We have showed that surprisingly many tempting conjectures can be easily disproves by the probabilistic method and random graphs. Today, we will introduce threshold functions of random graphs.

6.1 Graph Property \& Threshold Functions

Definition 6.1 A graph property \mathcal{P} is a subset of all graphs.

We say a graph property \mathcal{P} is monotone increasing/decreasing if for any $G \in \mathcal{P}$, any graph we obtain through adding/deleting edges in G always belongs to \mathcal{P}. For instance, for a fixed graph H, the graph property $\mathcal{P}_{1}=\{G: H$ is an induced sub-graph of $G\}$ is monotone increasing. The graph property $\mathcal{P}_{2}=\{G$: G is a connected planar graph $\}$ is monotone decreasing. However, $\mathcal{P}_{3}=\{G: G$ contains a vertex of degree 1$\}$ is not monotone.

A graph property \mathcal{P} is non-trivial if for any sufficiently large n, there always exists a graph with n vertices in \mathcal{P} and another graph not in \mathcal{P}.

What we want to discuss today is the following problem:

Problem 6.1 Given a graph property \mathcal{P}, for which $p=p_{n}$ is \mathcal{P} true for $\mathcal{G}(n, p)$ with high probability?

6.2 Warm-up: Graphs with Triangles

Let's start from the easiest problem. Suppose $\mathcal{P}=\left\{G: K_{3} \subseteq G\right\}$. Now, consider $G \sim \mathcal{G}\left(n, p_{n}\right)$. Let X be the number of K_{3} in graph G, which is a random variable.

If $p \ll \frac{1}{n}$, then $\operatorname{Pr}[X \geq 1]=o(1)$ according to Markov's inequality.
If $p \gg \frac{1}{n}$, let's first prove that $\operatorname{Var}[X]=o\left(\mathbf{E}[X]^{2}\right)$. Denote S as the set of all subsets of vertices in G of size 3 , and denote X_{T} the indicator variable of the set T inducing a triangle in G. Obviously, $X=\sum_{T \in S} X_{T}$. Notice that

$$
\begin{aligned}
\operatorname{Cov}\left[X_{T_{1}}, X_{T_{2}}\right] & =\mathbf{E}\left[X_{T_{1}} X_{T_{2}}\right]-\mathbf{E}\left[X_{T_{1}}\right] \cdot \mathbf{E}\left[X_{T_{2}}\right] \\
& =p^{\left|E\left(T_{1} \cup T_{2}\right)\right|}-p^{\left|E\left(T_{1}\right)+E\left(T_{2}\right)\right|} \\
& =\left\{\begin{array}{ll}
0 & \left|V\left(T_{1} \cap T_{2}\right)\right| \leq 1 \\
p^{5}-p^{6} & \left|V\left(T_{1} \cap T_{2}\right)\right|=2
\end{array} .\right.
\end{aligned}
$$

Also, we have

$$
\operatorname{Var}\left[X_{T}\right]=\mathbf{E}\left[X_{T}^{2}\right]-\mathbf{E}\left[X_{T}\right]^{2}=p^{3}-p^{6}
$$

Therefore,

$$
\begin{aligned}
\operatorname{Var}[X] & =\sum_{T \in S} \operatorname{Var}\left[X_{T}\right]+\sum_{\substack{T_{1}, T_{2} \in S \\
T_{1} \neq T_{2}}} \operatorname{Cov}\left[X_{T_{1}}, X_{T_{2}}\right] \\
& =\binom{n}{3}\left(p^{3}-p^{6}\right)+\sum_{\substack{T_{1}, T_{2} \in S \\
T_{1} \neq T_{2} \\
\left|V\left(T_{1} \cap T_{2}\right)\right|=2}}\left(p^{5}-p^{6}\right) \\
& =\binom{n}{3}\left(p^{3}-p^{6}\right)+\binom{n}{2}(n-2)(n-3)\left(p^{5}-p^{6}\right) \\
& \lesssim n^{3} p^{3}+n^{4} p^{5} \\
& =o\left(n^{6} p^{6}\right)
\end{aligned}
$$

The last equality above holds as $p \gg \frac{1}{n}$. This implies that $\operatorname{Var}[X]=o\left(\mathbf{E}[X]^{2}\right)$. Based on Chebyshev's inequality, we can see that $\operatorname{Pr}[X=0]=o(1)$.

Here, we give the definition of the threshold function as follows.

