing. First this scheme only works for 2D domain and does
not apply to general cases. Further, the storage needed for this rep-
resentation is proportional to the number of times that the target
trajectory intersects these paths λi, which depends on how λi are
selected and can be suboptimal.

What we choose to adopt in this paper is a different approach
using the differential form solution. We define flow vectors, named
the harmonic forms, on a planarized sensor network graph such that
a trivial cycle (i.e., non-hole enclosing) will integrate to zero while
non-trivial cycles will integrate to non-zero values. Thus the repre-
sentation of the homology type is simply the tuple (s, t, h) where
h contains the integrated values of the harmonic forms along the
trajectory. Two paths of the homology type will give the same inte-
grated values. The computation is simple. The communication cost
is minimum and can be piggybacked on the handover cost for sen-
sors along the trajectory of the target. If the target trajectories only
represent r different types, a hash function can be used to reduce
the size of the integrated differential form to beO(log r), matching
the lower bound. While differential form was used before for range
query in a distributed setting [15], the application we introduce in
this paper is novel for target tracking and trajectory classification.
Harmonic forms. Consider a graphG with a planar embedding on
a surface Σ. The differential one-form is a function ξ defined on
directed edges. The value ξ(a, b) for an edge ab is the negation of
the value ξ(b, a) for edge ba. Now we consider the dual graph G̃.
Each face of the graph G corresponds to a vertex in the dual graph.
An edge is placed on two vertices in the dual graph if and only if
the two corresponding faces in the primal graph share one edge.
A differential one-form ξ on the graph G can be extended to the
dual G̃. The value on an edge in the dual graph is the value of the
corresponding edge in the primal graph. A differential one-form is
called a harmonic one-form if it satisfies two properties:

1. it is divergence-free: ∀u of G,
∑

v∈N(u) ξ(u, v) = 0, where
N(u) is the set of neighbors of u in G;

2. it is curl-free, that is, for any vertex ũ of the dual graph G̃,∑
ṽ∈N(ũ) ξ(ũ, ṽ) = 0, where N(ũ) is the set of neighbors

of ũ in G̃.

The first property means that a harmonic one-form does not have
any sources or sinks. If we consider a harmonic one-form as a
flow vector defined on each edge, we have the flow conservation
property at each vertex – what flows in equals what flows out. The
second property means that the integration of a harmonic one-form
along any face of G is zero, i.e., in the dual graph there are no
sources or sinks either.

With the help of a harmonic one-form we can easily test whether
two paths are homologous. In particular, we connect the two paths
α, β with the same starting and end positions as a cycle α − β
(with β in reverse direction). If the two paths are homologous, the
cycle encloses enclosing no holes/handles. By the definition of the



Figure 1. A planar graph G and its dual graph G̃. Each face of the graph
G corresponds to a vertex (shown as dark circles) in the dual graph.

harmonic one-form, if we integrate the weights of the edges along
the cycle in clockwise order, the integration must be zero. This
represents an extremely simple homology test, by using only the
knowledge of the harmonic one-form, which can be locally stored
on the edges of the network. The communication cost is propor-
tional to the total length of the paths. This is the minimum possible
as an algorithm must at least read in the input.

Computing the harmonic forms for homotopy testing is done in
a preprocessing phase, using Hodge decomposition to be explained
next.

Hodge Decomposition. We assume that the sensors can locally
extract a planar graph G from the communication graph. The ex-
tracted graph G stays on an unknown surface Σ where faces that
correspond to holes (i.e., boundaries) are marked. Notice that Σ
may have no boundaries. Distributed algorithms that planarize a
connectivity graph in wireless networks [9, 10, 16] and identify
boundaries [3, 4, 6–8, 12, 14, 17, 18] have been extensively stud-
ied in the past few years. If the sensors are densely deployed in
the domain, the holes in the sensor network naturally correspond to
obstacles that forbid sensor deployment.

To compute a harmonic one-form, we first create an arbitrary
one-form ω, say by randomly assigning weights on the edges of
the graph G. This one-form is by no means harmonic. The the-
ory of Hodge decomposition says that for any one-form, we can
decompose it into three components: ω = α+ β + γ, where

1. γ is a harmonic one-form, it is divergence-free and curl-free;

2. α is a gradient flow, i.e., there is a potential function f de-
fined on the vertices of G such that α(u, v) = f(u)− f(v).
A gradient flow is curl-free; and

3. β is a curl flow, i.e., the gradient flow in the dual graph. There
is a potential function η defined on faces such that β(u, v) =
η(x) − η(y), where x/y is the face to the right/left of edge
uv. A curl-free is divergence-free.

The Hodge decomposition basically says that if we take out the
gradient flow and curl flow that contribute to having sources/sinks
and curls in the flow, we are left with a harmonic one-form. In
this paper we develop a purely decentralized algorithm that runs in
iterative, gossip style operations that solve for the two components
α, β. After we subtract them from the one-form ω we obtain one
harmonic one-form.

