Lecture 19. Newton's method. KKT condition for ICP.
Recall Newton's method. min $\hat{f}(x_k + d) = f(x_k) + \nabla f(x_k)^T d + \frac{1}{2} d^T \vec{f}(x_k) d$
Apply to equality constrained problems: min $f(x_k+d)$, s.t. $Ad=0$
KKT system for this quadratic problem is: $(\nabla^2 f_{(X_k)} A^T)(d) = (-\nabla f_{(X$
Newton's method for equality constrained problem: select x_0 , s.t. $Ax_0 = b$
repeat. compute d by solving KKT. $(A \cap A^T)(A) = (-\nabla f(x_k))$
(note if $A=0$. then $d=-(\nabla^2 f(x_k))^T \nabla f(x_k)$. exactly the same as before
(again use backtracking line search). $t \leftarrow initial$ to (usually to=1)
while $f(x_k + td) > f(x_k) + \alpha t \nabla f(x_k)^T d do t \leftarrow \beta t$.
$\chi_{k+1} \leftarrow \chi_k + td$. until $ \nabla f(\chi_k) \leq \delta$? $d^T \nabla^2 f(\chi_k) d \leq \delta^2$.
Note it is a feasible descent method. since all xx are feasible.
and $f(x_{k+1}) < f(x_k)$ unless x_k is optimal. (why?)
$\nabla^2 f(\chi) d - A^{T} \lambda = -\nabla f(\chi_k) = -\nabla f(\chi_k)^{T} d$ $Ad = 0$ $\nabla^2 f(\chi_k) d - d^{T} \lambda = -\nabla f(\chi_k)^{T} d$ $\nabla^2 f(\chi_k) \geq 0$ $\nabla^2 f(\chi_k) \geq 0$
By second-order Tayor, $f(x_k+td) \approx f(x_k) + t \nabla f(x_k)^T d + \frac{t^2}{2} d \nabla^2 f(x_k) d - \nabla f(x_k)^T d$

Moreover, $d^T \supset f(x_k) d \ge \lambda_{min} d^T d$. so $\frac{t^2}{2} d^T \supset f(x_k) d + o(t^2 d^T d) > (1-x) t \supset f(x_k)^T d$ V sufficiently small t.

So if d'xf(x) d < S. Newton's method hatts. o.w. backtracking hatts. If $d^T \gamma^2 f(x_k) d = 0$. $\gamma^2 f(x_k) d - A^T \lambda = -\gamma f(x_k)$, we claim $\gamma^2 f(x_k) d = 0$. Proof. if Q≥0. Q=U^TΛU. Λ=diag {ξ₁,...ξ_n}. U= {u₁....u_n}. $d^TQd = d^T(Z\xi_i u_i u_i^T)d = Z\xi_i (u_i^Td)^T(u_i^Td) = Z\xi_i (u_i^Td)^T.$ $d^{T}Qd=0 \Rightarrow \forall i, \xi_{i}=0 \text{ or } u_{i}^{T}d=0 \Rightarrow Qd=\overline{2}\xi_{i}u_{i}u_{i}^{T}d=0$ Note $Ax = \begin{pmatrix} a_1'x \\ a_{m}'x \end{pmatrix}$. $A\lambda = (a_1, ..., a_m)\lambda = \lambda \lambda$ in $\lambda = \lambda$ in Lagrange condition for min fix), s.t. Ax = b. so x_k is optimal. Implementation: Gaussian elimination, assume KKT matrix nonsingular. (1) o ker(a) 1 ker(A) = fog. and A have no nontrivial common kernel. 3 o $F^TQF > 0$ for $\forall F \in \mathbb{R}^{n \times (n-m)}$. s.t. $Im(F) = \int Fv : v \in \mathbb{R}^{n-m} = \ker(A)$ Proof." \Rightarrow " if $0 \neq \chi \in \ker(Q) \cap \ker(A)$. $\begin{pmatrix} Q & A' \\ A & O \end{pmatrix} \begin{pmatrix} \chi \\ 0 \end{pmatrix} = 0$. "| \Rightarrow 2". Ax=0, $x\neq 0$ \Rightarrow $Qx\neq 0$, but xQx=0 \Rightarrow Qx=0"=". Assume (Q A')(v) = 0, need to show v = w = 0. $v^TQv = v^T(-A^Tw) = -(Av)^Tw = 0$ contradicts if Av = 0, $v \neq 0$. $Qv + A^Tw = 0 \implies A^Tw = 0$ contradicts rank (A) = m if $w \neq 0$.