Definition 6.2 We say r_{n} is a threshold function for some graph property \mathcal{P} if

$$
\operatorname{Pr}\left[\mathcal{G}\left(n, p_{n}\right) \in \mathcal{P}\right] \rightarrow\left\{\begin{array}{cc}
0 & \text { if } p_{n} / r_{n} \rightarrow 0 \\
1 & \text { if } p_{n} / r_{n} \rightarrow \infty
\end{array}\right.
$$

From above, we are able to come to the following theorem.

Theorem 6.1 A threshold function for containing a K_{3} is $\frac{1}{n}$.

6.3 Threshold Function for Containing A Given Graph

In course Advanced Algorithms, we have already known that a threshold function for containing a K_{4} is $n^{-2 / 3}$. We now consider some general cases.

Suppose we have a random variable $X=X_{1}+\ldots+X_{m}$, where X_{i} is the indicator of event E_{i}. We say $i \sim j$ is $i \neq j$ and E_{i}, E_{j} are not independent. If $i \neq j$ and $i \nsim j$, we clearly have $\operatorname{Cov}\left[X_{i}, X_{j}\right]=0$. Otherwise,

$$
\operatorname{Cov}\left[X_{i}, X_{j}\right]=\mathbf{E}\left[X_{i} X_{j}\right]-\mathbf{E}\left[X_{i}\right] \mathbf{E}\left[X_{j}\right] \leq \mathbf{E}\left[X_{i} X_{j}\right]=\operatorname{Pr}\left[E_{i} \wedge E_{j}\right]
$$

Also note that $\operatorname{Var}\left[X_{i}\right] \leq \mathbf{E}\left[X_{i}^{2}\right]=\mathbf{E}\left[X_{i}\right]$, which implies that

$$
\operatorname{Var}[X] \leq \mathbf{E}[X]+\sum_{i \sim j} \operatorname{Pr}\left[E_{i} \wedge E_{j}\right]
$$

Define $\Delta:=\sum_{i \sim j} \operatorname{Pr}\left[E_{i} \wedge E_{j}\right]$. We hope $\operatorname{Var}[X]=o(\mathbf{E}[X])^{2}$, so if $\mathbf{E}[X] \rightarrow \infty, \Delta=o(\mathbf{E}[X])^{2}$ suffices. Moreover,

$$
\sum_{i \sim j} \operatorname{Pr}\left[E_{i} \wedge E_{j}\right]=\sum_{i} \operatorname{Pr}\left[E_{i}\right] \sum_{j \sim i} \operatorname{Pr}\left[E_{j} \mid E_{i}\right]
$$

In many symmetric cases, $\sum_{j \sim i} \operatorname{Pr}\left[E_{j} \mid E_{i}\right]$ does not depend on i. Denote it by Δ^{*} (or we may set $\Delta^{*}=$ $\max _{i} \sum_{j \sim i} \operatorname{Pr}\left[E_{j} \mid E_{i}\right]$ in asymmetric cases). Therefore, $\Delta=\sum_{i} \operatorname{Pr}\left[E_{i}\right] \Delta^{*}=\mathbf{E}[X] \Delta^{*}$. This gives us the following lemma.

Lemma 6.2 If $\mathbf{E}[X] \rightarrow \infty$ and $\Delta^{*}=o(\mathbf{E}[X])$, then $X>0$ with high probability.
In fact, by Chebyshev's inequality, we have

$$
\operatorname{Pr}[(1-\varepsilon) \mathbf{E}[X] \leq X \leq(1+\varepsilon) \mathbf{E}[X]] \geq 1-\frac{\operatorname{Var}[X]}{\varepsilon^{2} \mathbf{E}[X]^{2}}=1-o(1)
$$

for any constant $0<\varepsilon<1$.
Now consider the property of containing K_{4}. For any set S consisting of exactly four vertices, let E_{S} be the event that S forms a K_{4} in the random graph. For any S, T of size $4, S \sim T$ if and only if $|S \cap T| \geq 2$. There are two cases:

- $|S \cap T|=2$:

$$
\sum_{T} \operatorname{Pr}\left[E_{T} \mid E_{S}\right] \leq 6\binom{n}{2} \operatorname{Pr}\left[E_{T} \mid E_{S}\right]=6\binom{n}{2} p^{5} \approx n^{2} p^{5}
$$

- $|S \cap T|=3$:

$$
\sum_{T} \operatorname{Pr}\left[E_{T} \mid E_{S}\right]=4(n-4) \operatorname{Pr}\left[E_{T} \mid E_{S}\right] \leq 4 n p^{3} \approx n p^{3}
$$

Therefore, $\Delta^{*} \approx n^{2} p^{5}+n p^{3}=o\left(n^{4} p^{6}\right)=o(\mathbf{E}[X])$ if $n^{2} p \gg 1$ and $n p \gg 1$.
One may ask letting X be the number of a general graph H, can we still say that $X>0$ with high probability if $\mathbf{E}[X] \rightarrow \infty$? This is actually not correct. Suppose H is the graph as follows (obtained by adding an edge to K_{4}). Then, $\mathbf{E}[X] \approx n^{5} p^{7} \rightarrow \infty$ if $p \gg n^{-5 / 7}$. However, there is no K_{4} in $\mathcal{G}(n, p)$ if $p \ll n^{-2 / 3}$.

