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We have showed that surprisingly many tempting conjectures can be easily disproves by the probabilistic
method and random graphs. Today, we will introduce threshold functions of random graphs.

6.1 Graph Property & Threshold Functions

Definition 6.1 A graph property P is a subset of all graphs.

We say a graph property P is monotone increasing/decreasing if for any G ∈ P, any graph we obtain
through adding/deleting edges in G always belongs to P. For instance, for a fixed graph H, the graph
property P1 = {G : H is an induced sub-graph of G} is monotone increasing. The graph property P2 = {G :
G is a connected planar graph} is monotone decreasing. However, P3 = {G : G contains a vertex of degree 1}
is not monotone.

A graph property P is non-trivial if for any sufficiently large n, there always exists a graph with n vertices
in P and another graph not in P.

What we want to discuss today is the following problem:

Problem 6.1 Given a graph property P, for which p = pn is P true for G(n, p) with high probability?

6.2 Warm-up: Graphs with Triangles

Let’s start from the easiest problem. Suppose P = {G : K3 ⊆ G}. Now, consider G ∼ G(n, pn). Let X be
the number of K3 in graph G, which is a random variable.

If p ≪ 1
n , then Pr[X ≥ 1] = o(1) according to Markov’s inequality.

If p ≫ 1
n , let’s first prove that Var[X] = o(E[X]2). Denote S as the set of all subsets of vertices in G of size

3, and denote XT the indicator variable of the set T inducing a triangle in G. Obviously, X =
∑

T∈S XT .
Notice that

Cov[XT1
, XT2

] = E[XT1
XT2

]−E[XT1
] ·E[XT2

]

= p|E(T1∪T2)| − p|E(T1)+E(T2)|

=

{
0 |V (T1 ∩ T2)|≤ 1
p5 − p6 |V (T1 ∩ T2)|= 2

.

Also, we have

Var[XT ] = E[X2
T ]−E[XT ]

2 = p3 − p6.
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Therefore,

Var[X] =
∑
T∈S

Var[XT ] +
∑

T1,T2∈S
T1 ̸=T2

Cov[XT1 , XT2 ]

=

(
n

3

)
(p3 − p6) +

∑
T1,T2∈S
T1 ̸=T2

|V (T1∩T2)|=2

(p5 − p6)

=

(
n

3

)
(p3 − p6) +

(
n

2

)
(n− 2)(n− 3)(p5 − p6)

≲ n3p3 + n4p5

= o(n6p6).

The last equality above holds as p ≫ 1
n . This implies that Var[X] = o(E[X]2). Based on Chebyshev’s

inequality, we can see that Pr[X = 0] = o(1).

Here, we give the definition of the threshold function as follows.

Definition 6.2 We say rn is a threshold function for some graph property P if

Pr[G(n, pn) ∈ P] →
{

0 if pn/rn → 0
1 if pn/rn → ∞ .

From above, we are able to come to the following theorem.

Theorem 6.1 A threshold function for containing a K3 is 1
n .

6.3 Threshold Function for Containing A Given Graph

In course Advanced Algorithms, we have already known that a threshold function for containing a K4 is
n−2/3. We now consider some general cases.

Suppose we have a random variable X = X1+ . . .+Xm, where Xi is the indicator of event Ei. We say i ∼ j
is i ̸= j and Ei, Ej are not independent. If i ̸= j and i ̸∼ j, we clearly have Cov[Xi, Xj ] = 0. Otherwise,

Cov[Xi, Xj ] = E[XiXj ]−E[Xi]E[Xj ] ≤ E[XiXj ] = Pr[Ei ∧ Ej ].

Also note that Var[Xi] ≤ E[X2
i ] = E[Xi], which implies that

Var[X] ≤ E[X] +
∑
i∼j

Pr[Ei ∧ Ej ].

Define ∆ :=
∑

i∼j Pr[Ei ∧ Ej ]. We hope Var[X] = o(E[X])2, so if E[X] → ∞, ∆ = o(E[X])2 suffices.
Moreover, ∑

i∼j

Pr[Ei ∧ Ej ] =
∑
i

Pr[Ei]
∑
j∼i

Pr[Ej |Ei].

In many symmetric cases,
∑

j∼i Pr[Ej |Ei] does not depend on i. Denote it by ∆∗ (or we may set ∆∗ =
maxi

∑
j∼i Pr[Ej |Ei] in asymmetric cases). Therefore, ∆ =

∑
i Pr[Ei]∆

∗ = E[X]∆∗. This gives us the
following lemma.
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Lemma 6.2 If E[X] → ∞ and ∆∗ = o(E[X]), then X > 0 with high probability.

In fact, by Chebyshev’s inequality, we have

Pr[(1− ε)E[X] ≤ X ≤ (1 + ε)E[X]] ≥ 1− Var[X]

ε2E[X]2
= 1− o(1)

for any constant 0 < ε < 1.

