CS-3334: Advanced Combinatorics

Fall 2022

Lecture 6: October 18

Lecturer: Kuan Yang Scribe: Weihao Zhu

We have showed that surprisingly many tempting conjectures can be easily disproves by the probabilistic method and random graphs. Today, we will introduce threshold functions of random graphs.

6.1 Graph Property & Threshold Functions

Definition 6.1 A graph property P is a subset of all graphs.

We say a graph property \mathcal{P} is monotone increasing/decreasing if for any $G \in \mathcal{P}$, any graph we obtain through adding/deleting edges in G always belongs to \mathcal{P} . For instance, for a fixed graph H, the graph property $\mathcal{P}_1 = \{G : H \text{ is an induced sub-graph of } G\}$ is monotone increasing. The graph property $\mathcal{P}_2 = \{G : G \text{ is a connected planar graph}\}$ is monotone decreasing. However, $\mathcal{P}_3 = \{G : G \text{ contains a vertex of degree } 1\}$ is not monotone.

A graph property \mathcal{P} is non-trivial if for any sufficiently large n, there always exists a graph with n vertices in \mathcal{P} and another graph not in \mathcal{P} .

What we want to discuss today is the following problem:

Problem 6.1 Given a graph property \mathcal{P} , for which $p = p_n$ is \mathcal{P} true for $\mathcal{G}(n,p)$ with high probability?

6.2 Warm-up: Graphs with Triangles

Let's start from the easiest problem. Suppose $\mathcal{P} = \{G : K_3 \subseteq G\}$. Now, consider $G \sim \mathcal{G}(n, p_n)$. Let X be the number of K_3 in graph G, which is a random variable.

If $p \ll \frac{1}{n}$, then $\Pr[X \ge 1] = o(1)$ according to Markov's inequality.

If $p \gg \frac{1}{n}$, let's first prove that $\mathbf{Var}[X] = o(\mathbf{E}[X]^2)$. Denote S as the set of all subsets of vertices in G of size 3, and denote X_T the indicator variable of the set T inducing a triangle in G. Obviously, $X = \sum_{T \in S} X_T$. Notice that

$$\begin{aligned} \mathbf{Cov}[X_{T_1}, X_{T_2}] &= \mathbf{E}[X_{T_1} X_{T_2}] - \mathbf{E}[X_{T_1}] \cdot \mathbf{E}[X_{T_2}] \\ &= p^{|E(T_1 \cup T_2)|} - p^{|E(T_1) + E(T_2)|} \\ &= \left\{ \begin{array}{ll} 0 & |V(T_1 \cap T_2)| \leq 1 \\ p^5 - p^6 & |V(T_1 \cap T_2)| = 2 \end{array} \right. \end{aligned}$$

Also, we have

$$Var[X_T] = E[X_T^2] - E[X_T]^2 = p^3 - p^6.$$

6-2 Lecture 6: October 18

Therefore,

$$\mathbf{Var}[X] = \sum_{T \in S} \mathbf{Var}[X_T] + \sum_{\substack{T_1, T_2 \in S \\ T_1 \neq T_2}} \mathbf{Cov}[X_{T_1}, X_{T_2}]$$

$$= \binom{n}{3} (p^3 - p^6) + \sum_{\substack{T_1, T_2 \in S \\ T_1 \neq T_2 \\ |V(T_1 \cap T_2)| = 2}} (p^5 - p^6)$$

$$= \binom{n}{3} (p^3 - p^6) + \binom{n}{2} (n - 2)(n - 3)(p^5 - p^6)$$

$$\lesssim n^3 p^3 + n^4 p^5$$

$$= o(n^6 p^6).$$

The last equality above holds as $p \gg \frac{1}{n}$. This implies that $\mathbf{Var}[X] = o(\mathbf{E}[X]^2)$. Based on Chebyshev's inequality, we can see that $\mathbf{Pr}[X=0] = o(1)$.

Here, we give the definition of the threshold function as follows.

