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2.1 Schur’s Theorem and Extensions

2.1.1 Schur’s Theorem

Let’s first recall Schur’s theorem, which we have introduced last time.

Theorem 2.1 (Issai Schur, 1916) Given any c > 0, there exists S(c) such that no matter how we color
[S(c)] with c colors, there exists monochromatic x, y, z that x+ y = z.

Today, we will introduce another theorem proved by Issai Schur at the same time.

We all know that the famous Fermat’s Last Theorem (proved by Andrew Wiles in 1994) states that xn+yn =
zn has no nontrivial solutions as long as n ≥ 3. However, this is not true in Fp for any sufficiently large
prime p.

Theorem 2.2 (Issai Schur, 1916) Let n ≥ 1. There exists S(n) such that for any prime p > S(n),

xn + yn ≡ zn (mod p)

has an integer solution in [p− 1].

Proof: Let’s first prove that there always exists a primitive root q for prime p, namely, qp−1 ≡ 1 (mod p)
and qr ̸≡ 1 (mod p) for all 1 ≤ r ≤ p− 2. Consider the order of each number in the group ([p− 1],×). Let
ψ(d) be the number of elements of order d, that is, the number of x ∈ [p− 1] such that xd ≡ 1 (mod p) and
xd

′ ̸≡ 1 (mod p) for any d′ < d. What we want to prove is ψ(p− 1) > 0.

Define ϕ(d) be the number of integers 1 ≤ d′ ≤ d such that d and d′ are co-prime, i.e., gcd(d, d′) = 1. For
any positive integer N , we have ∑

d|N

ϕ(d) =
∑
d|N

ϕ(
N

d
)

=
∑
d|N

N/d∑
t=1

[gcd(t,N/d) = 1]

=
∑
d|N

N∑
t=1

[gcd(t,N) = d]

= N.
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In particular,
∑

d|p−1 ϕ(d) = p − 1. According to the definition of ψ(d), we also have
∑

d|p−1 ψ(d) = p − 1.

Based on Lagrange’s Theorem, xd ≡ 1 (mod p) has d roots: 1,m, . . . ,md−1. If mi has order d for some
0 ≤ i < d, then i and d have to be co-prime, which implies that ψ(d) ≤ ϕ(d).

As
∑

d|p−1 ϕ(d) =
∑

d|p−1 ψ(d), we have ϕ(d) = ψ(d) for any d | p−1. In particular, ψ(p−1) = ϕ(p−1) > 0.
That is, there always exists a primitive root q for prime p.

Now we can rewrite [p − 1] as [p − 1] = {q, q2, . . . , qp−1}. In other words, each integer in [p − 1] can
be represented as qn·s+r, where s ≥ 0, n > r ≥ 0. We color the integer with the r-th color. Based on
Theorem 2.1, when p is sufficiently large, there exists s1, s2, s3, r such that

qn·s1+r + qn·s2+r = qn·s3+r,

which implies (since gcd(q, p) = 1)

(qs1)n + (qs2)n ≡ (qs3)n (mod p).

2.1.2 Several Related Theorems

Here is a generalized version of Theorem 2.1, which is often attributed to Folkman.

Theorem 2.3 For any c, r > 0, there exists N = N(c, r) such that no matter how we color [N ] with c colors,
∃ x1, x2, . . . , xr ∈ [N ] and

∑r
i=1 < N such that all 2r − 1 partial sums are of the same color.

Schur’s theorem states that when N is large enough, any c-coloring of [N ] will lead to one color with a
solution x + y − z = 0. Does there exists monochromatic x, y, z such that x + y − 2z = 0? In this case
{x, z, y} forms an arithmetic progression of length 3. Here we present some other theorems on arithmetic
progressions.

Theorem 2.4 (van der Waerden, 1927) For any c, l, there is W = W (c, l) such that any c-coloring of
[W ] contains a monochromatic arithmetic progression of length l.

Theorem 2.5 (Endre Szemerédi, 1975) For any integer k, any subset S with positive upper density,
i.e.,

lim sup
n→∞

|S ∪ [n]|
n

> 0,

contains infinitely many arithmetic progressions of length k.

Theorem 2.6 (Green-Tao, 2004) Prime numbers contains arbitrarily long arithmetic progressions.

What if we change x+ y = z into other linear equations? Rado proved the following theorem in 1933.

Theorem 2.7 (Richard Rado, 1933) Consider a linear equation E :
∑
aixi = 0, where ai are all inte-

gers. Then the following are equivalent:

(a) For any c > 0, there exists N = N(c) such that any c-coloring of [N ] contains a solution to E where
xi ∈ [N ] are of the same color.

(b) There is a non-trivial 0-1 solution to E.
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2.2 Closest Pair in Two-Dimensional Space

In this section, we introduce an algorithmic application of the pigeonhole principle, the divide-and-conquer
algorithm to find the closest pair among n vertices in a two-dimensional space.