Now consider the property of containing K4. For any set S consisting of exactly four vertices, let ES be the
event that S forms a K4 in the random graph. For any S, T of size 4, S ∼ T if and only if |S ∩T |≥ 2. There
are two cases:

• |S ∩ T |= 2: ∑
T

Pr[ET |ES ] ≤ 6

(
n

2

)
Pr[ET |ES ] = 6

(
n

2

)
p5 ≈ n2p5;

• |S ∩ T |= 3: ∑
T

Pr[ET |ES ] = 4(n− 4)Pr[ET |ES ] ≤ 4np3 ≈ np3.

Therefore, ∆∗ ≈ n2p5 + np3 = o(n4p6) = o(E[X]) if n2p ≫ 1 and np ≫ 1.

One may ask letting X be the number of a general graph H, can we still say that X > 0 with high probability
if E[X] → ∞? This is actually not correct. Suppose H is the graph as follows (obtained by adding an edge
to K4). Then, E[X] ≈ n5p7 → ∞ if p ≫ n−5/7. However, there is no K4 in G(n, p) if p ≪ n−2/3.

Figure 6.1: An counterexample of the conjecture above.

So, can we find a threshold function for containing a general graph? The following theorem tells us the
answer.

Definition 6.3 The edge-vertex ratio of G = (V,E) is defined as ρ(G) = |E|/|V |. The maximum sub-graph
ratio is given by m(G) = maxH⊆G ρ(H).

Theorem 6.3 (Bollobás, 1981) Fix a graph H = (V,E). Then p = n−1/m(H) is a threshold function for
containing H as a sub-graph. Furthermore, if p ≫ n−1/m(H), then XH (number of copies of H in G(n, p))
with high probability satisfies

XH ≈ E[X] =

(
n

|V |

)
|V |!

|Aut(H)|
p|E| ≈ n|V |p|E|

|Aut(H)|
.
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Proof: Let H ′ be the sub-graph of H achieving the maximum edge-vertex ratio, i.e., m(H) = ρ(H ′). If
p ≪ n−1/m(H), then E[XH′ ] = o(1), which implies that XH′ = 0 with high probability.

Now assume that p ≫ n−1/m(H). Count the labelled copies of H in G(n, p). Let L be a labelled copy of H
in Kn. AL be the event of L ⊆ G(n, p). For fixed L, we have

∆∗ =
∑
L′∼L

Pr[AL′ |AL] =
∑
L′∼L

p|E(L′)\E(L)|.

Note that the number of L′ such that L′ ∼ L is approximately n|V (L′)\V (L)|, and

p ≫ n−1/m(H) ≫ n−1/ρ(L′∩L) = n−|V (L′)∩V (L)|/|E(L′)∩E(L)|.

So, we have

∆∗ ≈
∑

n|V (L′)\V (L)|p|E(L′)\E(L)| ≪ n|V (L)|p|E(L)|,

which implies that ∆∗ ≪ E[XH ]. Therefore, Var[X] = E[XH ] + o(E[XH ])2, which completes the proof.

6.4 Existence of Threshold

In this section, we consider for which graph property P does a threshold function exist?

Let’s start from a simpler question. Assume that P is monotone increasing, is f(p) = Pr[G(n, p) ∈ P]
increasing? We first discuss the question on upward closed sets.

Let F be a family of subsets of [n]. We call F an upward closed set (or up-set) if for any S ⊆ T and S ∈ F ,
we have T ∈ F . We have the following theorem.

Theorem 6.4 Suppose F is a non-trivial (F ̸= ∅ or 2[n]) up-set of [n]. Let Bin([n], p) be a random set
where each number in [n] is chosen independently with probability p. Then f(P ) = Pr[Bin([n], p) ∈ F ] is a
strictly increasing function.

Proof: We prove it by coupling. For any 0 ≤ p < q < 1, construct a coupling as follows. Pick a uniform
random vector (x1, . . . , xn) ∈ [0, 1]n. Let A = {i : xi ≤ p} and B = {j : xj ≤ q}. Clearly, A has the same
distribution as Bin([n], p) and B has the same distribution as Bin([n], q). Notice that A ⊆ B. Thus, we have

f(p) = Pr[A ∈ F ] < Pr[B ∈ F ] = f(q),

which completes the proof.

Here, we give another proof, which is based on two-round exposure coupling.

Proof: Let 0 ≤ p < q ≤ 1. Construct A,B as follows:

• For any i ∈ [n], add i into A with probability p.

• If i ∈ A, add i into B. Otherwise, add it into B with probability 1− 1−q
1−p .

Notice that Pr[i ∈ B] = p + (1 − p) · (1 − 1−q
1−p ) = q. Therefore, A has the same distribution as Bin([n], p)

and B has the same distribution as Bin([n], q). The rest of the proof is the same.

Now, let’s prove that every non-trivial monotone increasing graph property has a threshold function.
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Theorem 6.5 (Bollobás & Thomason, 1987) Every non-trivial monotone increasing graph property has
a threshold function.

