
CS-3334: Advanced Combinatorics Fall 2022

Lecture 7: October 25
Lecturer: Kuan Yang Scribe: Weihao Zhu

7.1 Chromatic Number of G(n, 1/2)

Today, we will discuss more on χ(G(n, 1/2)). We first focus on the concentration for clique numbers.

Theorem 7.1 (Bollobás-Erdős, 1976 & Matula, 1976) There exists a k ≈ 2 log2 n such that

ω(G(n, 1/2)) ∈ {k, k + 1}

with high probability.

Proof: Let

f(k) = E[X] =

(
n

k

)
2−(

k
2).

If f(k) → ∞, then we have ∆∗ ≪ f(k) (we omit details temporarily and the full calculation can be found in
the following sections), which implies that ω(G(n, 1/2)) ≥ k w.h.p.

For k = (1± o(1))2 log2(n), we have

f(k + 1)

f(k)
=

n− k

k + 1
· 2−k = n−1+o(1).

So f(k) decreases rapidly when k ≈ 2 log2 n.

Let k0 = k0(n) be the value such that f(k0) ≥ 1 > f(k0+1). For n such that f(k0) → ∞ and f(k0+1) → 0,
it is known that

ω(G(n, 1/2)) = k0

with high probability.

If f(k0) = O(1) (or f(k0+1) = O(1), then we increacse k0 by 1), we have f(k0−1) → ∞ and f(k0+1) → 0.
Thus,

ω((G)(n, 1/2)) ∈ {k0 − 1, k0}

with high probability. This completes the proof.

However, this concentration is not what we want for analyzing chromatic numbers.

For the upper bound, we give a strategy to properly color the graph. Take out an independent set of
size approximately 2 log2 n, and color them with a new color. Repeat this process until o(n log2 n) vertices
remaining, and color each of them with a new color. However, after removing independent sets, the distri-
butions of remaining sub-graphs are no longer random graphs. Instead, if we fix a subset S of size m, the
distribution of G[S] induced by S is exactly G(m, p). Then if we could show that for all S of size m, G[S]
has an independent set of size ≈ 2 log2 n, we can repeat the process: finding an independent set, coloring
them with a new color and then erasing them. To show that α(G[S]) ≥ 2 log2|S| for all S, we need the union
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bound and thus the probability of a “bad” event should be o(1/
(
n
m

)
). So this concentration result is not

sufficient.

In 1988, to analyze the chromatic number, Bollobás also proved the following “stronger” theorem.

Theorem 7.2 (Bollobás, 1988) Let k0 be the largest number such that f(k0) ≥ 1, then

Pr[ω(G(n, 1/2)) < k0 − 3] = e−n2−o(1)

.

Remark. For a constant p, we have

α(G(n, p)) = ω(G(n, 1− p)) ≈ 2 log1/p n

with high probability.

Now we can state the result to the chromatic number of G(n, 1/2).

Theorem 7.3 (Bollobás, 1988)

χ(G(n, 1/2)) ≈ n

2 log2 n

with high probability.

Proof Sketch. Clearly,

χ(G(n, 1/2)) ≥ n

α(G(n, 1/2))
≥ (1− o(1))

n

2 log2 n

with high probability. This provides us a good lower bound of the chromatic number of G(n, 1/2). We now
show that χ(G(n, 1/2)) ≤ (1 + o(1))n/(2 log2 n).

Following the previous idea: finding an independent set, coloring them with a new color and then erasing
them, until there are at most m vertices, where we can assign each remaining vertex a distinct color.

So we choose m and hope

• with high probability, for any subset S of size m, α(G[S]) ≈ 2 log2 n;

• n/(2 log2 n) +m ≤ (1 + o(1))n/(2 log2 n).

We can show that m = n/(log2 n)
2 suffices.

Proof: Choose m = n/(log2 n)
2. Notice that 2 log2 m = 2(log2 n− 2 log log n). Fix any subset S of size m,

we have
Pr[α(G[S]) < (1− o(1))2 log2 n] ≤ e−m2−o(1)

≪ e−n,

which implies that

Pr[∀S of size m,α(G[S]) ≥ (1− o(1))2 log2 n] ≥ 1−
(
n

m

)
e−n = 1− o(1).