Figure 6.1: An counterexample of the conjecture above.
So, can we find a threshold function for containing a general graph? The following theorem tells us the answer.

Definition 6.3 The edge-vertex ratio of $G=(V, E)$ is defined as $\rho(G)=|E| /|V|$. The maximum sub-graph ratio is given by $m(G)=\max _{H \subseteq G} \rho(H)$.

Theorem 6.3 (Bollobás, 1981) Fix a graph $H=(V, E)$. Then $p=n^{-1 / m(H)}$ is a threshold function for containing H as a sub-graph. Furthermore, if $p \gg n^{-1 / m(H)}$, then X_{H} (number of copies of H in $\mathcal{G}(n, p)$) with high probability satisfies

$$
X_{H} \approx \mathbf{E}[X]=\binom{n}{|V|} \frac{|V|!}{|\operatorname{Aut}(H)|} p^{|E|} \approx \frac{n^{|V|} p^{|E|}}{|\operatorname{Aut}(H)|}
$$

Proof: Let H^{\prime} be the sub-graph of H achieving the maximum edge-vertex ratio, i.e., $m(H)=\rho\left(H^{\prime}\right)$. If $p \ll n^{-1 / m(H)}$, then $\mathbf{E}\left[X_{H^{\prime}}\right]=o(1)$, which implies that $X_{H^{\prime}}=0$ with high probability.

Now assume that $p \gg n^{-1 / m(H)}$. Count the labelled copies of H in $\mathcal{G}(n, p)$. Let L be a labelled copy of H in K_{n}. A_{L} be the event of $L \subseteq \mathcal{G}(n, p)$. For fixed L, we have

$$
\Delta^{*}=\sum_{L^{\prime} \sim L} \operatorname{Pr}\left[A_{L^{\prime}} \mid A_{L}\right]=\sum_{L^{\prime} \sim L} p^{\left|E\left(L^{\prime}\right) \backslash E(L)\right|}
$$

Note that the number of L^{\prime} such that $L^{\prime} \sim L$ is approximately $n^{\left|V\left(L^{\prime}\right) \backslash V(L)\right|}$, and

$$
p \gg n^{-1 / m(H)} \gg n^{-1 / \rho\left(L^{\prime} \cap L\right)}=n^{-\left|V\left(L^{\prime}\right) \cap V(L)\right| /\left|E\left(L^{\prime}\right) \cap E(L)\right|} .
$$

So, we have

$$
\Delta^{*} \approx \sum n^{\left|V\left(L^{\prime}\right) \backslash V(L)\right|} p^{\left|E\left(L^{\prime}\right) \backslash E(L)\right|} \ll n^{|V(L)|} p^{|E(L)|}
$$

which implies that $\Delta^{*} \ll \mathbf{E}\left[X_{H}\right]$. Therefore, $\operatorname{Var}[X]=\mathbf{E}\left[X_{H}\right]+o\left(\mathbf{E}\left[X_{H}\right]\right)^{2}$, which completes the proof.

6.4 Existence of Threshold

In this section, we consider for which graph property \mathcal{P} does a threshold function exist?
Let's start from a simpler question. Assume that \mathcal{P} is monotone increasing, is $f(p)=\operatorname{Pr}[\mathcal{G}(n, p) \in \mathcal{P}]$ increasing? We first discuss the question on upward closed sets.

Let \mathcal{F} be a family of subsets of $[n]$. We call \mathcal{F} an upward closed set (or up-set) if for any $S \subseteq T$ and $S \in \mathcal{F}$, we have $T \in \mathcal{F}$. We have the following theorem.

Theorem 6.4 Suppose \mathcal{F} is a non-trivial $\left(\mathcal{F} \neq \emptyset\right.$ or $\left.2^{[n]}\right)$ up-set of $[n]$. Let Bin $([n], p)$ be a random set where each number in $[n]$ is chosen independently with probability p. Then $f(P)=\mathbf{P r}[\operatorname{Bin}([n], p) \in \mathcal{F}]$ is a strictly increasing function.