Definition 6.2 We say r_n is a threshold function for some graph property P if

$$\mathbf{Pr}[\mathcal{G}(n, p_n) \in \mathcal{P}] \to \begin{cases} 0 & \text{if } p_n/r_n \to 0\\ 1 & \text{if } p_n/r_n \to \infty \end{cases}.$$

From above, we are able to come to the following theorem.

Theorem 6.1 A threshold function for containing a K_3 is $\frac{1}{n}$.

6.3 Threshold Function for Containing A Given Graph

In course Advanced Algorithms, we have already known that a threshold function for containing a K_4 is $n^{-2/3}$. We now consider some general cases.

Suppose we have a random variable $X = X_1 + ... + X_m$, where X_i is the indicator of event E_i . We say $i \sim j$ is $i \neq j$ and E_i, E_j are not independent. If $i \neq j$ and $i \nsim j$, we clearly have $\mathbf{Cov}[X_i, X_j] = 0$. Otherwise,

$$\mathbf{Cov}[X_i, X_j] = \mathbf{E}[X_i X_j] - \mathbf{E}[X_i] \mathbf{E}[X_j] \le \mathbf{E}[X_i X_j] = \mathbf{Pr}[E_i \wedge E_j].$$

Also note that $\operatorname{Var}[X_i] \leq \operatorname{E}[X_i^2] = \operatorname{E}[X_i]$, which implies that

$$\mathbf{Var}[X] \le \mathbf{E}[X] + \sum_{i \sim j} \mathbf{Pr}[E_i \wedge E_j].$$

Define $\Delta := \sum_{i \sim j} \Pr[E_i \wedge E_j]$. We hope $\operatorname{Var}[X] = o(\mathbf{E}[X])^2$, so if $\mathbf{E}[X] \to \infty$, $\Delta = o(\mathbf{E}[X])^2$ suffices. Moreover,

$$\sum_{i \sim j} \mathbf{Pr}[E_i \wedge E_j] = \sum_{i} \mathbf{Pr}[E_i] \sum_{j \sim i} \mathbf{Pr}[E_j | E_i].$$

In many symmetric cases, $\sum_{j\sim i} \mathbf{Pr}[E_j|E_i]$ does not depend on i. Denote it by Δ^* (or we may set $\Delta^* = \max_i \sum_{j\sim i} \mathbf{Pr}[E_j|E_i]$ in asymmetric cases). Therefore, $\Delta = \sum_i \mathbf{Pr}[E_i]\Delta^* = \mathbf{E}[X]\Delta^*$. This gives us the following lemma.

Lecture 6: October 18 6-3

Lemma 6.2 If $\mathbf{E}[X] \to \infty$ and $\Delta^* = o(\mathbf{E}[X])$, then X > 0 with high probability.

In fact, by Chebyshev's inequality, we have

$$\Pr[(1-\varepsilon)\mathbf{E}[X] \le X \le (1+\varepsilon)\mathbf{E}[X]] \ge 1 - \frac{\mathbf{Var}[X]}{\varepsilon^2 \mathbf{E}[X]^2} = 1 - o(1)$$

for any constant $0 < \varepsilon < 1$.

Now consider the property of containing K_4 . For any set S consisting of exactly four vertices, let E_S be the event that S forms a K_4 in the random graph. For any S, T of size $A, S \sim T$ if and only if $|S \cap T| \geq 2$. There are two cases:

• $|S \cap T| = 2$:

$$\sum_{T} \mathbf{Pr}[E_T | E_S] \le 6 \binom{n}{2} \mathbf{Pr}[E_T | E_S] = 6 \binom{n}{2} p^5 \approx n^2 p^5;$$

• $|S \cap T| = 3$:

$$\sum_{T} \mathbf{Pr}[E_T | E_S] = 4(n-4)\mathbf{Pr}[E_T | E_S] \le 4np^3 \approx np^3.$$

Therefore, $\Delta^* \approx n^2 p^5 + n p^3 = o(n^4 p^6) = o(\mathbf{E}[X])$ if $n^2 p \gg 1$ and $np \gg 1$.