Trajectory Classification. The harmonic one-form is closely re-
lated to the topology of the domain, i.e., the number of holes, k. In
particular, the family of harmonic one-forms only has dimension k.
By running the Hodge decomposition multiple times with different
random initial values and testing whether the harmonic forms are
linear dependent on each other – an operation that each sensor can
individually test – we can find k independent harmonic one-forms
as the harmonic one-form basis Ω = {ω1, ω2, · · · , ωk}. Each tra-

jectory P is represented as (s, t, h(P )), where h(P ) is a vector of
dimension k containing the integration of all k one-forms along P .

For the application of testing whether two trajectories P1, P2 are
homologous, we simply check if their representations are the same.
We note that our method is purely combinatorial – no location in-
formation is needed beyond having the network represented by a
combinatorial triangulated domain. This nice property is shared by
the algorithm by Ghrist [11] which uses winding number and angle
measurements to test whether a point is inside a cycle. Our method
is also purely decentralized. All the network nodes run the same
set of codes and none of them does anything special.

3. EVALUATION
In this section, we evaluate our path homology detection algo-

rithm under two real world data. Firstly, we test our algorithm with
random generated trajectories on the floor plan of a gallery. Sec-
ondly, we analysis the taxi trajectories collected in Shenzhen City,
China, and classify them into different categories.

3.1 Trajectories in Gallery

(a) (b)
Figure 2. A demonstration of trajectories of three different homology
types in a museum. Trajectories with the same homology travel rooms with
the same sequence and go through the same direction of the walls. Trajec-
tories with same homology are labeled with the same color.

We first choose the domain to be the floor plan of a museum,
as shown in Fig. 2. In this domain, we uniformly distribute 3625
nodes with average degree of 5.565; the domain (museum) is sep-
arated by obstacles (walls) into 15 rooms, entrance and exit are
marked as circle and triangle, respectively.

To test the ability of detecting trajectories with different homol-
ogy types, random trajectories are generated in a two level manner.
We first decide room sequences to walk through, then construct the
trajectories based on the room sequences. For the first level, we
treat each room in the domain as a node, and connect two room
nodes if they share the same door. In this way, the domain is con-
verted into a topology graph. The walk through room sequences
are randomly chosen from the entrance to the exit. For the second
level, we randomly choose a point for each room in the sequence
as intermediate node to pass through, then connect these nodes in
order with shortest paths.

Fig. 2 shows different trajectories with three different homology
types grouped by our algorithm. In this figure, sample trajectories
enter the domain from the red circle and exit from the red triangle.
Trajectories with the same homology type imply that they all pass
through the obstacle with the same order and same direction. In
this museum example, our algorithm is able to differentiate all 32
possible different homology trajectories (5 obstacles with 25 possi-
bilities for simple path).

3.2 Taxi Trajectories in Shenzhen



Table 1. Taxi data in Shenzhen
Trajectory Data Before Processing

longitude latitude #traj. sample points
111.92∼ 116.76 21.52∼ 23.47 9386 288

Trajectory Data After Processing
longitude latitude #traj. avg. pts per traj.

114.11∼ 114.14 22.54 ∼ 22.57 243 21.6

The taxi trajectory data are collected from 9386 taxies in Shen-
zhen, sampled per 5 minutes during one day. To simplify our data,
we choose a small district of this city with sample points that tra-
jectories passed by as the sample area. The sample data description
is illustrated in Table 1.

We choose two frequent visited locations as source and destina-
tion points, marked as circle and triangle in Fig. 3. Among all the
trajectories, we only choose the ones that going through the source
and destination in this analysis. In total, we choose 243 trajecto-
ries, and each trajectory is represented by the combination of the
shortest path between the sampled points.

In this domain, we marked 7 areas surrounded by main roads as
holes in the experiment, shown in Fig. 3. The trajectories of all
taxies are plotted in Fig. 4, with line width representing the num-
ber of taxies passing through. Notice that the trajectories of taxis
have their specific characteristics. Intuitively, the trajectory of a
taxi consists of two types of segments: with customers and without
customers. The segment of the trajectory from the location where a
customer is picked up to the respective destination is likely to fol-
low a near shortest path. The segment for which the taxi carries no
customers is possibly more random and may have loops or detours.
This assumption matches with what we observed from the data –
the trajectory from our chosen source to destination could deviate
a lot from the shortest path.

Figure 3. The holes are plotted on the real map. The source and
destination are marked as circle and triangle, respectively.

(a) 4 trajectories with dif-
ferent homology types

(b) Trajectory flow

Figure 4. In Figure 4(a), 4 trajectories of different homology types are
plotted. In Figure 4(b), all trajectories are plotted as a flow where the width
represents the number of taxies going through the path.
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