Lecture 18. Lagrange multiplier method; Newton's method.
Lagrange multiplier: Let
$$f: \mathbb{R}^n \to \mathbb{R}$$
. $g: \mathbb{R}^n \to \mathbb{R}^m$. opt. $\inf_{st. g(\infty)=0}$.
Suppose $f. g \in C'$ and χ^* is an optimal solution. If χ^* is regular
(i.e. rank $Dg(\chi^*)=m$). Then \exists unique χ^* . s.t. $\nabla L(\chi^*, \chi^*)=0$. Lagrangian.
Proof. $\forall v. df(\chi^*)(v) = \nabla_v f(\chi^*)=0. \Rightarrow TpM \leq \ker df(\chi^*)$. $TpM = \ker dg$
 $\Rightarrow \ker df(\chi^*) \supseteq \ker dg(\chi^*)$. i.e. $\exists \chi^*$. $df(\chi^*) = \chi^* dg(\chi^*) + \dots + \chi^*_m dg(\chi^*)$
We start from the explicit proof for linear constraints (affine g).
Never the key ingredients are $\nabla f(\chi^*)^T(\chi - \chi^*) = 0$ and $Dg^T(\chi - \chi^*) = 0$
However. if M defined by zero points is a general set. they're wrong
Roughly. $\nabla f(\chi^*)^T v = 0$ if v is a tangent vector. So we should
develop a kind of differential on a particular structer. The idea is
to relax \mathbb{R}^n to keep only local properties. which is submanifolds.
Then we formally define (differentiable) submanifolds and develop

Implicit function theorem tells us when we can obtain $y=\overline{\Psi}(x)$

given g(x, y) = 0. That's the modern formulation of Lagrange multiplier.

Assume
$$\chi^*$$
 is a regular point. the recessary conditions are:
 $\exists \lambda^* = (\lambda_{1,...,\lambda_m})^T \in \mathbb{R}^m$. $\nabla f(\chi^*) = (\lambda^*)^T Dg(\chi^*)$ and $g(\chi^*) = p$.
Define Lagrangian $L(\chi, \lambda) = f(\chi) - \lambda^T g(\chi^*)$. so we have
 $\nabla_{\chi} L(\chi, \lambda) = \nabla f(\chi) - \lambda^T Dg(\chi)$. $\nabla_{\chi} L(\chi, \lambda) = g(\chi)$.
Finally. χ^* optimal and regular $\Rightarrow \nabla L(\chi^*, \lambda^*) = 0$. $(\min_{\chi, \lambda} L)$
Remark: we should remaind the dual of LP here. where each
constraint is given a multiplier. Consider the strong duality.
Primal. min $c^T \chi$. s.t. $A\chi = b$. Dual: max $\chi^T b$. s.t. $\chi^T A = c^T$.
Lagrange multiplier: $L(\chi, \chi) = c^T \chi - \chi^T (A\chi - b)$.
 $\nabla_{\chi} L(\chi, \chi) = c^T - \sqrt{T}A$. $\nabla_{\chi} L(\chi, \chi) = A\chi - b$. $\nabla L = 0$ if $A\chi = b$.
Strong duality of LP : χ^* optimal if $\exists \chi^*$. s.t. $\sqrt{T}A = c^T$.
Lagrange nultiplier is a necessary condition. Is it sufficient?
 $\chi_{L}(\chi, \chi) = c^T - \sqrt{T}A$. $\nabla_{\chi} L(\chi, \chi) = \lambda - \lambda$. $\chi(\chi, +\chi_{-1})$.
 $\chi_{L}(\chi, \lambda) = \chi_1^2 + \chi_2^2$. s.t. $\chi_1 + \chi_2 = 1$.
 $L(\chi, \lambda) = \chi_1^2 + \chi_2^2 - \lambda(\chi, +\chi_{-1})$.
 $\chi_{L=0} \iff \int_{\chi_1 + \chi_2}^{L=\chi_1 + \chi_2} = \chi_{-1} = 0$.
min $\chi_1 + \chi_2$. s.t. $\chi_1^2 + \chi_2^2 = \frac{1}{4}$. $\nabla L = 0 \iff \int_{\chi_1 - 2\lambda_1 = 0}^{L-\chi_1 + \chi_2} = \frac{1}{4}$.