One may ask letting X be the number of a general graph H, can we still say that X>0 with high probability if $\mathbf{E}[X]\to\infty$? This is actually not correct. Suppose H is the graph as follows (obtained by adding an edge to K_4). Then, $\mathbf{E}[X]\approx n^5p^7\to\infty$ if $p\gg n^{-5/7}$. However, there is no K_4 in $\mathcal{G}(n,p)$ if $p\ll n^{-2/3}$.

Figure 6.1: An counterexample of the conjecture above.

So, can we find a threshold function for containing a general graph? The following theorem tells us the answer.

Definition 6.3 The edge-vertex ratio of G = (V, E) is defined as $\rho(G) = |E|/|V|$. The maximum sub-graph ratio is given by $m(G) = \max_{H \subseteq G} \rho(H)$.

Theorem 6.3 (Bollobás, 1981) Fix a graph H = (V, E). Then $p = n^{-1/m(H)}$ is a threshold function for containing H as a sub-graph. Furthermore, if $p \gg n^{-1/m(H)}$, then X_H (number of copies of H in $\mathcal{G}(n,p)$) with high probability satisfies

$$X_H \approx \mathbf{E}[X] = \binom{n}{|V|} \frac{|V|!}{|Aut(H)|} p^{|E|} \approx \frac{n^{|V|} p^{|E|}}{|Aut(H)|}.$$

6-4 Lecture 6: October 18

Proof: Let H' be the sub-graph of H achieving the maximum edge-vertex ratio, i.e., $m(H) = \rho(H')$. If $p \ll n^{-1/m(H)}$, then $\mathbf{E}[X_{H'}] = o(1)$, which implies that $X_{H'} = 0$ with high probability.

Now assume that $p \gg n^{-1/m(H)}$. Count the labelled copies of H in $\mathcal{G}(n,p)$. Let L be a labelled copy of H in K_n . A_L be the event of $L \subseteq \mathcal{G}(n,p)$. For fixed L, we have

$$\Delta^* = \sum_{L' \sim L} \mathbf{Pr}[A_{L'}|A_L] = \sum_{L' \sim L} p^{|E(L') \setminus E(L)|}.$$

Note that the number of L' such that $L' \sim L$ is approximately $n^{|V(L') \setminus V(L)|}$, and

$$p \gg n^{-1/m(H)} \gg n^{-1/\rho(L'\cap L)} = n^{-|V(L')\cap V(L)|/|E(L')\cap E(L)|}$$

So, we have

$$\Delta^* \approx \sum n^{|V(L') \backslash V(L)|} p^{|E(L') \backslash E(L)|} \ll n^{|V(L)|} p^{|E(L)|},$$

which implies that $\Delta^* \ll \mathbf{E}[X_H]$. Therefore, $\mathbf{Var}[X] = \mathbf{E}[X_H] + o(\mathbf{E}[X_H])^2$, which completes the proof.

6.4 Existence of Threshold

In this section, we consider for which graph property \mathcal{P} does a threshold function exist?

Let's start from a simpler question. Assume that \mathcal{P} is monotone increasing, is $f(p) = \mathbf{Pr}[\mathcal{G}(n, p) \in \mathcal{P}]$ increasing? We first discuss the question on upward closed sets.

Let \mathcal{F} be a family of subsets of [n]. We call \mathcal{F} an upward closed set (or up-set) if for any $S \subseteq T$ and $S \in \mathcal{F}$, we have $T \in \mathcal{F}$. We have the following theorem.

Theorem 6.4 Suppose \mathcal{F} is a non-trivial $(\mathcal{F} \neq \emptyset \text{ or } 2^{[n]})$ up-set of [n]. Let Bin([n], p) be a random set where each number in [n] is chosen independently with probability p. Then $f(P) = \mathbf{Pr}[Bin([n], p) \in \mathcal{F}]$ is a strictly increasing function.