Proof: We prove it by coupling. For any $0 \leq p<q<1$, construct a coupling as follows. Pick a uniform random vector $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$. Let $A=\left\{i: x_{i} \leq p\right\}$ and $B=\left\{j: x_{j} \leq q\right\}$. Clearly, A has the same distribution as $\operatorname{Bin}([n], p)$ and B has the same distribution as $\operatorname{Bin}([n], q)$. Notice that $A \subseteq B$. Thus, we have

$$
f(p)=\operatorname{Pr}[A \in \mathcal{F}]<\operatorname{Pr}[B \in \mathcal{F}]=f(q),
$$

which completes the proof.
Here, we give another proof, which is based on two-round exposure coupling.
Proof: Let $0 \leq p<q \leq 1$. Construct A, B as follows:

- For any $i \in[n]$, add i into A with probability p.
- If $i \in A$, add i into B. Otherwise, add it into B with probability $1-\frac{1-q}{1-p}$.

Notice that $\operatorname{Pr}[i \in B]=p+(1-p) \cdot\left(1-\frac{1-q}{1-p}\right)=q$. Therefore, A has the same distribution as $\operatorname{Bin}([n], p)$ and B has the same distribution as $\operatorname{Bin}([n], q)$. The rest of the proof is the same.

Now, let's prove that every non-trivial monotone increasing graph property has a threshold function.

Theorem 6.5 (Bollobás \& Thomason, 1987) Every non-trivial monotone increasing graph property has a threshold function.

Proof: Consider k independent copies $G_{1}, G_{2}, \ldots, G_{k}$ of $\mathcal{G}(n, p)$. Their union $G_{1} \cup \ldots \cup G_{k}$ has the same distribution of $\mathcal{G}\left(n, 1-(1-p)^{k}\right)$. According to the monotonicity of \mathcal{P}, if $G_{1} \cup \ldots \cup G_{k} \notin \mathcal{P}$, then $G_{i} \notin \mathcal{P}$ for all $1 \leq i \leq k$. Note that these k copies are independent, we have

$$
\operatorname{Pr}\left[\mathcal{G}\left(n, 1-(1-p)^{k}\right) \notin \mathcal{P}\right] \leq \operatorname{Pr}[\mathcal{G}(n, p) \notin \mathcal{P}]^{k}
$$

Let $f(p)=f_{n}(p)=\operatorname{Pr}[\mathcal{G}(n, p) \in \mathcal{P}]$. Note that $(1-p)^{k} \geq 1-k p$. For any monotone increasing property \mathcal{P} and any positive integer $k \leq \frac{1}{p}$, we have

$$
1-f(k p) \leq 1-f\left(1-(1-p)^{k}\right) \leq(1-f(p))^{k}
$$

For any sufficiently large n, define a function as follows. Since $f(p)$ is a continuous strictly increasing function from 0 to 1 as p goes from 0 to 1 , there is some critical $p_{c}=p_{c}(n)$ such that $f\left(p_{c}\right)=\frac{1}{2}$. We claim that p_{c} is a threshold function.

If $p=p(n) \gg p_{c}$, then letting $k=\left\lceil p / p_{c}\right\rceil \rightarrow \infty$, we have $1-f(p) \leq\left(1-f\left(p_{c}\right)\right)^{k}=2^{-k} \rightarrow 0$. Therefore, $f(p) \rightarrow 1$.

Analogously, if $p \ll p_{c}$, then letting $\ell=\left\lceil p / p_{c}\right\rceil \rightarrow \infty$, we have $\frac{1}{2}=1-f\left(p_{c}\right) \leq(1-f(p))^{\ell}$. Thus, $f(p) \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.

6.5 Sharp Threshold

In fact, using the method of moments, the number of triangles in a random graph converges to a Poisson distribution. We have

$$
\operatorname{Pr}\left[\text { A triangle exists in } \mathcal{G}\left(n, c_{n} / n\right)\right] \rightarrow\left\{\begin{array}{ll}
0 & \text { if } c_{n} \rightarrow-\infty \\
1-e^{-c^{3} / 6} & \text { if } c_{n} \rightarrow c \\
1 & \text { if } c_{n} \rightarrow \infty
\end{array} .\right.
$$

However, consider some other properties, such as "no isolated vertex". We have

$$
\operatorname{Pr}[\mathcal{G}(n, p) \text { has no isolated vertex }]=e^{-e^{-c}}
$$

if $c_{n} \rightarrow c$, where $p=\frac{\log n+c_{n}}{n}$ and $c \in R \cup\{-\infty, \infty\}$. (We leave it as an exercise.) Note that if $c_{n} \rightarrow-\infty$, even though $c_{n}=-o(\log n)$, we have the probability goes to $e^{-e^{-c}}=0$. Analogously, $e^{-e^{-c}}=1$ if $c_{n} \rightarrow \infty$, even though $c_{n}=o(\log n)$. So this property shows a stronger notion of threshold: sharp threshold.