"2 => 3" Im(F) = ker(A) $0 \neq y \in ker(A)$ => $\exists x \neq 0 y = Fx . \square$ Example. min $f(x) = \chi_1^2 + \chi_2^2$. s.t. $\chi_1 + \chi_2 = 1$. start: $(1,0)^T$ KKT system $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix} \Rightarrow (d_1, d_2, \lambda) = \begin{pmatrix} -\frac{1}{2}, \frac{1}{2}, 0 \end{pmatrix}$ set step size t=1/2 next iteration: $(1,0)+t(d,d_2)^T={3/4\choose 1/4}$ Example. min $f(x) = \chi_1^2$ s.t. $\chi_1 + 2\chi_2 = b$. start: $(b, 0)^T$ KKT system $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ -\lambda \end{pmatrix} = \begin{pmatrix} -2b \\ 0 \\ 0 \end{pmatrix} \Rightarrow (d_1, d_2, \lambda) = (-b, \frac{b}{2}, 0)$ $ker(\nabla^2 f) = r(0,1) relR | ker(A) = t(-2,1) telR | F = (-2,1)$ Convergence analysis: companision to unconstrained cases. feasible solution set $X = \{x : Ax = b\} = \{x : Ax = b\} = \{x : Z \in \mathbb{R}^n\}$ min f(x). S.t. $Ax = b \iff min f(z) = f(x + Fz)$ $y_{\beta}(z) = F^{T} \nabla f(Fz + \hat{\chi})$. $\nabla_{\beta}(z) = F^{T} \nabla^{2} f(Fz + \hat{\chi}) F$. Apply Newton. $Z_{k+1} = Z_k - t(\nabla^2 g(Z_k))^T \nabla g(Z_k)$. We show by induction $X_k = F Z_k + \widetilde{X}$. let $dx_k . dz_k$ be the descent direction s.t. $z_{k+1} = z_k + t dz_k$ $\exists dz_k \text{ if } \exists (\vec{z}_{S}(\vec{z}_k))^{\intercal} \text{ if } \vec{z}_{S}(\vec{z}_k) > 0 \text{ if } kKT \text{ nonsingular } \Rightarrow \exists dx_k$ Note $Adx_k = 0$ and $Im(\overline{F}) = ker(A)$. $\iff \exists u \in \mathbb{R}^{n-m} dx_k = \overline{F}u$. Moreover. $\nabla^2 f(\chi_k) d\chi_k - A'\lambda = -\nabla f(\chi_k)$, so $\nabla^2 f(\chi_k) F_U - A'\lambda = -\nabla f(\chi_k)$.

```
Multiply (left) by FT on both sides. FT of (xx) Fu + (AF) ] = - FT of (xk).
 ker(A) = Im(F) \Rightarrow AF = 0 (why?). \forall x \in \mathbb{R}^{n-m} AFx = 0.
 So F^{T} \circ f(x_k) F_{u} = -F^{T} \circ f(x_k) \Rightarrow u = -(\nabla^2 g(x_k))^{T} \circ g(x_k) = dx_k
 dx_k = Fu = Fdz_k \Rightarrow x_{k+1} = x_k + tdx_k = Fz_k + x_k + tFdz_k = Fz_{k+1} + x_k
Recall the convergence result of unconstrained backtracking Newton:
without backtracking: if f is m-strongly convex, of is M-Lipschitz.
        then \|\chi_{k+1} - \chi^{*}\| \leq \frac{M}{2m} \|\chi_{k} - \chi^{*}\|^{2}. \forall f \text{ is } M-\text{smooth.}
with backtracking: further assume f is L-smooth. Then global comergence.
        let \eta = \min \{1, 3(1-2\alpha)\} m^2/M. \gamma = 2\alpha(1-\alpha)\beta \eta^2 m/L.
           if \|\nabla f(\chi_k)\| \le \eta f(\chi_k + d_k) \le f(\chi_k) + \alpha \nabla f(\chi_k) d. t_k = 1
          then \|\chi_{k+1} - \chi^*\| \leq \frac{M}{2m} \|\chi_k - \chi^*\|^2. f(\chi_k) - f(\chi^*) \leq \frac{M}{2} \|\chi_k - \chi^*\|^2
           If ||\nabla f(x_k)|| > \eta backtracking quarantees f(x_k) - f(x_{k+1}) \ge \delta.
       overall. let ke be the smallest k that ||xf(x_k)|| \leq \eta
         f(\chi_{k}) - f(\chi^{*}) \leq \int_{2m^{3}}^{5} f(\chi_{0}) - f(\chi^{*}) - ky \qquad k \leq k_{0}
\frac{2m^{3}}{4n^{2}} (1/2)^{2k-k_{0}+1} \qquad k > k_{0}.
      To get f(x_k) - f(x^k) \le \varepsilon. it suffices to run
                    \frac{1}{\sqrt{f(x_0)-f(x^*)}} + \log \log 2m^3/m^2 \epsilon  steps.
```

