Lecture 17. Implicit function theorem; Tangent space; Lagrange multiplier Let $g: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^m$ continuous differentiable. $(x,y) = (x_1, ..., x_n, y_1, ..., y_m)$ Our goal is to construct $\varphi: \mathbb{R}^n \to \mathbb{R}^m$. s.t. the graph of φ $\{(x, y(x))\}$ is precisely the set $\{(x, y): g(x, y) = 0\}$ not always possible (e.g. $s' = f(x,y): x^2 + y^2 = 1$). Fix (a,b). s.t.g(a,b)=0, then ask for a φ that works near (a,b). Implicit function theorem: Let $g: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^m \in C'$. g(a,b) = 0If Dyf(a,b), i.e. the Jaeobian matrix ($\frac{\partial ji}{\partial yj}$) is invertible at (a,b). Then 3 open a EUER" pen bEVER" and $\varphi: U \rightarrow V \in C'$ s.t. $\varphi(\alpha) = b$ and $(x, y) \in U \times V$. g(x, y) = 0 iff $x \in U$. $y = \varphi(x)$. Moreover, $D\varphi(x) = -(D_y \varphi(x, y)) D_x \varphi(x, y) W_{mxm} D_x \varphi(x, y) W_{mxl} \forall x \in U$. A simple example: $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$. $(x, y) \to y$. Then $U = \mathbb{R}^n$. $V = \mathbb{R}^m$. $\varphi \colon \mathbb{R}^n \to \mathbb{R}^m$. $\chi \to 0$. Submanifold version of implicit function theorem: let M= \(\lambda(x,y): \(\gamma(x,y) = 0 \) If the derivative of g is "mondegenerate". Then $Y(x,y) \in M$. locally M is the graph of $y = \varphi(x)$ for some $\varphi \in C'$. So M is a submanifold.

In fact. let g: 2 -> IRM is continuous differentiable. I = IRM. open. VCERM. the inverse image of C fxERMM: g(x) = c] is a Submanifold of codin = m if $\forall x \in g^{\dagger}cc$. rank Dg(x) = m. x is called regular point if rank Dg(x) = m. and critical point otherwise. Compared with linear algebra: $\{x \in \mathbb{R}^n : Ax = 0\}$ is a linear subspace of din n-m iff rank A = m. we need $\nabla f^{T}(\chi + \chi) = 0$. We now develop differential calculus on submanifolds. Recall that of is a linear operator to approximate f at a point. so we need linear space. Tangent space: M is a differentiable submanifold. PEMEIR" $\gamma \in C': (-\varepsilon, \varepsilon) \rightarrow \mathbb{R}'$ $t \rightarrow \gamma(t)$ where $\gamma(\omega) = \gamma$. tangent vector of f at p is defined as $f(o) = \frac{d}{dt} f(t) = 0$. tangent space of M at p: $T_pM \stackrel{\triangle}{=} S_y(\omega) \in \mathbb{R}^n \mid y(\iota-\varepsilon, \varepsilon)) \subseteq M, y(\upsilon) = P$ Example: $M = \mathbb{R}^d \times \{0\}^{n-d} = \{(\chi_1, ..., \chi_d, 0, 0, ..., 0): \chi_i \in \mathbb{R}^d \}$ HP EM. TpM=Rd x soz^{n-d}, let χ; t→ p+(0,__,0,t,0,--,0). on the other hand $YY: t \rightarrow (Y,(t), -Y_d(t), 0, --, 0)$ $Y(0) \in \mathbb{R}^d \times \{0\}^m$ Remark: TpM not depending on p is a coincidence.

Consider $M = 5^2$. 2D-sphere.

TPM is the tangent plane at P.

Our goal is to define df, linear submanifold to approximate N given $f: M \to N$. $df(p): T_pM \to T_{f(p)}N$. T_pM linear subspace?

Charaeterization of TpM: (to show that TpM is a d-dim linear space)

 $G \supseteq open U \subseteq \mathbb{R}^n$. open $V \subseteq \mathbb{R}^n$. diffeomorphism $\overline{\Phi}: U \rightarrow V$. s.t. $P \in U$. and

 $\underline{\Phi}(U \cap M) = V \cap (IR^d \times fo_J^{n-d})$ then $\overline{T}_{pM} = (D\underline{\Phi})^{-1}|_{\underline{\Phi}(p)}(IR^d \times fo_J^{n-d})$.

@ assume M défined by zeros of n-d fi, -- fn-d E C! namely. Fopen U

s.t. peu. and $M = \{x \in U : f_1(x) = --- = f_{rad}(x) = 0\}$ and $\{x \in M : x \in$

 $\nabla f_1(x)$, ... $\nabla f_{n-d}(x)$ are linearly independent. (χ is a regular point).

then $T_p M = \bigcap_{k=1}^{n-d} \ker Df_i|_{x=p} = \ker Df_{|x=p|} f = (f_1, ..., f_{n-d}).$

Remark: in some materials. 3 is used to define tangent spaces. see [CZ]

Proof sketch: ① $|R^d \times So_3^{n-d} = T_{\overline{\Phi}(p)}\overline{\Phi}(M) = D\overline{\Phi}|_{\chi=p}(T_pM)$.