Proof: We prove it by *coupling*. For any $0 \le p < q < 1$, construct a coupling as follows. Pick a uniform random vector $(x_1, \ldots, x_n) \in [0, 1]^n$. Let $A = \{i : x_i \le p\}$ and $B = \{j : x_j \le q\}$. Clearly, A has the same distribution as Bin([n], p) and B has the same distribution as Bin([n], q). Notice that $A \subseteq B$. Thus, we have

$$f(p) = \mathbf{Pr}[A \in \mathcal{F}] < \mathbf{Pr}[B \in \mathcal{F}] = f(q),$$

which completes the proof.

Here, we give another proof, which is based on two-round exposure coupling.

Proof: Let $0 \le p < q \le 1$. Construct A, B as follows:

- For any $i \in [n]$, add i into A with probability p.
- If $i \in A$, add i into B. Otherwise, add it into B with probability $1 \frac{1-q}{1-p}$.

Notice that $\Pr[i \in B] = p + (1-p) \cdot (1 - \frac{1-q}{1-p}) = q$. Therefore, A has the same distribution as Bin([n], p) and B has the same distribution as Bin([n], q). The rest of the proof is the same.

Now, let's prove that every non-trivial monotone increasing graph property has a threshold function.

Lecture 6: October 18 6-5

Theorem 6.5 (Bollobás & Thomason, 1987) Every non-trivial monotone increasing graph property has a threshold function.

Proof: Consider k independent copies G_1, G_2, \ldots, G_k of $\mathcal{G}(n, p)$. Their union $G_1 \cup \ldots \cup G_k$ has the same distribution of $\mathcal{G}(n, 1 - (1 - p)^k)$. According to the monotonicity of \mathcal{P} , if $G_1 \cup \ldots \cup G_k \notin \mathcal{P}$, then $G_i \notin \mathcal{P}$ for all $1 \leq i \leq k$. Note that these k copies are independent, we have

$$\mathbf{Pr}[\mathcal{G}(n, 1 - (1 - p)^k) \notin \mathcal{P}] \le \mathbf{Pr}[\mathcal{G}(n, p) \notin \mathcal{P}]^k.$$

Let $f(p) = f_n(p) = \mathbf{Pr}[\mathcal{G}(n,p) \in \mathcal{P}]$. Note that $(1-p)^k \ge 1 - kp$. For any monotone increasing property \mathcal{P} and any positive integer $k \le \frac{1}{p}$, we have

$$1 - f(kp) \le 1 - f(1 - (1 - p)^k) \le (1 - f(p))^k.$$

For any sufficiently large n, define a function as follows. Since f(p) is a continuous strictly increasing function from 0 to 1 as p goes from 0 to 1, there is some critical $p_c = p_c(n)$ such that $f(p_c) = \frac{1}{2}$. We claim that p_c is a threshold function.

If $p = p(n) \gg p_c$, then letting $k = \lceil p/p_c \rceil \to \infty$, we have $1 - f(p) \le (1 - f(p_c))^k = 2^{-k} \to 0$. Therefore, $f(p) \to 1$.

Analogously, if $p \ll p_c$, then letting $\ell = \lceil p/p_c \rceil \to \infty$, we have $\frac{1}{2} = 1 - f(p_c) \le (1 - f(p))^{\ell}$. Thus, $f(p) \to 0$ as $n \to \infty$. This completes the proof.

6.5 Sharp Threshold

In fact, using the method of moments, the number of triangles in a random graph converges to a Poisson distribution. We have

$$\mathbf{Pr}[\text{A triangle exists in } \mathcal{G}(n, c_n/n)] \to \begin{cases} 0 & \text{if } c_n \to -\infty \\ 1 - e^{-c^3/6} & \text{if } c_n \to c \\ 1 & \text{if } c_n \to \infty \end{cases}.$$

However, consider some other properties, such as "no isolated vertex". We have

$$\mathbf{Pr}[\mathcal{G}(n,p)]$$
 has no isolated vertex] = $e^{-e^{-c}}$

if $c_n \to c$, where $p = \frac{\log n + c_n}{n}$ and $c \in R \cup \{-\infty, \infty\}$. (We leave it as an exercise.) Note that if $c_n \to -\infty$, even though $c_n = -o(\log n)$, we have the probability goes to $e^{-e^{-c}} = 0$. Analogously, $e^{-e^{-c}} = 1$ if $c_n \to \infty$, even though $c_n = o(\log n)$. So this property shows a stronger notion of threshold: sharp threshold.