Firstly, we sort all vertices according to their horizontal coordinates. Assume that the ⌈n
2 ⌉-th vertex is

P . Denote S1, S2 as the set of vertices on the left, right side of P , respectively. Then, we recursively find
the distance of the closest pair in S1 and S2. Suppose that two distances we find are h1 and h2. Define
h := min{h1, h2}. Now, we only need to consider if there exists one vertex in S1 and another in S2 such that
their distance is less than h.

Figure 2.1: An instance of the problem with 9 vertices.

Assume that the horizontal coordinate of P is xP . Obviously, we only need to consider all vertices of which
horizontal coordinates range in [xP − h, xP + h], which is the blue part in Figure 2.1. For any vertex Q
in this part, suppose its vertical coordinate is yQ. We enumerate all vertices of which vertical coordinates
range in [yQ, yQ + h], which is the yellow part in Figure 2.1, and check their distances from Q.

We can see that for any vertex Q, its corresponding yellow part can be divided into two squares of size
h×h. Furthermore, either square of size h×h can be divided into four smaller squares of size (h/2)× (h/2).
According to the definition of h, there exists at most one vertex in each smaller square. (Otherwise, their
distance will be smaller than h.) That is, there exists at most 8 vertices in the whole yellow part (using
the pigeonhole principle). Thus, the running time of the algorithm satisfies T (n) = 2T (n/2) + O(n), which
implies that T (n) = O(n log n).

2.3 Double Counting

Double counting is an essential skill in combinatorics. We start from two simple examples.

Problem 2.1 Given two positive integers n and k. Prove that the number of ways to partition n into at
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most k positive integers equals to the number of ways to partition n into several positive integers no larger
than k.

Proof: Consider any partition n =
∑m

i=1 ai, where 1 ≤ a1 ≤ a2 . . . ≤ am ≤ k. For 1 ≤ j ≤ k, define bj as
the number of indices 1 ≤ i ≤ m such that ai ≤ j. It’s easy to show that 0 ≤ bj for 1 ≤ j ≤ k, and

m∑
i=1

ai = n =

k∑
j=1

bj ,

which completes the proof.

Lemma 2.8 (Euler, 1736) For any graph G = (V,E), the sum of degrees of all vertices is an even number.

Note that Lemma 2.8 implies that the number of vertices with odd degrees is even.

2.3.1 Sperner’s Lemma

Now, we start to introduce Sperner’s Lemma.

Lemma 2.9 (Emanuel Sperner, 1928) Subdivide ∆ABC into a triangulation (small triangles meet edge-
by-edge) and color the vertices by A,B,C. Each vertex that lies along any edge of ∆ABC can be only colored
with the two colors of the endpoints of the edge, where the interior vertices can be colored arbitrarily. Then,
there exists a small “tri-colored” triangles.

Figure 2.2: The picture shows a triangulation of ∆ABC. The blue triangle is a small “tri-colored” triangle.
The orange vertices and edges show the dual graph.
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Proof: Consider the dual graph, where vertices are only connected by crossing an A−B edge. Notice that
the outside vertex has odd degrees, which implies that there exists another vertex with odd degrees. For
other vertices, only those correspond to “tri-colored” triangles can have odd degrees, which completes the
proof.

We will also introduce several applications of Sperner’s Lemma.

Theorem 2.10 (Paul Monsky, 1970) It is impossible to divide a square into odd triangles of equal area.

Complexity: Sperner’s lemma can be generalized to n-dimensional simplex. Although it asserts that there
always exists a sub-simplex whose different vertices are colored with different colors, it is difficult to find
such a sub-simplex. Note that the decision problem cannot be NP-hard since the answer is always “yes”.
Roughly speaking, the function (NP) problem whose answer is promised to exist belongs to the complexity
TFNP (Total Function NP). In particular, finding n-colored sub-simplex for a given Sperner coloring is
PPAD-complete, where PPAD (Polynomial Parity Argument in Directed graphs) was defined by Christos
Papadimitriou, in which problems are guaranteed to have solutions because of parity argument in directed
graphs. The class is formally defined by specifying one of its complete problems, known as End-of-the-Line:
Given a directed graph (possibly exponentially large) consisting of disjoint directed paths and directed cycles,
the input is a source of a directed path and the goal is to find another source or sink other than the input.

Envy-free cake-cutting. Sperner’s lemma is another form of Brouwer’s fixed point. As we know, Nash
equilibrium in game theory is also a kind of fixed point theorem. (In fact, examples of PPAD-complete
problems includes many problems related to the fixed point theorem, for example, Xi Chen and Xiaotie
Deng proved that 2-player Nash equilibrium is PPAD-complete and won the best paper award in FOCS
2006.) So Sperner’s lemma also has applications in game theory, such as the envy-free cake cutting problem
in fair division. Suppose there are n players and a cake. Different players may have different evaluation
functions of each part of the cake (for example, one may prefer chocolate while another prefers fruits). A
cake-cutting protocol is to divide the cake into n piece and give each piece to a player. The protocol is called
“envy-free” if each person receives a piece that he values at least as much as every other’s piece.