Inequality constrained optimization. min f(x). s.t. g(x) = 0Again, our first task is to determine whether a given xx is optimal. If $h(x^*) = 0$. the j-th inequality constraint $h(x) \le 0$ is called active. otherwise called inactive. $(h_j(x^*) < 0)$. Denote $J(x) = \{j: h_j(x) = 0\}$. If x* is a local minimum of original problem. it is also a local minimum of min fix). S.t. g(x) = 0. $\forall i, h_i(x) = 0$. $\forall j \in J(x^*)$. Apply Lagrange condition. $\exists \lambda^*, \mu^*, \text{ s.t. } \forall f + \sum_{i=1}^{m} \lambda_i^* \forall g_i + \sum_{i=1}^{m} \mu_i^* \forall g_i = 0$ Then we set $M_j = 0$ for inactive $j \notin J(\chi^*)$. $f + \sum_{i=1}^{m} \lambda_i^* \nabla g_i + \sum_{i=1}^{m} M_j^* \nabla h_j = 0$. Is this enough? Consider the example. Min $\chi_1 + \chi_2$ s.t. $\chi_1^2 + \chi_2^2 \le 2$. $(1,1)^{T} + 2\lambda(\chi_{1},\chi_{2})^{T} = 0$ $\chi_{1}^{2} + \chi_{2}^{2} = 2 \Rightarrow \chi_{1} = \chi_{2} = 1$. If the constraint is equality then we cannot distinguish these two cases by first-order condition. - This is the direction to the interior of the But now.... feasible set, but $-\sqrt{f(x^*)}$ should be the direction to the outside. $\Rightarrow \mu_j^* > 0$ iff $j \in J(\chi^*)$. (why this is also true for > 1 constraints?). Note that $j \in J(x^*)$ iff $h_j(x^*) = 0$. 0. $u_j^* = 0$. so. $\mu_j^* h_j(x^*) = 0$.

Now we have the Karush-Kuhn-Tucker (KKT) condition.
Theorem. If x^* is a local minimum point of ICP and also a regula
point for active constraints. Hhen I Lagrange/KKT multipliers.
λ,*,, λm, μ,*,, μ,* such that the following KKT holds.
1. $\nabla f(x^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(x^*) + \sum_{j=1}^{k} \mu_j^* \nabla h_j(x^*) = 0$.
2. $M_j^* \ge 0$. $\forall j = 1,, k$. $3. M_j^* M_j(x^*) = 0$. $\forall j = 1,, k$.
Comparison to LP. min c^Tx . s.t. $A_1x = b_1$. $A_2x \leq b_2$.
KKT condition: $\exists \lambda^*, \mu^*, s.t. c + A_1^T \lambda^* + A_2^T \mu^* = 0.$
$\mu_{\tilde{j}}^{*} \geq 0$ and $(A_{2}\chi^{*}-b)^{T}\mu^{*}=0$. $(\mu_{\tilde{j}}^{*}\cdot(a_{2j}^{T}\chi-b_{\tilde{j}})=0)$.
Duality of LP: min $(y_1, y_2) \cdot (b_1, b_2)^T$ s.t. $y_1^T A_1 + y_2^T A_2 = -c^T$
complementary slackness for $LP: (\chi^*, y^*)$ is optimal, $y \ge 0$.
for primal and dual res. Iff. $y^{T}(b-Ax) = 0$ and $x^{T}(A^{T}y-c) = 0$
either $y_i = 0$ or $(Ax)_i = bi$ $y_2^T (A_2 x - b) = 0.$
So condition 3 is called complementary slackness for KKT.
KKT is named after Harold W. Kuhn and Albert W. Tucker (1951,
published), but later found in master thesis of William Kanush (1939) unpublished.