Set k = k0(m)− 3. While there are at least m vertices remaining, we find an independent set of size k, color
them and remove them. Finally, color all remaining vertices with distinct colors. This gives us a proper
coloring of the graph. Therefore,

χ ≤ n

k
+m = (1 + o(1))

n

2 log2 n
,

which completes the proof.
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7.2 Chernoff Bound and Martingale Concentration

Now the remaining task is to show Theorem 7.2, where we need some more tools. We now briefly introduce
the Chernoff bound and concentration inequalities for martingales.

7.2.1 Chernoff Bound

Theorem 7.4 (Chernoff bound) Let Sn = X1 +X2 + . . . +Xn where Xi ∈ {−1, 1} are uniformly i.i.d.
Then, for any λ > 0, we have

Pr[Sn ≥ λ
√
n] ≤ e−λ2/2.

Proof: Let t = λ/
√
n ≥ 0. Consider the moment generating function E[etSn ]. Then, we have

Pr[Sn ≥ λ
√
n] ≤ E[etSn ]

etλ
√
n

≤ e−tλ
√
n+t2n/2 = e−λ2/2,

which completes the proof.

Remark. Chebyshev inequality only tells us the probability is at most 1/λ2 sinceVar[Sn] =
∑

Var[Xi] = n.

The Chernoff bound gives us the following two corollaries.

Corollary 7.5 Let Xi ∈ [−1, 1] independently with E[Xi] = 0 (not necessarily i.i.d.). Then, Sn = X1 +
. . .+Xn has

Pr[Sn ≥ λ
√
n] ≤ e−λ2/2.

Proof: By convexity, we have

etx ≤ 1− x

2
· e−t +

1 + x

2
· et.

So,

E[etX ] ≤ e−t + et

2
.

The rest part of the proof is the same.

Corollary 7.6 Let X be the sum of n independent Bernoulli random variables (not necessarily the same).
Let µ = E[X] and λ ≥ 0. Then,

Pr[X ≥ µ+ λ
√
n] ≤ e−λ2/2.

Comparison to the normal distribution N(0, 1). As E[etX ] = et
2/2, we have

Pr[X ≥ λ] ≤ e−tλE[e−tX ] = e−tλ+t2/2 = e−λ2/2

by setting t = λ.

Remark. A random variable X with E[X] = 0 and Pr[|X|≥ t] ≤ 2e−ct2 for all t ≥ 0 and constant c > 0 is
called a sub-gaussian. Usually, the exact value of c is not significant.
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7.2.2 Martingale

We now develop similar sub-gaussian tail bound for other variables.

Definition 7.1 (martingale) A martingale is a random variable sequence {Z0, Z1, . . .} such that for any
n, E[Zn] < ∞ and

E[Zn+1|Z0, . . . , Zn] = Zn.

Remark. Usually, Zn depends on X0, . . . , Xn and satisfies E[Zn+1|X0, . . . , Xn] = Zn.

Definition 7.2 (Doob martingale) Given an underlying r.v.s. X1, . . . , Xn and f(X1, . . . , Xn), then

Zi = E[f(X1, . . . , Xn)|X1, . . . , Xi]

is a martingale with respect to X1, . . . , Xn.

In random graphs, we have two classical martingales:

• Edge-exposure martingale: E[f(G(n, p))|X0, X1, . . . , X(n2)
], where each variable symbolizes an edge;

• Vertex-exposure martingale: E[f(G(n, p))|X0, X1, . . . , Xn], where each variable symbolizes a vertex.

Remark. There is a trade-off between the length and the difference bound.

Theorem 7.7 (Azuma’s inequality) Let Z0, Z1, . . . , Zn be a martingale such that |Zi−Zi−1|≤ ci for any
i ∈ [n]. Then,

Pr[Zn − Z0 ≥ λ] ≤ e−λ2/2(c21+...+c2n).

More generally, if Zi conditioned on Z0, . . . , Zi−1 lies inside an interval of length ci (the interval may depends
on Z0, . . . , Zi−1, but its length is unpper bounded), then

Pr[Zn − Z0 ≥ λ] ≤ e−2λ2/(c21+...+c2n).