We now construct an (approximate) envy-free protocol according to the Sperner’s lemma. Suppose there is
one [0, 1] cake, which is divided into x1, . . . , xn, where

∑n
i=1 xi = 1. (x1, . . . , xn) form a (n− 1)-dimensional

simplex. Triangulate the simplex and assign each vertex to a player such that each sub-simplex has n distinct
labels. For each vertex, ask the associated player: which piece do you prefer, and color it according to the
answer. Then, there exists a sub-simplex such that different players prefer different pieces.

2.3.2 Forbidden Subgraphs Problems

In forbidden subgraphs problems, we usually consider the maximum number of edges in a graph if there is
no given subgraph. Recall Turán’s Theorem as follows.

Theorem 2.11 (Pál Turán, 1941) If graph G = (V,E) does not contain Kr+1, then |E|≤ (1− 1
r )

n2

2 .

Let ex(n,H) be the maximum number of edges in G of order n that does not contain H. Erdős-Stone-
Simonovits Theorem is a generalization of Theorem 2.11 as follows.

Theorem 2.12 (Erdős-Stone, 1946 & Erdős-Simonovits, 1966) Given a graph H. Then, ex(n,H) =
(1− 1

χ(H)−1 )
(
n
2

)
+ o(n2).
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According to this theorem, When χ(H) > 2, we can know that ex(n,H) is approximately (1− 1
χ(H)−1 )

(
n
2

)
.

However, how about bipartite H? Let’s first discuss the case when H = C4.

Problem 2.2 Calculate ex(n,C4).

Answer: Consider the number of triples (u, v, w) such that u ∼ w and v ∼ w. For each pair (u, v), there
exists at most one w such that u ∼ w and v ∼ w. For any vertex w, the number of its corresponding triples
is at most

(
deg(w)

2

)
. Therefore, we have

∑
u

(
deg(u)

2

)
≤

(
n

2

)
=⇒

∑
u

deg(u)2 ≤ n(n− 1) +
∑
u

deg(u)

=⇒ (2|E|)2

n
≤ n(n− 1) + 2|E| (Cauchy-Schwartz inequality)

=⇒ |E|≤ n

4
(
√
4n− 3 + 1).

A more generalized theorem is as follows.

Theorem 2.13 (Bondy & Simonovits, 1974) Let t ≥ 2. There exists a constant c > 0 such that
ex(n,C2t) ≤ cn1+1/t.

When H = Kt,t, we also have the following theorem.

Theorem 2.14 Let t ≥ 2. There exists a constant c > 0 such that ex(n,Kt,t) ≤ cn2−1/t.

Proof: Suppose m = |E|. Consider the number of t-claws, that is, the number of (u, {v1, . . . , vt} where
u ∼ vi for 1 ≤ i ≤ t. For any t vertices {v1, . . . , vt}, there exists at most (t − 1) such u. For any vertex u,

the number of its corresponding t-claws is
(
deg(u)

t

)
. Therefore, we have

∑
u

(
deg(u)

t

)
≤ (t− 1)

(
n

t

)
.

Notice that ft(x) =
(
x
t

)
is a convex function. By Jensen’s inequality,

∑
u

(
deg(u)

t

)
≥ n · ft(2m/n).

Notice that 1
t! (x− t)t ≤ ft(x) ≤ 1

t!x
t. Therefore, we have

n

t!
(2m/n− t)t ≤ n · ft(2m/n) ≤ (t− 1)

(
n

t

)
≤ (t− 1)

nt

t!

=⇒ 2m/n− t ≤ (t− 1)1/tn1−1/t

=⇒ m ≤ 1

2
(t− 1)1/tn2−1/t +

1

2
tn,

which completes the proof.



Lecture 2: September 20 2-7

2.4 Introduction to the Probabilistic Method

Paul Erdős is considered as the father of the probabilistic method. We start from a lower bound of Ramsey
Number, which is proved by him.

Theorem 2.15 (Paul Erdős, 1947) R(k, k) > n holds if(
n

k

)
· 21−(

k
2) < 1.

Proof: Color the edges of Kn independently and uniformly at random. Fix a set S ∈
(
[n]
k

)
. Let ES be the

event that S induces a monochromatic Kk. It’s easy to show that Pr[ES ] = 21−(
k
2). Thus, we have

Pr[∃ a monochromatic Kk] = Pr[∪ES ]

≤
∑
S

Pr[ES ]

=

(
n

k

)
21−(

k
2)

< 1.

It implies that the probability that no monochromatic Kk exists is not zero, which completes the proof.