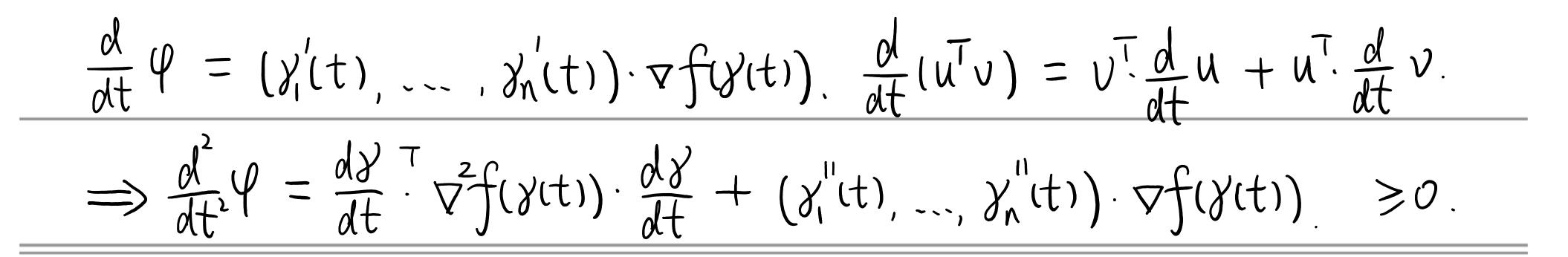
Consider f convex and g affine. Assume
$$\exists (x^*, \lambda^*) \nabla L(x^*, \lambda^*) = 0$$

•

Define
$$\hat{\mathcal{L}}(\chi) = \mathcal{L}(\chi, \chi^*) = f(\chi) - \lambda^* g(\chi)$$
. convex. note $\nabla \hat{\mathcal{L}}(\chi^*) = 0$.
 $\implies \chi^* = \operatorname{argmin}_{\chi} \hat{\mathcal{L}}(\chi)$. $\forall feasible \chi, f(\chi) = \hat{\mathcal{L}}(\chi)$. so $\chi^* = \operatorname{argmin}_{g(\chi) = 0} f(\chi)$.

Second-order optimality condition:
$$\forall v \in IpM$$
. $v \cdot \nabla f(p) \quad v \geq 0$?
Consider $f = \chi_1^2 + \chi_2^2$. s.t. $(\chi_1 - 2)^2 + \chi_2^2 = 1$. $\chi^* = (1, 0)^T$. $\nabla^2 f = (\frac{2}{0})^2$
 $T_{\chi^*}M = t(-2, 0)^T$ $t \in IR$. $v^T \nabla^2 f \cdot v = 8t^2$. But if $f = -(\chi_1^2 + \chi_2^2)$?
Why? note that if $v \in TpM$. $p + v$ may not in M . So Taylor is not
an approximation. but an (approximate) upper/lower bound. (verisit when kKT)
Let $\gamma: (-\varepsilon, \varepsilon) \to M \in C^2$ be a curve on M . $\gamma(\omega) = P$. $\gamma(0) = v$.
If p is a local minimum of f . then v is a local min of $f \cdot \gamma$.

 $\varphi = f \circ \gamma : (-\xi, \xi) \rightarrow R \Rightarrow \gamma'(0) \ge 0$ By chain rule.



Note that by the first-order condition
$$\nabla f(x^*) = \sum_{i=1}^{\infty} \lambda_i^* \nabla g_i(x^*)$$

 $\frac{d^2}{dt} (g_i \circ Y) \equiv 0$. so $v^T \nabla^2 f(x^*) v - \sum_{i=1}^{\infty} \lambda_i^* v^T \nabla g_i(x^*) v \geq 0$.
Second-order necessary condition: min fix. s.t. $g(x) = 0$. (M).
If x^* is a regular point. then $\exists \lambda^*$. s.t. $\int \nabla L(x^*, \lambda^*) = 0$.
Sufficient condition: if x^* is a regular point. $\exists \lambda^*$. s.t.
 $\nabla L(x^*, \lambda^*) = 0$. $\forall v \in T_{a^*}M$. $v \neq 0$. $v^T \nabla_{x}L(x^*, \lambda^*) v \geq 0$. ?
Example. min $x^T \alpha x$. s.t. $x^T x = 1$. $\Omega = \text{diag} f^2$, 1]. (Aw).
Equality constrained (convex) quadratic optimization problem.
min $\frac{1}{2}x^T \alpha x + w^T x$. $\Omega \geq 0$. s.t. $Ax = b$.
Lagrangian $L(x, \lambda) = \frac{1}{2}x^T \alpha x + w^T x - \lambda^T (Ax - b)$.
Lagrangian $L(x, \lambda) = (-w)$ KKT Matrix. Block Gaussian elimination.
row $2 \ll A(Q^T row 1 - row 2$. (0, $A(Q^T A^T) (-\lambda^*) = b + A(Q^T w)$

