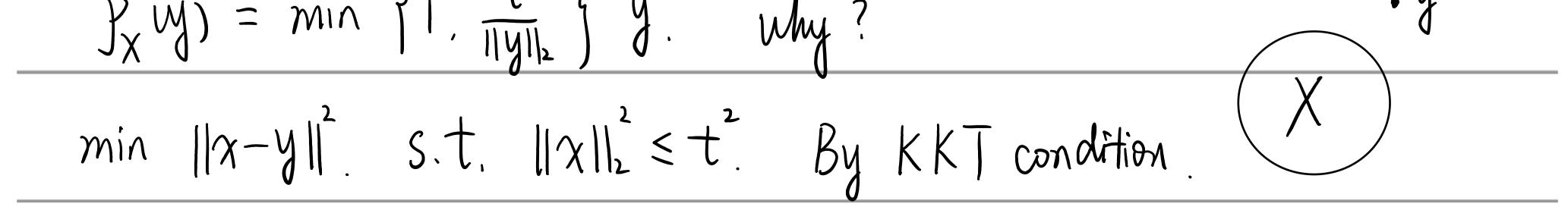
Lecture 22. Projected gradient descent; intro to IPM.
Recall the gradient descent method:
$$\chi_{k+1} = \chi_k + t_k d_k = \nabla f(\chi_k)$$

Now we consider min f(x).
If $\chi_k - t \nabla f(\chi_k)$ is infeasible.
Project it onto X.
Projection operator: $P_X(y) = \arg (mh) || x - y||$.
Projected gradient descent : $\chi_{k+1} = \chi_k - P_X(\chi_k - t \nabla f(\chi_k))$
In general. projection is an optimization which is hard to solve.
Here we discuss some examples where projection can be efficiently computed
Example. Box constraints. $X = f x: hx ||_x \le t$ (ridge regression)
Example L_2 constraints. $X = f x: hx ||_x \le t$ (ridge regression)
Due is $f_1 = \chi_1$ and f_2 in the first is the



$$\exists \mu \ge 0 \quad s.t, \quad \ge (\chi - y) + 2\mu\chi \ge 0, \quad \Rightarrow \quad \forall = (1 + \mu)\chi \quad oc \; \chi,$$
$$\mu(||\chi||^2 - t) \ge 0, \quad \text{either } \mu = 0 \text{ or } ||\chi||_2 = t.$$

Example. Affine constraints.
$$\chi = \{\chi : A\chi = b\}$$
. $A \in IR^{man}$ rank = m.
min $||\chi - y||^2$. s.t. $A\chi = b$. By Lagrange
 $\exists \lambda$ s.t. $2(\chi - y) + A^T \lambda = 0 \Rightarrow \chi = y - \frac{1}{2}A^T \lambda$
Since $A\chi = b$. $Ay - \frac{1}{2}AA^T \lambda = b \Rightarrow$
 $\lambda = 2(AA^T)^T(Ay - b) \Rightarrow P_X w_y) = y - A^T(AA^T)^T(Ay - b)$.
Example: l_1 constraints. $\chi = \{\chi : ||\chi||_1 \le t\}$ (lasso).
The closed form. but can be computed efficiently.
 By symmetry. only need to consider $y \ge 0$.
 χ
 $M_1 = \chi - y|I^2$. s.t. $\Sigma\chi_1 \le t$. $\chi_1 \ge 0$ ψ_1 .
By KKT conditions. $\exists \mu_0, \mu_1, \dots, \mu_n \ge 0$. $f\chi_1 - \chi_1 + \mu_0 - \mu_1 = 0$.
 $Case 1$. $||y||_1 \le t$. $\Rightarrow \mu_0 = 0$. $\chi = y$.
 $M_1 = 0$.
 $Case 2$. $||y||_1 > t$. $\Rightarrow \mu_0 > 0$. $\chi_1 = y_1 - \mu_0 + \mu_1$. $\mu_1 : \chi_1 = 0$.
 $if \mu_1 = 0 \Rightarrow \chi_1 = y_1 - \mu_0 \ge 0$. if $\chi_1 = 0 \Rightarrow \mu_1 = \mu_0 - y_1 \ge 0$.
 $\Rightarrow \chi_1 = \int_0^{M_1 - \mu_0} \frac{1}{2}M_2 \ge \dots \ge M_1$. binary search or.
 $let \xi_R = \frac{1}{K} (\frac{k}{1 = 1} + 1)$. $\mu_0 = \xi_R$, where $k_0 = \min\{k_1: \xi_R \ge y_{RH}\}$

assume ynti = 0.

Convergence analysis. Recall proximal gradient descent.
min
$$f(x) = g + h$$
. g convex differentiable. h convex.
 $Prox_{k,t}(x) = argmin \frac{1}{2t} ||x - y||^2 + hvg)$. $\chi_{kh} = Prox(\chi_k - t \nabla g(\chi_k))$.
 $Projected: P_x(x) = argmin ||x - y||^2$. $\chi_{kh} = P_x(\chi_k - t \nabla f(\chi_k))$.
 $let hvx) = Z_x(x) = \int_{-\infty}^{0} \frac{if x \in x}{2 \cdot w}$. $hvx)$ convex. if x convex.
 $Prox_{h,t}(x) = Prox_x(x) = argmin ||x - y||^2$
 $Prox_{h,t}(x) = Prox_x(x) = argmin ||x - y||^2$
 $Prox_{h,t}(x) = min (frx) + I_x(x))$. The same as proximal GD.
 $x \in x$
 $The convergence result is the same as proximal GD as well.$
Theorem: Let X be a nonempty convex set. f is L-smooth and m-
strongly convex. (m is allowed to be 0). function over X. Suppose
 x^* is the optimal solution to min fix) and fx_k^2 is the
sequence produced by projected GD with step size $t \leq 1/L$. Then.
 $0 \quad f(X_{kh}) \leq f(X_k)$

 $() \| \chi_{kH} - \chi^{\star} \|_{2} \leq \| \chi_{k} - \chi^{\star} \|_{2}$

(3) $f(\chi_k) - f(\chi^*) \leq \frac{L}{2k} ||\chi_0 - \chi^*||^2$.

(4) if m > 0, $\|\chi_{k} - \chi^{*}\|^{2} \leq (1 - m/L)^{k} \|\chi_{0} - \chi^{*}\|^{2}$.

Introduction to the interior points method. (IPM).
min fix) is equivalent to min fix) +
$$I_X(x)$$
.
X is given by $fx:hvx) \leq o$.
 $define I_t(x) = -\frac{1}{t} log(-hux)$.
 $I_t(x)$ is called the log-barrier. It convex and lim $I_t \rightarrow I_x$.
 $\chi_t^* = argmin f(x) - \frac{1}{t} Z log(-hi(x))$ let $t \uparrow$ continuously.
 $= argmin t f(x) - Z log(-hi(x))$. If χ_t^* : central path.
 $lim \chi_t^* \rightarrow \chi^*$. solved by Newton. χ_t^* as initial point of next to
 $I_to solve LP$. (Karmarkor's algorithm in 1984).