 $\textcircled{3} \forall v \in TpM. \exists \mathcal{Y}: (-\varepsilon, \varepsilon) \rightarrow M. \ \mathcal{Y}(o) = v. \Rightarrow f_i(\mathcal{Y}(t)) \equiv 0. \ \forall i.$

 $\Rightarrow \nabla f_i(p)^T(\gamma'(0)) = 0 \Rightarrow T_{pM} \subseteq \ker \mathcal{D}_{f_i} \quad \dim \bigwedge_{k=1}^{n-d} \ker \mathcal{D}_{f_i} \geqslant d. \Rightarrow$

Example: tangent space and normal vector.

nkerDfi = TpM.

```
Suppose M \subseteq \mathbb{R}^n is a (super)sphere defined by \{x \in \mathbb{R}^n : f(x) = 0\}
     f: \mathbb{R}^n \to \mathbb{R}^m \in C' \forall P = (\chi_1, \dots, \chi_n) \in M. T_PM = \ker \mathcal{D}f(P).
      TPM= {v ∈ R": <v, \fip)>=0}. \fip) is the normal vector of TPM
  Example: cylinder \{(x,y,z):f(x,y,z)=x^2+y^2-1=0\}
   \nabla f(p) = (2\chi, 2y, 0). \quad \nabla f(p) \perp \frac{(-\chi, y, 0)}{(0, 0, 1)}  so T_pM = Span \left\{ (-\chi, y, 0), (0, 0, 1) \right\}
 Mapping and différential on submanifolds:
 Smooth function (or C'function): M \subseteq \mathbb{R}^n. N \subseteq \mathbb{R}^m. f: M \to N.
D YPEM. ∃UER<sup>n</sup>. PEU. ∃C<sup>∞</sup> (or c') function F: U→ R<sup>m</sup>.
     s.t. flunm = Flunm (f is locally F restricted to M).
② \forall P \in M. \exists U \subseteq \mathbb{R}^n. P \in U. V \subseteq \mathbb{R}^n and diffeomorphism \overline{\Phi}: U \rightarrow V s.t. \overline{\Phi}(U \cap M) = V \cap (\mathbb{R}^d \times f \circ J^{n-d}). and f_{\overline{\Phi}} = f \circ \overline{\Phi} \in C^{\infty}(C^l).
     f_{\bar{\underline{\Phi}}}: V \cap (\mathbb{R}^d \times f_{\bar{\partial}})^{n \times d}) \longrightarrow \mathbb{R}^m. Then f \in C^{\infty}(\text{or } C')(M, N).
Remark: MCR". F: R" -> R" if F(M) CNCR". then.
     Frestricted to M: f=Flm: M-> N is a smooth mapping
Differential: f \in C(M,N). \forall p \in M. \exists y: (-\epsilon, \epsilon) \rightarrow \mathbb{R}^n. \forall \omega = p. \forall \omega = v.
 tangent vector df(p)(v) = \frac{d}{dt}|_{t=0} f(y(t)) \in T_{f(p)}N. df(p): T_pM \rightarrow T_{f(p)}N
```

Example: If f = F/M. then off(p) is DF(p): R" -> R" restricted to TpM. Proposition: $f \in C^{\infty}(\text{or }C')(M,N)$, $df(p): T_{pM} \rightarrow T_{fip}N$ is linear operator. The key lemma (first order condition for optimality on submanifolds). Suppose $M \subseteq IR^n$ is a submanifold. $f \in C'(M)$. P is a local extreme point of f. PEM. Then offip) = 0. Proof. By definition it suffices to show that $\forall v \in TpM$. $\nabla_v f(p) = 0$ Here we define $\nabla u f(p) = \frac{d}{dt}|_{t=0} f(\gamma(t))$ where $\gamma(\omega) = p$ and $\gamma(\omega) = V$. Now we consider $\gamma: (-\varepsilon, \varepsilon) \rightarrow M$. $t \rightarrow \gamma(t)$. $\gamma(x) = p$ and $\gamma(x) = v$. Since p is a local minimum point of f(x(t)) =0. => Trf(p) >0. TpM is a linear subspace => -v & TpM. $\Rightarrow -\nabla_{\nu}f(p) > 0 \Rightarrow \nabla_{\nu}f(p) = 0, \forall \nu \in T_{pM}.$ min fix) Lagrange muttiplier: Let f: R' > IR. g: R" > R". opt. s.t. g(x) = 0Suppose f. g E C. and x* is an optimal solution. If x* is regular ci.e. rank $Dg(x^*)=m$). Then \exists unique λ^* . s.t. $\nabla L(x^*, \lambda^*)=0$. Lagrangian. Proof. $\forall v. df(x^*)(v) = \nabla_v f(x^*) = 0. \Rightarrow T_p M \subseteq \ker df(x^*). T_p M = \ker dg.$ \Rightarrow ker df(x^*) \supseteq ker dg(x^*). i.e. $\exists \lambda^*$. $df(x^*) = \lambda^*$, $dg(x^*) + \cdots + \lambda^*$ $dg(x^*)$.