Remark. Applying Auzma’s inequality to Zn and −Zn, it gives

Pr[|Zn − Z0|≥ λ] ≤ 2e−2λ2/(c21+...+c2n).

Theorem 7.8 (Bounded differences inequality) Let X1 ∈ Ω1, . . . , Xn ∈ Ωn be n independent r.v.s..
Suppose f : Ω× . . .× Ωn → R is a function such that

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn)|≤ ci.

Then the random variable Z = f(X1, . . . , Xn) satisfies that for any λ ≥ 0,

Pr[Z −E[Z] ≥ λ] ≤ e−2λ2/(c21+...+c2n).

So is Pr[Z −E[Z] ≤ −λ].

In particular, if f satisfies |f(x)− f(y)|≤ c · ∥x− y∥0, where the 0-norm of a vector v, denoted by ∥v∥0, is
the number of nonzero elements in v (here we say f is c-Lipschitz), then

Pr[Z −E[Z] ≥ λ] ≤ e−2λ2/(nc2),

and so is Pr[Z −E[Z] ≤ −λ].
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7.2.3 Proof of Theorem 7.2

Now, we use the bounded differences inequality to prove Theorem 7.2.

Proof: Let k = k0−3. Define Y = Y (G) as the maximum number of edge-disjoint k-cliques in G. Using the
edge-exposure martingale, we have Y = f(Xe1 , . . . , Xe

(n2)
). Notice that Y changes at most 1 if G changes

only one edge. (Warning: This is not true if G changes one vertex!) By the bounded differences inequality,
for G ∼ G(n, 1/2), letting µ = E[Y ], we have

Pr[ω(G) < k] = Pr[Y (G) = 0] ≤ Pr[Y − µ ≤ −µ] ≤ e−2µ2/(n2).

Our goal is to prove

Pr[ω(G) < k] < e−n2−o(1)

.

It suffices to show µ ≥ n2−o(1).

Consider an auxiliary graph H whose vertices are k-cliques in G, and (u, v) ∈ E(H) if clique u and clique v
overlap in at least 2 vertices in G. Then, based on Caro-Wei inequality, we have

Y = α(H) ≥ |V (H)|2

|V (H)|+2|E(H)|
.

Now, we use second moment method to compute |V (H)| and |E(H)|.

As

µv = E[|V (H)|] =
(
n

k

)
· 2−(

k
2) ≥ n3−o(1) → ∞,

by the second moment method, we have V (H) = (1± o(1))µv with high probability.

For |E(H)|, we have

µe = E[|E(H)|] = ∆

2
=

µv

2
∆∗ =

µv

2

k−1∑
ℓ=2

(
k

ℓ

)(
n− k

k − ℓ

)
2(

ℓ
2)−(

k
2).

Let g(ℓ) =
(
k
ℓ

)(
n−k
k−ℓ

)
· 2(

ℓ
2)−(

k
2), then

g(ℓ)

g(ℓ+ 1)
=

(ℓ+ 1)(n− 2k + ℓ+ 1)

(k − ℓ)2
· 2−ℓ.

Note that k ≈ 2 log2 n. This implies that if ℓ ≥ 3
4k, then g(ℓ) ≤ g(ℓ+ 1). Therefore,

∑
3
4k≤ℓ<k

g(ℓ) ≤ k

4
g(k − 1) =

k

4
· k · (n− k) · 2−(k−1) = O(k2/n).

If ℓ ≤ 3
4k, then
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g(ℓ)

µv
=

(
k
ℓ

)(
n−k
k−ℓ

)(
n
k

) · 2(
ℓ
2)

≤ (n− k)k−ℓ/(k − ℓ)!

(n− k)k/k!
·
(
k

ℓ

)
· 2ℓ(ℓ−1)/2

≤ k! /(k − ℓ)!