$$\implies \lambda = (A (A')) (b + A (A')) (Q x - A A = -W)$$

$$\Rightarrow \chi = -Q'w + Q'A'(AQ'A')'(b + AQ'w) \text{ provided } = (AQ'A')'$$

If Q invertible
$$(Q > 0)$$
, and columns of A^T linearly independent. done

$$rank(A) = m$$
.

$$\begin{array}{c} & \operatorname{rank}(A) = m. \\ \exists \operatorname{unique} \operatorname{solution} (X^*, X^*), \operatorname{nullspace}. \\ \hline \\ 0 & \ker(A) \cap \ker(A) = fo^{3}, \ \\ Q \text{ and } A \text{ have no nontrivial common kernel.} \\ \hline \\ \hline \\ 0 & \operatorname{ker}(A) \cap \ker(A) = fo^{3}, \ \\ Q \text{ and } A \text{ have no nontrivial common kernel.} \\ \hline \\ \hline \\ 0 & A \chi = 0, \ \chi \neq 0 \Rightarrow \chi^{T} Q \chi > 0, \ \\ Q > 0 \text{ on } \ker(A). \\ \hline \\ \hline \\ 0 & F^{T} Q F > 0 \text{ for } \forall F \in \mathbb{R}^{n \times (n+m)}, \text{ s.t. } \operatorname{Im}(F) = \int F v : v \in \mathbb{R}^{n+m} \right] = \operatorname{ker}(A). \\ \hline \\ \hline \\ \hline \\ Prrof. " \Rightarrow ". if \quad o \neq \chi \in \operatorname{ker}(A) + \operatorname{ker}(A). \quad \begin{pmatrix} Q & A^{T} \\ A & O \end{pmatrix} \begin{pmatrix} \chi \\ 0 \end{pmatrix} = 0. \\ \hline \\ 1 \Rightarrow 2^{"}, \ A \chi = 0, \ \chi \neq 0 \Rightarrow Q \chi \neq 0. \ \\ \operatorname{lemma:} \ Q \geq 0, \ Q \chi = 0 \text{ iff } \overline{\chi} \overline{Q} \chi = 0. \\ \hline \\ Q = U \wedge U^{T}, \ Q = \sum_{i=1}^{n} \xi_{i} u_{i} u_{i}^{T}, \ \\ \xi_{i} \geq 0. \Rightarrow \chi^{T} Q \chi = 2 \text{ order } ff \overline{\chi} \overline{Q} \chi = 0. \\ \hline \\ \chi^{T} Q \chi = 0 \Rightarrow u_{i}^{T} \chi = 0 \text{ if } \xi_{i} > 0. \Rightarrow Q \chi = \sum_{i=1}^{n} u_{i} (\xi_{i} u_{i}^{T} \chi) = 0. \\ \hline \\ \psi^{T} Q \chi = 0 \Rightarrow u_{i}^{T} \chi = 0 \text{ if } \xi_{i} > 0. \Rightarrow Q \chi = \sum_{i=1}^{n} u_{i} (\xi_{i} u_{i}^{T} \chi) = 0. \\ \hline \\ \psi^{T} Q v = v^{T} (-A^{T} w) = - (Av)^{T} w = 0. \text{ contradicts if } Av = 0. v \neq 0. \\ \hline \\ Q v + A^{T} w = 0 \Rightarrow A^{T} w = 0. \text{ contradicts rank} A) = m \text{ if } w \neq 0. \\ \hline \\ \hline \\ 1 = \chi = 3^{"}, \quad \ \\ Im (F) = \ker(A), \ v \neq y \in \ker(A) \iff \exists \chi \neq 0, y = F \chi. \square. \\ \hline \\ \hline \\ 1 = K KT \text{ system unsolvable} \Rightarrow QP \text{ is infeasible or unbounded below.} \end{array}$$