Definition 6.4 We say r_{n} is a sharp threshold for some graph property \mathcal{P} if for any $\delta>0$, we have

$$
\operatorname{Pr}\left[\mathcal{G}\left(n, p_{n}\right) \in \mathcal{P}\right] \rightarrow \begin{cases}0 & \text { if } p_{n} \leq(1-\delta) r_{n} \\ 1 & \text { if } p_{n} \geq(1+\delta) r_{n}\end{cases}
$$

Roughly speaking, any monotone graph property with a coarse threshold may be approximated by a local property (having some H as a sub-graph). This is the famous Friedgut's sharp threshold theorem, which was proved in 1999.

A well-known conjecture is if the property of not being k-colorable has a sharp threshold for some constant (only depending on k) threshold d_{k}. Namely, we are interested in whether a constant d_{k} exists, such that

$$
\operatorname{Pr}\left[\mathcal{G}\left(n, p_{n}\right) \text { is } k \text {-colorable }\right] \rightarrow\left\{\begin{array}{ll}
1 & \text { if } d(n)<d_{k} \\
0 & \text { if } d(n)>d_{k}
\end{array} .\right.
$$

The following theorem shows that the property of being k-colorable indeed has a sharp threshold.

Theorem 6.6 (Achlioptas \& Friedgut, 2000) For any $k \geq 3$, there exists a function $d_{k}(n)$ such that for any $\varepsilon>0$, we have

$$
\operatorname{Pr}\left[\mathcal{G}\left(n, p_{n}\right) \text { is } k \text {-colorable }\right] \rightarrow\left\{\begin{array}{ll}
1 & d(n)<d_{k}(n)-\varepsilon \\
0 & d(n)>d_{k}(n)+\varepsilon
\end{array} .\right.
$$

However, it still remains an open question whether $d_{k}(n)$ has a limit d_{k}.

6.6 Clique number and chromatic number of $\mathcal{G}(n, 1 / 2)$

We now consider an easier case: the chromatic number of $\mathcal{G}(n, 1 / 2)$ instead. As we have known in course Advanced Algorithms, it has a strong concentration on its expectation. Now we would like to compute its expectation.

Note that $\mathcal{G}(n, 1 / 2)$ has the same distribution of its complement. So we have $\omega(\mathcal{G}(n, 1 / 2))=\alpha(\mathcal{G}(n, 1 / 2))$. It is also well-known that $\chi(G) \geq|V(G)| / \alpha(G)$. We first compute the clique number of $\mathcal{G}(n, 1 / 2)$.

Let X be the number of k-cliques in $\mathcal{G}(n, 1 / 2)$. Then we have

$$
\mathbf{E}[X]=\binom{n}{k} 2^{-\binom{k}{2}}
$$

Denote it by $f(k)$. Clearly $\omega<k$ if $f(k) \rightarrow 0$. Now assume $f(k) \rightarrow \infty$. Let A_{S} be the event that S forms a clique in $\mathcal{G}(n, 1 / 2)$. Fix S, T of size k. Then $S \sim T$ if $|S \cap T| \geq 2$. So we have

$$
\Delta^{*}=\sum_{T \sim S} \operatorname{Pr}\left[A_{T} \mid A_{S}\right]=\sum_{\ell=2}^{k-1}\binom{k}{\ell}\binom{n-k}{k-\ell} 2^{\binom{\ell}{2}-\binom{k}{2}} .
$$

We claim that $\Delta^{*}=o(f(k))$ if $f(k) \rightarrow \infty$ (details are omitted temporarily). Thus we have $X>0$ (i.e., $\omega \geq k)$ with high probability.

Theorem 6.7

$$
\omega(\mathcal{G}(n, 1 / 2)) \approx 2 \log _{2} n
$$

This theorem yields the following corollary immediately.

Lemma 6.8

$$
\chi(\mathcal{G}(n, 1 / 2)) \geq \frac{n}{\alpha(\mathcal{G}(n, 1 / 2))}=\frac{n}{\alpha(\mathcal{G}(n, 1 / 2))} \geq(1-o(1)) \frac{n}{2 \log _{2} n} .
$$

However, how can we upper bound the chromatic number?
(To be continued...)