(n− k)ℓ
·
(
k

ℓ

)
· 2ℓ(ℓ−1)/2

≤ k2ℓ

(n− k)ℓ
· 2ℓ(ℓ−1)/2

=
(k2 · 2(ℓ−1)/2

n− k

)ℓ

=

{
O(k4/n2) ℓ = 2

o(k4/n2) ℓ > 2

Therefore, if µv ≥ n3−o(1), then

µe =
µv

2

∑
g(ℓ) = c · µ2

v ·
k4

n2
≫ µv.

So, we have

E[Y ] ≥ E
[ v2

v + 2e

]
≥ E

[ v2

v + 2e
|v ≥ (1− o(1))µv

]
·Pr[v ≥ (1− o(1))µv]

= (1− o(1))E
[ µ2

v

µv + 2e

]
≥ (1− o(1))

µ2
v

µv + 2µe
(by Jensen’s inequality)

= O(n2/k4).

Alternative proof : Without strong concentration, use alteration method. Pick each v ∈ H with probability
q. Then,

E[Y ] ≥ E[q|V (H)|−q2|E(H)|] = qµv − q2µe.

Choose q = µv

2µe
, and we have

E[Y ] ≥ µ2
v/4µe = O(n2/k4) = n2−o(1),

which completes the proof.

Finally, if E[χ(G(n, p))] is known, using vertex-exposure martingale, it gives us the following theorem.

Theorem 7.9 (Shamir & Spencer, 1987) For any λ ≥ 0,

Pr[χ−E[χ] ≥ λ ·
√
n− 1] ≤ e−2λ2

.

So is Pr[χ−E[χ] ≤ −λ ·
√
n− 1].
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Remark. For p = 1/2, χ does not concentrate on any interval of length no larger than n1/4. But for sparse
random graphs where p = n−α for all α > 1/2, χ has a two-point concentration. We leave a simple version
as homework.

7.3 An Introduction to the Lovász Local Lemma

Suppose we have a set of events A1, . . . , An, each with probability pi. If
∑

pi < 1, then by the union bound
(or Markov’s inequality), we know that Pr[∩Ai] > 0 or even almost surely if

∑
pi = o(1). If

∑
pi = O(1) or

even
∑

pi → ∞, then we know nothing about Pr[∩Ai]. Let Xi be the indicator of Ai. If Var[X] = o(E[X]2),
then Pr[∩Ai] = Pr[X = 0] = o(1). However, what do we need if we want to prove that Pr[∩Ai] > 0?

In this section, we will introduce the celebrated Lovász local lemma. We start from the definition of depen-
dency.

Definition 7.3 (Dependency) Suppose we have n “bad events” A1, . . . , An. For each Ai, there is some
subset N(i) ⊆ [n] such that Ai is independent from {Aj : j ̸= i, j ̸∈ N(i)}. We say an event A0 is independent
from {A1, . . . , Am} if for any Bi ∈ {Ai, Ai}, Pr[A0|B1, B2, . . . , Bm] = Pr[A0].

Remark. We usually represent above relations by a dependency (di-)graph whose vertices are events, and
Ai → Aj if and only if j ∈ N(i).

Important Remark. Pay attention that pairwise independence does not implies mutually independence.
For the local lemma we need a stronger notion of independence. Consider x1, x2, x3 ∈ {0, 1} uniformly and
Ai is the event that

∑
j ̸=i xj = 0. Then any two events are pairwise independent but are not independent if

we consider the third event. Thus, the empty graph is not a valid dependency graph. But, any graph with
at least two edges is a valid dependency graph.

Theorem 7.10 (Lovász Local Lemma, symmetric version) Let A1, . . . , An be events with Pr[Ai] ≤ p.
Suppose that each Ai is independent from all other Aj except at most d of them. If ep(d + 1) ≤ 1, then
Pr[∩Ai] > 0.

Let’s take an example of hypergraph coloring. Let H = (V,E) be a hyper-graph. A coloring c is proper if
there doesn’t exist a monochromatic edge. We can see that for any two edges e, f ∈ E, e ∼ f if e ∩ f = ∅.
According to Lovász local lemma, if the hypergraph is k-uniform, maximum vertex degree is at most ∆, and
ek∆q1−k ≤ 1, then H is q-colorable.

(To be continued...)