Definition 6.4 We say r_n is a sharp threshold for some graph property \mathcal{P} if for any $\delta > 0$, we have

$$\mathbf{Pr}[\mathcal{G}(n, p_n) \in \mathcal{P}] \to \begin{cases} 0 & \text{if } p_n \le (1 - \delta)r_n \\ 1 & \text{if } p_n \ge (1 + \delta)r_n \end{cases}.$$

Roughly speaking, any monotone graph property with a coarse threshold may be approximated by a local property (having some H as a sub-graph). This is the famous Friedgut's sharp threshold theorem, which was proved in 1999.

6-6 Lecture 6: October 18

A well-known conjecture is if the property of not being k-colorable has a sharp threshold for some constant (only depending on k) threshold d_k . Namely, we are interested in whether a constant d_k exists, such that

$$\mathbf{Pr}[\mathcal{G}(n, p_n) \text{ is } k\text{-colorable}] \to \begin{cases} 1 & \text{if } d(n) < d_k \\ 0 & \text{if } d(n) > d_k \end{cases}.$$

The following theorem shows that the property of being k-colorable indeed has a sharp threshold.

Theorem 6.6 (Achlioptas & Friedgut, 2000) For any $k \geq 3$, there exists a function $d_k(n)$ such that for any $\varepsilon > 0$, we have

$$\mathbf{Pr}[\mathcal{G}(n, p_n) \text{ is } k\text{-colorable}] \to \left\{ \begin{array}{ll} 1 & d(n) < d_k(n) - \varepsilon \\ 0 & d(n) > d_k(n) + \varepsilon \end{array} \right..$$

However, it still remains an open question whether $d_k(n)$ has a limit d_k .

6.6 Clique number and chromatic number of $\mathcal{G}(n, 1/2)$

We now consider an easier case: the chromatic number of $\mathcal{G}(n, 1/2)$ instead. As we have known in course Advanced Algorithms, it has a strong concentration on its expectation. Now we would like to compute its expectation.

Note that $\mathcal{G}(n, 1/2)$ has the same distribution of its complement. So we have $\omega(\mathcal{G}(n, 1/2)) = \alpha(\mathcal{G}(n, 1/2))$. It is also well-known that $\chi(G) \geq |V(G)|/\alpha(G)$. We first compute the clique number of $\mathcal{G}(n, 1/2)$.

Let X be the number of k-cliques in $\mathcal{G}(n, 1/2)$. Then we have

$$\mathbf{E}[X] = \binom{n}{k} 2^{-\binom{k}{2}}.$$

Denote it by f(k). Clearly $\omega < k$ if $f(k) \to 0$. Now assume $f(k) \to \infty$. Let A_S be the event that S forms a clique in $\mathcal{G}(n, 1/2)$. Fix S, T of size k. Then $S \sim T$ if $|S \cap T| \geq 2$. So we have

$$\Delta^* = \sum_{T \sim S} \Pr[A_T \mid A_S] = \sum_{\ell=2}^{k-1} \binom{k}{\ell} \binom{n-k}{k-\ell} 2^{\binom{\ell}{2} - \binom{k}{2}}.$$

We claim that $\Delta^* = o(f(k))$ if $f(k) \to \infty$ (details are omitted temporarily). Thus we have X > 0 (i.e., $\omega \ge k$) with high probability.

Theorem 6.7

$$\omega(\mathcal{G}(n, 1/2)) \approx 2 \log_2 n$$
.

This theorem yields the following corollary immediately.

Lemma 6.8

$$\chi(\mathcal{G}(n, 1/2)) \ge \frac{n}{\alpha(\mathcal{G}(n, 1/2))} = \frac{n}{\alpha(\mathcal{G}(n, 1/2))} \ge (1 - o(1)) \frac{n}{2 \log_2 n}$$
.

However, how can we upper bound the chromatic number?

(To be continued...)