Proof: Consider k independent copies G1, G2, . . . , Gk of G(n, p). Their union G1 ∪ . . . ∪ Gk has the same
distribution of G(n, 1− (1− p)k). According to the monotonicity of P, if G1 ∪ . . .∪Gk ̸∈ P, then Gi ̸∈ P for
all 1 ≤ i ≤ k. Note that these k copies are independent, we have

Pr[G(n, 1− (1− p)k) ̸∈ P] ≤ Pr[G(n, p) ̸∈ P]k.

Let f(p) = fn(p) = Pr[G(n, p) ∈ P]. Note that (1− p)k ≥ 1− kp. For any monotone increasing property P
and any positive integer k ≤ 1

p , we have

1− f(kp) ≤ 1− f(1− (1− p)k) ≤ (1− f(p))k.

For any sufficiently large n, define a function as follows. Since f(p) is a continuous strictly increasing function
from 0 to 1 as p goes from 0 to 1, there is some critical pc = pc(n) such that f(pc) =

1
2 . We claim that pc is

a threshold function.

If p = p(n) ≫ pc, then letting k = ⌈p/pc⌉ → ∞, we have 1 − f(p) ≤ (1 − f(pc))
k = 2−k → 0. Therefore,

f(p) → 1.

Analogously, if p ≪ pc, then letting ℓ = ⌈p/pc⌉ → ∞, we have 1
2 = 1− f(pc) ≤ (1− f(p))ℓ. Thus, f(p) → 0

as n → ∞. This completes the proof.

6.5 Sharp Threshold

In fact, using the method of moments, the number of triangles in a random graph converges to a Poisson
distribution. We have

Pr[A triangle exists in G(n, cn/n)] →


0 if cn → −∞
1− e−c3/6 if cn → c
1 if cn → ∞

.

However, consider some other properties, such as “no isolated vertex”. We have

Pr[G(n, p) has no isolated vertex] = e−e−c

if cn → c, where p = logn+cn
n and c ∈ R ∪ {−∞,∞}. (We leave it as an exercise.) Note that if cn → −∞,

even though cn = −o(log n), we have the probability goes to e−e−c

= 0. Analogously, e−e−c

= 1 if cn → ∞,
even though cn = o(log n). So this property shows a stronger notion of threshold: sharp threshold.

Definition 6.4 We say rn is a sharp threshold for some graph property P if for any δ > 0, we have

Pr[G(n, pn) ∈ P] →
{

0 if pn ≤ (1− δ)rn
1 if pn ≥ (1 + δ)rn

.

Roughly speaking, any monotone graph property with a coarse threshold may be approximated by a local
property (having some H as a sub-graph). This is the famous Friedgut’s sharp threshold theorem, which
was proved in 1999.
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A well-known conjecture is if the property of not being k-colorable has a sharp threshold for some constant
(only depending on k) threshold dk. Namely, we are interested in whether a constant dk exists, such that

Pr[G(n, pn) is k-colorable] →
{

1 if d(n) < dk
0 if d(n) > dk

.

The following theorem shows that the property of being k-colorable indeed has a sharp threshold.

Theorem 6.6 (Achlioptas & Friedgut, 2000) For any k ≥ 3, there exists a function dk(n) such that
for any ε > 0, we have

Pr[G(n, pn) is k-colorable] →
{

1 d(n) < dk(n)− ε
0 d(n) > dk(n) + ε

.

However, it still remains an open question whether dk(n) has a limit dk.

6.6 Clique number and chromatic number of G(n, 1/2)

We now consider an easier case: the chromatic number of G(n, 1/2) instead. As we have known in course
Advanced Algorithms, it has a strong concentration on its expectation. Now we would like to compute its
expectation.

Note that G(n, 1/2) has the same distribution of its complement. So we have ω(G(n, 1/2)) = α(G(n, 1/2)).
It is also well-known that χ(G) ≥ |V (G)|/α(G). We first compute the clique number of G(n, 1/2).

Let X be the number of k-cliques in G(n, 1/2). Then we have

E[X] =

(
n

k

)
2−(

k
2).

Denote it by f(k). Clearly ω < k if f(k) → 0. Now assume f(k) → ∞. Let AS be the event that S forms a
clique in G(n, 1/2). Fix S, T of size k. Then S ∼ T if |S ∩ T |≥ 2. So we have

∆∗ =
∑
T∼S

Pr[AT | AS ] =

k−1∑
ℓ=2

(
k

ℓ

)(
n− k

k − ℓ

)
2(

ℓ
2)−(

k
2) .

We claim that ∆∗ = o(f(k)) if f(k) → ∞ (details are omitted temporarily). Thus we have X > 0 (i.e.,
ω ≥ k) with high probability.

Theorem 6.7
ω(G(n, 1/2)) ≈ 2 log2 n .

This theorem yields the following corollary immediately.

Lemma 6.8
χ(G(n, 1/2)) ≥ n

α(G(n, 1/2))
=

n

α(G(n, 1/2))
≥ (1− o(1))

n

2 log2 n
.

However, how can we upper bound the chromatic number?

(To be continued...)


